﻿ 螺旋桨敞水性能计算及堵塞效应研究
 舰船科学技术  2016, Vol. 38 Issue (11): 39-43 PDF

1. 华中科技大学 船舶与海洋工程学院，湖北 武汉 430074 ;
2. 船舶与海洋工程水动力湖北省重点实验室，湖北 武汉 430074 ;
3. 高新船舶与深海开发装备协同创新中心，上海 200240

Propeller open water performance calculation and blockage effect research
QU Mu-lin1, SUN Jiang-long1,2,3, HUANG Ben-shen1, ZHONG Cheng1, MA Chao-long1
1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China ;
2. Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics, Wuhan 430074, China ;
3. Collaboration Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
Abstract: Based on the projection principle of propeller and its geometric parameters, using three-dimensional modeling software CATIA to establish a three-dimensional numerical model of propeller. Then according to the principle of computational fluid dynamics (CFD), the use of fluid dynamics software FLUENT numerical model for analysis and calculation of propeller. Using RANS method and combining with the RSM turbulence model propellers, three dimensional viscous flow field computation domain of discrete using unstructured grid method, using the relative rotating coordinates method (MRF) to simulate the movement of the propeller, in order to calculate the propeller under different into the coefficient of the flow field characteristics, and compared the numerical calculation results and experimental results of the propeller to determine the applicability of the method. Finally to study the properties of blockage effect and the ordinary propeller open water performance and propeller under the blockage effect of open water performance comparison, draw a blockage effect on propeller open water performance impact.
Key words: propelle     CFD     MRF     open water performance     the arctic route
0 引言

1 计算基本公式 1.1 RANS方程

RANS方程是粘性流体运动学和动力学的普适性控制方程，本文用该方程作为求解螺旋桨水动力性能计算的基本方程。其具体方程式为：

 \begin{aligned} & \displaystyle\frac{{\partial (\rho {u_i})}}{{\partial t}} + \displaystyle\frac{{\partial (\rho {u_i}{u_j})}}{{\partial {x_i}}} = - \frac{{\partial p}}{{\partial {x_i}}} - \displaystyle\frac{\partial }{{\partial {x_j}}}(\rho \overline {u_i^′u_j^′} ) + \\ & \quad \quad \quad \rho {f_i} \!+\! \frac{\partial }{{\partial {x_j}}}\left[ {{\mu _o}(\displaystyle\frac{{\partial {u_i}}}{{\partial {x_j}}} \!+\! \frac{{\partial {u_j}}}{{\partial {x_i}}}) \!-\! \frac{2}{3}{\mu _o}\frac{{\partial {u_i}}}{{\partial {x_i}}}{\delta _{ij}}} \right]\text{。} \end{aligned} (1)

1.2 湍流脉动动能方程

 $\frac{{\partial (\rho k)}}{{\partial t}} \!+\! \frac{{\partial (\rho k{u_i})}}{{\partial {x_i}}} \!=\! {p_k} - \rho \varepsilon \!+\! \frac{\partial }{{\partial {x_j}}}\left[ {\left( {{\mu _o} \!+\! \frac{{{u_t}}}{{{\sigma _k}}}} \right)\frac{{\partial k}}{{\partial {x_j}}}} \right]\text{。}$ (2)
1.3 雷诺应力模型方程

 \begin{aligned} & \displaystyle\frac{{\partial (\rho \overline {{u_i}{u_j}} )}}{{\partial t}} + \frac{\partial }{{\partial {x_k}}}(\rho {U_k}\overline {{u_i}{u_j}} ) = \\ & \quad \quad \displaystyle\frac{\partial }{{\partial {x_k}}}\left[ {\rho \overline {{u_i}{u_j}{u_k}} + \overline {{\delta _{kj}}{u_i} + {\delta _{ki}}{u_j}} } \right] + \\ & \quad \quad \displaystyle\frac{\partial }{{\partial {x_k}}}\left( {\mu \frac{\partial }{{\partial {x_k}}}\overline {{u_i}{u_j}} } \right){\rm{ - }}\rho \left( {{{{u}}_{{i}}}{{{u}}_{{k}}}\displaystyle\frac{{\partial {{\rm{U}}_{{i}}}}}{{\partial {x_k}}}} \right){\rm{ - }}\\ & \quad \quad \rho \beta \left( {{g_i}\overline {{u_j}\theta } + {g_j}\overline {{u_i}\theta } } \right) + p\left( {\displaystyle\frac{{\partial {u_i}}}{{\partial {x_j}}} + \frac{{\partial {u_j}}}{{\partial {x_i}}}} \right) -\\ & \quad \quad 2\mu \overline {\displaystyle\frac{{\partial {u_i}}}{{\partial {x_k}}}\frac{{\partial {u_j}}}{{\partial {x_k}}}} - 2\rho {\Omega _k}\left( {\overline {{u_j}{u_k}} {\varepsilon _{ikm}} + \overline {{u_i}{u_k}} {\varepsilon _{jkm}}} \right)\text{。} \end{aligned} (3)

2 模型建立 2.1 螺旋桨投影原理

DTMB4119桨是一种无侧斜无后倾分布的3叶螺旋桨，被ITTC选为考证数值方法预报精度的标准。其直径为0.304 8 m，螺距比为1.084，毂径比为0.2，剖面为NACA-66mod型。

 图 1 螺旋桨投影原理 Fig. 1 Propeller projection principle
 $\left[\!\! \begin{array}{l} X\\ Y\\ Z \end{array}\!\! \right] \!=\! \left[ \begin{array}{l} {Z_1}\sin \varphi + {X_1}\cos \varphi + L\sin \varphi - r\tan \theta \\[8pt] r\cos \left[ {\displaystyle\frac{{{Z_1}\cos \varphi - {X_1}\sin \varphi + L\cos \varphi }}{r}} \right]\\[8pt] r\sin \left[ {\displaystyle\frac{{{Z_1}\cos \varphi - {X_1}\sin \varphi + L\cos \varphi }}{r}} \right] \end{array} \right]\text{。}$ (4)

2.2 模型建造

 图 2 螺旋桨模型 Fig. 2 The propeller model

1）建一个半径为25 mm、高10 mm的圆柱体轴线平行z轴，其z轴正向圆柱表面圆心为（0，70，172.4），这是加1个堵塞物的模型（见图 3）。

 图 3 添加1个堵塞物模型 Fig. 3 Add a blockage model

2）与上一模型类似，建立5个圆柱，半径为20 mm，高15 mm。其z轴正向圆柱表面圆心分别为（130，0，146.4），（80，100，250），（30，30，200.4），（80，80，200.4），（0，-80，200.4）。这是加5个堵塞物的模型（见图 4）。

 图 4 添加5个堵塞物模型 Fig. 4 Add five blockage model
3 网格划分及计算方法

4 计算结果分析 4.1 数值验证

4.2 堵塞效应分析 4.2.1 固体块在垂直于螺旋桨轴线的面的运动的影响

4.2.2 堵塞固体块的数量对螺旋桨的性能影响

4.2.3 堵塞效应对螺旋桨敞水性能的影响

 图 5 敞水螺旋桨压力云图 Fig. 5 Propeller open water stress nephogram

 图 6 堵塞作用下螺旋桨压力云图 Fig. 6 Stress nephogram of propeller under the plugging effect
5 结语

1）根据螺旋桨投影原理以及原始数据，利用CATIA软件建立4119桨的三维模型，实现了数据到模型的转化。

2）分析对比了数值模拟得到的数据以及实验得到的数据，发现在误差允许范围内数值模拟的结果与实验结果相同，验证了CFD数值模拟方法的可行性。并得到相应的误差范围。

3）对堵塞作用对于螺旋桨的影响做出来研究，分别研究了堵塞固体块的速度以及数量对螺旋桨敞水性能的影响，通过对比发现固体块在垂直螺旋桨旋转轴平面的速度对螺旋桨所受推力、扭矩影响不大；固体块的数量在一定范围内与螺旋桨的推力、扭矩成正比。为螺旋桨的研究提供了依据。

 [1] 沈阅.螺旋桨非正常工作状态时的水动力性能研究[D].哈尔滨:哈尔滨工程大学, 2007. SHEN Yue. The research on the characteristic of propeller in abnormal condition[D]. Harbin: Harbin Engineering University, 2007. http://www.cnki.com.cn/Article/CJFDTotal-KXJS201501022.htm [2] 高富东, 潘存云, 蔡汶珊, 等. 基于CFD的螺旋桨敞水性能数值分析与验证[J]. 机械工程学报 , 2010, 46 (8) :133–139. GAO Fu-dong, PAN Cun-yun, CAI Wen-shan, et al. Numerical analysis and validation of propeller open-water performance based on CFD[J]. Journal of Mechanical Engineering , 2010, 46 (8) :133–139. DOI:10.3901/JME.2010.08.133 [3] 缪宇跃, 孙江龙. CFD敞水螺旋桨性能计算分析[J]. 中国舰船研究 , 2011, 6 (5) :63–68. MIAO Yu-yue, SUN Jiang-long. CFD Analysis of hydrodynamic performance of propeller in open water[J]. Chinese Journal of Ships Research , 2011, 6 (5) :63–68. [4] 蔡荣泉, 陈凤明, 冯学梅. 使用Fluent软件的螺旋桨敞水性能计算分析[J]. 船舶力学 , 2006, 10 (5) :41–48. CAI Rong-quan, CHEN Feng-ming, FENG Xue-mei. Calculation and analysis of the open water performance of propeller by CFD software Fluent[J]. Journal of Ship Mechanics , 2006, 10 (5) :41–48. [5] 刘帅.潜艇操纵运动水动力数值研究[D]上海:上海交通大学, 2011. LIU Shuai. Numerical study of hydrodynamic forces on a maneuvering submarine[D] Shanghai: Shanghai Jiaotong University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10248-1011267880.htm [6] 孙存楼, 王永生, 李坚波. 基于CFD的调距桨调距过程桨叶水动力性能研究[J]. 哈尔滨工程大学学报 , 2010, 31 (2) :149–153. SUN Cun-lou, WANG Yong-sheng, LI Jian-bo. Using CFD to analyze the hydrodynamic performance of controllable pitch propeller blades during pitch adjustments[J]. Journal of Harbin Engineering University , 2010, 31 (2) :149–153. [7] 王国栋.螺旋桨水动力、空泡和噪声性能预报方法研究[D].武汉:华中科技大学, 2013. WANG Guo-dong. Investigation on the numerical simulation of propeller hydrodynamics、cavitation and noise[D]. Wuhan: Huazhong University of Science and Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10487-1014026280.htm [8] 王超.螺旋桨水动力性能、空泡及噪声性能的数值预报研究[D].哈尔滨:哈尔滨工程大学, 2010. WANG Chao. The research on performance of propeller' hydrodynamics, cavitation and noise[D] Harbin: Harbin Engineering University, 2010. http://www.oalib.com/references/18936664 [9] SHAZLY M, PRAKASH V, LERCH B A. High strain rate compression testing of ice[M]. USA: National Aeronautics and Space Administration, Glenn Research Center, 2006 . [10] KASTEN M. Contmllahle pitch propellers[M]. UK: Kasten Marine Design, Inc., 1998 .