﻿ 潜艇超空泡技术应用分析
 舰船科学技术  2016, Vol. 38 Issue (6): 37-41 PDF

Application analysis of submarine supercavitation technique
DU Pei-pei, XIAO Chang-run, LIU Yang
Naval University of Engineering, Department of Naval Architecture and Ocean Engineering, Wuhan 430033, China
Abstract: Based on the current development of supercavitation technology, the necessity of supercavitation submarine is expounded. The basic principle of supercavitation technology is introduced. Based on the configuration of the supercavitation torpedo, the deformation cavitator is proposed. How to choose the propulsion of supercavitation submarine and control system are demonstrated. The function and the possible problems of stem rudder are analyzed. The stability problem of the supercavitation submarine is analyzed and the development of the supecrcavitation submarine is putted forward. The characteristics of viscous flow filed of SUBOFF model is calculated, the preconception of supercavitation submarine are putted forward. It is shown that, the wetted area are formed in the head of submarine, the front of the command room of submarine, both sides of the symmetry of the command room and the rear wing. Based on the above results, the improvement of the program is presented. Main work of submarine supercavitation in the future is discussed.
Key words: supercavitation submarine     deformation cavitator     CFD     stability     hydrodynamic forces     wet area
0 引言

1 超空泡技术基本原理

2 超空泡潜艇装置应用分析

“风雪”超空泡鱼雷其主要工作装置包括通气孔、控制与推进系统、空化器、导引设备和尾舵（见图 1）。基于“风雪”超空泡鱼雷的总体配置，结合潜艇自身的特点，对超空泡潜艇对应装置做进一步的应用分析。

 图 1 超空泡鱼雷的设计模型 Fig. 1 The model of supercavitating torpedo
2.1 通气装置应用分析

“变形”通气孔顾名思义，即是在潜艇等水下航行体运行过程中，可以根据其运动过程中空化数、空泡形状、运动状态等的变化，实时调节通气孔的形状来改变通气率的大小，保证超空泡航行体的稳定运动。由于潜艇等水下航行体在运动过程中，存在通气孔出流与空泡壁面的相互作用，如果通气率足够大，可能导致整个超空泡航行体失稳。而通过一定的技术手段，设计可以根据空泡形状自动导流的“变形”通气孔，使流出通气系统的气体流尽可能与整个空泡流场保持平行，可在一定程度上缓解通气引起的不稳定性。

2.2 控制与推进系统应用分析

2.3 空化器应用分析

2.4 导引设备应用分析

2.5 尾舵应用分析

3 超空泡潜艇水动力问题 3.1 水下运动稳定性问题

 图 2 超空泡航行体的稳定模式 Fig. 2 Schemes of body stabilization in supercavity

1）双空泡流动方案

2）航行体尾部沿空泡内壁滑移方案

3）航行体尾部与空泡边界撞击方案

4）航行体尾部与空泡内气体及射流的相互作用方案

3.2 水动力特性问题

4 潜艇自然超空泡仿真仿分析 4.1 计算模型

 图 3 Suboff 计算模型 Fig. 3 The calculation model of Suboff
4.2 结果分析

 图 4 Suboff 潜艇模型仿真结果 Fig. 4 The simulation results of Suboff model

 图 5 尾翼对应潜艇后部区域仿真结果 Fig. 5 The simulation results of the submarine rear area

5 结语

 [1] KUKLINSKI R, HENOCH C, CASTANO J. Experimental study of ventilated cavities on dynamic test model[C]//Proceedings of the 4th International Symposium on Cavitation. California:California Institute of Technology, 2001. [2] 陈春玉. 反鱼雷技术[M]. 北京: 国防工业出版社, 2006 : 187 -197. [3] 曹伟, 魏英杰, 王聪, 等. 超空泡技术现状、问题与应用[J]. 力学进展 , 2006, 36 (4) :571–579. CAO Wei, WEI Ying-jie, WANG Cong, et al. Current status, problems and applications of supercavitation technology[J]. Advances in Mechanics , 2006, 36 (4) :571–579. [4] 傅金祝. 德国超空泡水中兵器的研究现状[J]. 水雷战与舰船防护 , 2005 (4) :12–17. [5] 黄加强. 超空泡技术及其在潜艇上应用前景分析[J]. 舰船电子工程 , 2009, 29 (11) :23–25. HUANG Jia-qiang. Supercavitation technology and analysis of application perspective on submarine[J]. Ship Electronic Engineering , 2009, 29 (11) :23–25. [6] SAVCHEENKO Y N. Control of supercavitation flow and stability of supercavitating motion of bodies[M]//VAN DEN BRAEMBUSSCHE. VKI Special Course on Supercavitating Flows. Brussels:RTO-AVT and VKI, 2001. [7] 姜百汇, 马春勋, 刘乐华. 国外超空泡技术及其应用[J]. 飞航导弹 , 2008 (11) :20–24. [8] 宋伟峰. 超空泡技术将改变海战模式[J]. 舰载武器 , 2003 (2) :20–22. [9] GOEL A. Control strategies for supercavitating vehicles[D]. Florida:University of Florida, 2002:7-9. [10] KUKLINSKI R, HENOCH C, CASTANO J. Experimental study of ventilated cavities on dynamic test model[C]//Proceedings of the 4th international symposium on cavitation. California:California Institute of Technology, 2001. [11] 王茂励. 超空泡航行体的数学建模与控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2008. WANG Mao-li. Mathematics modeling and control strategy of supercavitating vehicle[D]. Harbin:Harbin Engineering University, 2008. [12] AHN S S. An integrated approach to the design of supercavitating underwater vehicles[D]. Atlanta:Georgia Institute of Technology, 2007. [13] SAVCHENKO Y N. Investigation of high-speed supercavitating underwater motion of bodies[C]//Proceedings of NATO-AGARD. Ukraine:NAS-IHM, 1997. [14] REICHARDT H. The laws of cavitation bubbles at axially symmetrical bodies in a flow[R]. Ministry of Aircraft Production Reports and Translations, No. 776, 1946. [15] KIRSCHNER I N, GIESEKE T A, KUKLINSKI R. Supercavitation research and development[R]. Waikiki, HI Undersea Defense Technologies. 2001. [16] SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//Proceedings of the 4th International Conference on Multiphase Flow. New Orleans, USA:ICMF, 2001. [17] 胡青青. 不同倾角下钝体入水后的超空泡流动的实验观察及数值计算[D]. 杭州:浙江理工大学, 2014. HU Qing-qing. Experimental observation and numerical calculation of supercavity flow of blunt body under different inclination angle into the water[D]. Hangzhou:Zhejiang Science Technology University, 2014.