﻿ 导管螺旋桨敞水性能数值计算方法研究
 舰船科学技术  2016, Vol. 38 Issue (6): 42-46 PDF

Research on open-water performance of ducted propeller by numerical calculation
WU Xiang-rong, WANG Yong-sheng, JIANG Chao
College of Marine Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In order to predict the open-water performance of ducted propeller quickly the CFD software was used to simulate the open-water experiment of ducted propeller. According to the results of calculation, the open-water performance curves were drawn and compared with the results of experiment. The open-water performance according to the results was analyzedand it's feasibility and accuracy were verified. The parameters of propeller in open-water is analyzed which including thrusttorque and open-water efficiency. The thrust of the duct decreased with the increase of the propeller's velocity. And the performance index of the ducted propelled were researched when it worked at mooring conditions, and the method for setting the boundary condition at mooring conditions were studied.
Key words: CFD     ducted propelled     steady calculation     performance analysis     mooring conditions
0 引言

1 数学模型与计算方法

 $\frac{{\partial {{\rm{u}}_{\rm{i}}}}}{{\partial {{\rm{x}}_{\rm{i}}}}} = 0\text{；}$ (1)

 $\begin{array}{l} \displaystyle\frac{\partial }{{\partial {\rm{t}}}}\left( {\rho {u_{\rm{i}}}} \right) + \frac{\partial }{{\partial {x_{\rm{j}}}}}\left( {\rho {{\rm{u}}_{\rm{i}}}{{\rm{u}}_{\rm{j}}}} \right) =-\frac{\partial }{{\partial {{\rm{x}}_i}}} + \\ [10pt] \quad\quad\quad\quad \displaystyle\frac{\partial }{{\partial {{\rm{x}}_j}}}\left( {\mu \frac{{\partial {u_i}}}{{\partial {{\rm{x}}_j}}}-\overline {\rho u_i^{'}u_j^{'}} } \right) + \rho {g_i}\text{。} \end{array}$ (2)

 $\frac{{\partial \overline {{u_i}} }}{{\partial {x_i}}} = 0\text{，}$ (3)
 $\rho \frac{{\partial \overline {{u_i}} }}{{\partial t}} + \rho \overline {{u_j}} \frac{{\partial \overline {{u_i}} }}{{\partial xj}} = \rho \overline {{F_i}}-\frac{{\partial \overline P }}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_j}}}\left( {\mu \frac{{\partial \overline {{u_i}} }}{{\partial {x_j}}}-\overline {\rho {u_i}{u_j}} } \right)\text{。}$ (4)

2 网格划分及边界条件设定 2.1 实尺度模型的建立及网格划分设定

 图 1 桨叶几何模型 Fig. 1 The model of the blade

 图 2 导管几何模型 Fig. 2 The model of the ducted

 图 3 计算外域几何模型 Fig. 3 The model of Out-domain

 图 4 内部计算域网格划分 Fig. 4 The meshing of Internal domain

 图 5 外部计算域网格划分及拓扑结构 Fig. 5 External meshing calculation domain and topology
2.2 边界条件的设定

3 敞水模拟计算结果分析

 $J = \frac{{{V_A}}}{{nD}}\text{；}$ (5)

 ${K_T} = \frac{T}{{\rho {n^2}{D^4}}}\text{；}$ (6)

 ${K_Q} = \frac{Q}{{\rho {n^2}{D^5}}}\text{；}$ (7)

 \begin{aligned} \displaystyle{\eta _o} = & \frac{{T{V_A}}}{{2\pi nQ}} = \frac{{{K_T}\rho {n^2}{D^4}{V_A}}}{{2\pi n{K_Q}\rho {n^2}{D^5}}} = \\ & \displaystyle\frac{{{K_T}}}{{{K_Q}}} \cdot \frac{{{V_A}}}{{2\pi nQ}} = \frac{{{K_T}}}{{{K_Q}}} \cdot \frac{J}{{2\pi }} \end{aligned} (8)

 图 6 敞水性能计算值与试验值的对比 Fig. 6 Comparison between calculations and test results of open-water performance

 图 7 导管推力系数（KTD）计算值与试验值的对比 Fig. 7 Comparison between calculations and test results of KTD

 图 8 系泊工况流线图 Fig. 8 The stream lines of the mooring conditions

 图 9 系泊工况外域几何 Fig. 9 The out-domain of mooring conditions

 图 10 系泊工况改进后流线图 Fig. 10 The stream lines of the mooring conditions after improvement

4 结语

1） 利用本文中的实尺度模型网格划分及边界条件设置，进速系数在 0.6 以内时，推力系数误差绝对值在 8% 以内，力矩系数误差绝对值在 2.5% 以内，效率误差绝对值在 6% 以内。考虑到该导管桨最高效率工作点在 0.4 ~ 0.5 之间，因此该方法可以比较准确的刻画出该类导管螺旋桨的敞水性能曲线。

2）不同航速下，导管作用并不相同。在低速工况下，导管可以产生较大的推力，但在高速工况下产生的则是阻力。

3）针对特殊的系泊工况，通过对边界条件设置的改进，使得计算模拟结果更加的可靠，流线也更加符合物理规律。

4） 导管推力系数在有些进速点误差较大。

 [1] 盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2009 : 177 -188. SHENG Zhen-Bang, LIU Ying-zhong. Ship principle[M]. Shanghai: Shanghai Jiao-tong University Press, 2009 : 177 -188. [2] 解学参, 黄胜, 胡健, 等. 导管桨内部流场的数值计算[J]. 哈尔滨工程大学学报 , 2009, 30 (1) :7–12. XIE Xue-shen, HUANG Sheng, HU Jian, et al. Inner flow field calculations for ducted propellers[J]. Journal of Harbin Engineering University , 2009, 30 (1) :7–12. [3] 黄建伟, 张克危. 导管桨的流动分析与性能预测[J]. 舰船科学技术 , 2004, 26 (S) :51–55. HUANG Jian-wei, ZHANG Ke-wei. Flow analysis and performance perdiction of ducted propeller[J]. Ship Science and Technology , 2004, 26 (S) :51–55. [4] 胡健, 马骋, 黄胜, 等. 导管对螺旋桨水动力性能的影响[J]. 武汉理工大学学报(交通科学与工程版) , 2009, 33 (5) :992–995. HU Jian, MA Cheng, HUANG Sheng, et al. Influence of duct on hydrodynamics of propelle[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering) , 2009, 33 (5) :992–995. [5] 杨琼方, 郭薇, 王永生, 等. 螺旋桨水动力性能CFD预报中预处理的程序化实现[J]. 船舶力学 , 2012, 16 (4) :375–382. YANG Qiong-fang, GUO Wei, WANG Yong-sheng, et al. Procedural realization of pre-operation in CFD prediction of propeller hydrodynamics[J]. Journal of Ship Mechanics , 2012, 16 (4) :375–382. [6] BERCHICHE N, JANSON C E. Grid influence on the propeller open-water performance and flow field[J]. Ship Technology Research , 2008, 55 :87–96. DOI:10.1179/str.2008.55.2.005 [7] 孙铭泽. 螺旋桨敞水性能RANS模拟中网格因素的影响分析[D]. 武汉:海军工程大学, 2009. SUN Ming-ze. Propeller open water performance RANS simulation grid factors analysis[D]. Wuhan:Naval Engineering University, 2009. [8] HSIAO C T, CHAHINE G L. Tip vortex cavitation inception Scaling for an open marine propeller[C]//27th symposium on naval hydrodynamics[D]. Seoul, Korea:Curran Associates, Inc., 2008. [9] 李卉, 邱磊. 螺旋桨水动力性能研究进展[J]. 舰船科学技术 , 2011, 33 (12) :3–8. LI Hui, QIU Lei. Development and present situation of the propeller hydrodynamic performance[J]. Ship Science and Technology , 2011, 33 (12) :3–8. [10] 陈宁, 赖海清. 导管螺旋桨设计和水动力性能分析[J]. 造船技术 , 2014 (3) :10–13. CHEN Ning, LAI Hai-qing. Design and hydrodynamic performance analysis for ducted propeller[J]. Marine Technology , 2014 (3) :10–13.