﻿ 超大型全回转起重船作业过程水动力时域仿真
 舰船科学技术  2016, Vol. 38 Issue (11): 21-27 PDF

Hydrodynamic simulation for the operation of super large revolving crane vessel in time domain
WAN Hao, CHEN Xin-quan, YANG Qi, FENG Yong-jun
School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract: The coupled movement between ship and crane load of revolving crane vessel will occur in the process of operation and effects ship performance. For the movement characteristics of ship and crane load, this paper establishes the calculation model of a super large revolving crane vessel the crane load of which is 12 000 t in AQWA software and the motion responses in different rotation angle of lifting arm, different angle of incidence of environmental load and different load weight are computed and the calculation results are analyzed and the change regulations of ship and crane load motion responses with different parameters are obtained. The calculation results show that the movement between ship and crane load are strongly relevant. And some suggestions are given for the environmental conditions limited and ballast water adjustment in lifting operation.
Key words: crane vessel     coupling analysis     mooring     hydrodynamic     time domain
0 引言

1 计算理论 1.1 三维势流理论

 $\left( {{{\boldsymbol{m}}_{ij}} + {\boldsymbol{\mu} _{ij}}} \right){\ddot x_j} + {\boldsymbol{\lambda} _{ij}}{\dot x_j} + {{\boldsymbol{c}}_{ij}}{x_j} = {f_i}, \;i, j = 1, 2, \cdots 6。$

 \begin{align} & 2\text{ }\!\!\pi\!\!\text{ }{{\phi }_{j}}\left( X \right)+\frac{\partial G\left( \xi ;X \right)}{\partial {{n}_{\xi }}}\text{d}\xi =G\left( \xi ;X \right)\text{d}\xi \\ & 2\text{ }\!\!\pi\!\!\text{ }{{\phi }_{D}}\left( X \right)+\frac{\partial G\left( \xi ;X \right)}{\partial {{n}_{\xi }}}\text{d}\xi =4\text{ }\!\!\pi\!\!\text{ }{{\phi }_{0}}\left( X \right) \\ \end{align}。

1.2 时域耦合分析

 \begin{align} & \left\{ \boldsymbol{m}+{{A}_{\infty }} \right\}\ddot{X}(t)+c\dot{X}(t)+{{K}_{t}}X(t)+\int\limits_{0}^{t}{h(t-\tau )\ddot{X}(t)}\text{d}\tau = \\ & {{F}^{(1)}}(t)+{{F}^{(2)}}(t)+{{F}_{c}}(t)+{{F}_{w}}(t)+{{F}_{b}}(t)+{{F}_{t}}(t)+{{F}_{e}}(t) \\ \end{align}。

 $h\left( t \right)=-\frac{2}{\text{ }\!\!\pi\!\!\text{ }}\int\limits_{0}^{\infty }{}B\left( \omega \right)\frac{\sin \left( \omega t \right)}{\omega }\text{d}\omega =\frac{2}{\text{ }\!\!\pi\!\!\text{ }}\int\limits_{0}^{\infty }{}\left\{ A\left( \omega \right)-{{A}_{\infty }} \right\}\cos \left( \omega t \right)\text{d}\omega$

1.3 系泊缆动力分析

 \begin{aligned} & \frac{{\partial {\boldsymbol{T} }}}{{\partial {s_e}}} + \frac{{\partial {\boldsymbol{V}}}}{{\partial {s_e}}} + w + {{\boldsymbol{F}}_h} = m\frac{{\partial {{\boldsymbol{R}}^2}}}{{\partial {t^2}}}\text{，}\\ & \frac{{\partial {\boldsymbol{M}}}}{{\partial {{\boldsymbol{S}}_e}}} + \frac{{\partial R}}{{\partial {{\boldsymbol{S}}_e}}} \times {\boldsymbol{V}} = - {\boldsymbol{q}}\text{。} \end{aligned}

 图 1 系泊缆单元受力示意图 Fig. 1 Mooring cable force diagram

 \begin{aligned} & M = EI\frac{{\partial }}{{\partial {s_e}}} \times \frac{{{\partial ^2}}}{{\partial {s_e}^2}}\text{，}\\ & T = EA\varepsilon \text{。} \end{aligned}

2 计算模型 2.1 水动力模型

 图 2 起重船总布置图 Fig. 2 General arrangement drawing of the ship

 图 3 起重船水动力模型 Fig. 3 Hydrodynamic model of the ship

 图 4 起重船横摇传递函数 Fig. 4 Roll RAO of the ship

 图 5 起重船纵摇传递函数 Fig. 5 Pitch RAO of the ship
2.2 环境条件

 图 6 P-M谱 Fig. 6 P-M spectrum
3 计算结果及分析

3.1 不同吊臂旋转角下船体和吊物的运动响应

 图 7 船舶横摇时历曲线 Fig. 7 Time history curves of roll

 图 8 船舶纵摇时历曲线 Fig. 8 Time history curves of pitch

 图 9 船舶首摇时历曲线 Fig. 9 Time history curves of yaw

 图 10 1号缆张力时历曲线 Fig. 10 Time history curves of tension of cable No.1

 图 11 吊物纵荡时历曲线 Fig. 11 Time history curves of surge of load

 图 12 吊物纵向速度时历曲线 Fig. 12 Time history curves of longitudinal velocity of load

 图 13 吊物横向加速度时历曲线 Fig. 13 Time history curves of longitudinal acceleration

 图 14 不同环境载荷入射角情况下船体位移极值曲线 Fig. 14 The change trend of ship displacement extreme value in different β

 图 15 不同环境载荷入射角情况下船体位移极值曲线 Fig. 15 The change trend of ship displacement extreme value in different β

 图 16 不同环境载荷入射角情况下缆绳张力极值曲线 Fig. 16 The change trend of mooring line tension in different β

 图 17 不同环境载荷入射角情况下吊物位移极值曲线 Fig. 17 The change trend of load displacement extreme value in different β

3.2 不同环境载荷入射角α、不同吊重下船体和吊物的运动响应

 图 18 不同吊重、不同环境载荷入射角下船体横摇极值 Fig. 18 The change trend of ship roll extreme value in different α and different load weight

 图 19 不同吊重、不同环境载荷入射角下船体纵摇极值 Fig. 19 The change trend of ship pitch extreme value in different α and different load weight

 图 20 不同吊重、不同环境载荷入射角下船体艏摇响应 Fig. 20 The change trend of ship yaw extreme value in different α and different load weight

3.3 船体重心随吊臂旋转角变化

 图 21 重心横向位置 Fig. 21 Position of gravity center in y direction
4 结语

1）吊臂旋转角与中纵剖面的夹角为0°~90°时，随吊臂旋转角的增大，船体横摇变化最大，且变化趋势为先增大后减小，在吊臂旋转角45°或60°时取得最大值。其余5个方向的运动及锚缆张力变化较小，在吊臂旋转角45°或60°时取得最大值。

2）吊物的摆动幅值随吊臂旋转角的变化趋势为先增大后减小，并在吊臂旋转角45°时取得最大值，这与船体运动的变化趋势一致，且在船体横摇运动上表现最为明显。

3）环境载荷入射角0°至180°时，随环境载荷入射角的增大，船体的横摇和首摇先增大后减小，并在环境载荷入射角90°时取得最大值。船体纵摇变化趋势与吊重有关。

4）随环境载荷入射角的增大，船体横摇和首摇增加较快且幅值较大，因此在作业过程中要尽量使船舶处于迎浪或顺浪，避开横浪。

5）随吊重的增加，船体横摇逐渐增大，船体纵摇在部分环境载荷入射角下增大，而船体首摇变化不大。

6）考虑超大型起重船全回转作业过程中的浮态，分析重心横向位置变化对船舶运动的影响，确定作业过程中合适的重心位置，为作业过程中压载水调整提供参考，从而改善船舶全回转作业过程中的浮态。

 [1] TODD M D, VOHRA S T, LEBAN F. Dynamical measurements of ship crane load pendulation[C]//Proceedings of MTS/IEEE Conference Proceedings. Halifax, NS:IEEE, 1997:1230-1236. [2] HENRY R J, MASOUD Z N, NAYFEH A H, et al. Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation[J]. Journal of Vibration and Control , 2001, 7 (8) :1253–1264. DOI:10.1177/107754630100700807 [3] CHIN C M, NAYFEH A H, MOOK D T. Dynamics and control of ship-mounted cranes[J]. Journal of Vibration and Control , 2001, 7 (6) :891–904. DOI:10.1177/107754630100700607 [4] 董艳秋, 韩光. 起重船吊物系统在波浪中的动力响应[J]. 中国造船 , 1993 (1) :63–71. DONG Yan-qiu, HAN Guang. Dynamic response of lifting load system of crane vessel in waves[J]. Shipbuilding of China , 1993 (1) :63–71. [5] 任会礼, 王学林, 胡于进, 等. 起重船吊物系统动力响应仿真分析[J]. 系统仿真学报 , 2007, 19 (12) :2665–2668. REN Hui-li, WANG Xue-lin, HU Yu-jin, et al. Dynamic response simulation of lifting load system of ship-mounted cranes[J]. Journal of System Simulation , 2007, 19 (12) :2665–2668. [6] 任会礼, 王学林, 胡于进, 等. 考虑吊臂弹性的锚泊起重船动力特性研究[J]. 机械工程学报 , 2009, 45 (10) :42–47. REN Hui-li, WANG Xue-lin, HU Yu-jin, et al. Dynamic response analysis of moored crane-ship with flexible booms[J]. Journal of Mechanical Engineering , 2009, 45 (10) :42–47. DOI:10.3901/JME.2009.10.042 [7] 李跃, 沈庆, 陈徐均. 波浪环境中作业起重船悬吊载荷的摆振分析[J]. 建筑机械 , 2003 (8) :55–57, 61. LI Yue, SHEN Qing, CHEN Xu-jun. Swing analysis of suspended load of crane ship on the wave[J]. Construction Machinery , 2003 (8) :55–57, 61. [8] 王学林, 尤心一, 胡于进. 规则波作用下起重船吊重动力学仿真[J]. 中国机械工程 , 2010, 21 (9) :1077–1082. WANG Xue-lin, YOU Xin-yi, HU Yu-jin. Cargo pendulation analysis of moored crane ship under regular waves[J]. China Mechanical Engineering , 2010, 21 (9) :1077–1082. [9] 顾永宁, 胡志强, 谢彬, 等. 大型起重船波浪诱导吊索附加动力荷载研究[J]. 中国海上油气 , 2005, 17 (3) :197–202. GU Yong-ning, HU Zhi-qiang, XIE Bin, et al. Study on the additional dynamic load of lifting rope due to wave-induced motion of heavy crane barge[J]. China Offshore Oil and Gas , 2005, 17 (3) :197–202. [10] IDRES M M, YOUSSEF K S, MOOK D T, et al. A nonlinear 8-DOF coupled crane-ship dynamic model[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Norfolk, Virginia:American Institute of Aeronautics and Astronautics, 2003, 1855:4187-4197. [11] SCHELLIN T E, JIANG T, SHARMA S D. Crane ship response to wave groups[J]. Journal of Offshore Mechanics and Arctic Engineering , 1991, 113 (3) :211–218. DOI:10.1115/1.2919922 [12] 陈新权, 何炎平, 李洪亮, 等. 全回转起重船吊索动力荷载及其对浮态及稳性的影响[J]. 上海交通大学学报 , 2010, 44 (6) :778–781. CHEN Xin-quan, HE Yan-ping, LI Hong-liang, et al. Study on the dynamic load of rope and its effect on floating and stability of revolving crane vessel[J]. Journal of Shanghai Jiaotong University , 2010, 44 (6) :778–781. [13] 汪娟娟, 黄衍顺, 李怀亮, 等. 吊重作业起重船波浪中的运动响应[J]. 中国舰船研究 , 2013, 8 (3) :50–57. WANG Juan-juan, HUANG Yan-shun, LI Huai-liang, et al. Lifts' motion response in waves in the hoisting operation[J]. Chinese Journal of Ship Research , 2013, 8 (3) :50–57. [14] 魏国. Spar平台上部模块吊装过程中的碰撞响应分析[D].哈尔滨:哈尔滨工程大学, 2013. WEI Guo. Collision response analysis during spar upper module installation[D]. Harbin:Harbin Engineering University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10217-1014132691.htm [15] 何强. Spar平台上层模块起吊运动数值分析[D].哈尔滨:哈尔滨工程大学, 2012. HE Qiang. Numerical motion analysis for the lifting of spar upper module[D]. Harbin:Harbin Engineering University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10217-1012517334.htm