﻿ 填充超弹性材料夹层板的抗爆性能研究
 舰船科学技术  2016, Vol. 38 Issue (6): 24-30 PDF

Research on anti-shock capability of sandwich plate with hyperelastic material
CHEN Pan
China Ship Development and Design Center, Wuhan 430064, China
Abstract: Sandwich plate is a new structural style with high specific stiffness and specific strength, the optimal square hole honeycomb sandwich plate was come from traditional ship stiffened plate according to reference method, the response of square hole honeycomb sandwich plate with or without hyperelastic material inside under blast loading were computed by non-linear numerical analysis, the acceleration, velocity and deformation response of of square hole honeycomb sandwich plate with or without hyperelastic material were analyzed, the response of sandwich plate under different blast distances were compared, and energy absorption of sandwich plate with or without hyperelastic material also were analyzed. Sandwich plate has low response under blast loading with hyperelastic material inside, and has low relative deformation between front panel and back panel.
Key words: sandwich plate     yperelastic material     blast loading     response of sandwich plate
0 引言

1 计算模型

 图 1 加筋板架模型 Fig. 1 Calculation model of stiffened plate

 图 2 方形蜂窝夹层板 Fig. 2 Quad core sandwich plate

 图 4 夹层板内填充橡胶 Fig. 4 Sandwich plate with rubber

 $\sigma = \left[{A + B{{\left( {{\varepsilon ^p}} \right)}^n}} \right]\left( {1 + C\ln \frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_0}}}} \right)\left[{1-{{\left( {\frac{T}{{{T_m}}}} \right)}^m}} \right]\text{。}$ (1)

 $W = \sum\limits_{k{\rm{ = }}1}^N {{\mu _k}\left( {\frac{{\lambda _1^{{\alpha _k}}{\rm{ + }}\lambda _2^{{\alpha _k}}{\rm{ + }}\lambda _3^{{\alpha _k}}{\rm{-}}3}}{{{\alpha _k}}}} \right)} {\rm{ + }}\sum\limits_{k{\rm{ = }}1}^N {\frac{1}{{{d_k}}}} {\left( {J{\rm{-}}1} \right)^{2k}}\text{。}$ (2)

2 爆炸载荷作用下夹层板响应分析 2.1 测点布置

 图 5 测点布置图 Fig. 5 Measure points of sandwich plate
2.2 加速度响应

 图 6 普通夹层板 A1/A2 测点加速度曲线 Fig. 6 Acceleration curves of sandwich plate

 图 7 橡胶夹层板 A1/A2 测点加速度曲线 Fig. 7 Acceleration curves of sandwich plate with rubber inside

 图 8 10 m 爆距 A1 测点加速度曲线 Fig. 8 Acceleration curves of A1 under 10 m distance

 图 9 10 m 爆距 A2 测点加速度曲线 Fig. 9 Acceleration curves of A2 under 10 m distance
2.3 速度响应分析

 图 10 10 m 爆距各测点速度曲线 Fig. 10 Acceleration curves of points under 10 m distance

 图 11 8 m 爆距各测点速度曲线 Fig. 11 Acceleration curves of points under 8 m distance
2.4 夹层板变形分析

 图 12 不同爆距 A1/A2 测点位移曲线 Fig. 12 Deformation curves of A1/A2 under different distance

 图 13 距边 750 mm 上面板剖面变形 Fig. 13 Deformation of top panel in 750 mm section

 图 14 距边 750 mm 下面板剖面变形 Fig. 14 Deformation of low panel in 750 mm section

 图 15 距边 750 mm 上下面板变形差值 Fig. 15 Deformation poor of panel in 750 mm section

 图 16 距边 450 mm 上下面板变形差值 Fig. 16 Deformation poor of panel in 450 mm section
3 爆炸载荷作用下吸能分析

 图 17 10 m 爆距各构件能量曲线 Fig. 17 Energy curves of parts under 10 m distance

 图 18 8 m 爆距各构件能量曲线 Fig. 18 Energy curves of parts under 8 m distance

 图 19 不同爆距钢质构件塑性能曲线 Fig. 19 Energy curves of steel parts under different distance

4 结语

1）超弹性夹层存在延长夹层板面、背板加速度响应时间间隔，并有效延长夹层板速度、位移响应周期。

2）夹层板内填充超弹性材料可有效降低夹层板的加速度、速度及位移响应，并有效减小夹层板响应振荡现象。

3）由于超弹性材料的物理特性，夹层板内填充超弹性材料可缓解夹心板格屈曲，并有效减小夹层板前后面板的相对变形。

4）超弹性夹层存在减小夹层板的响应，也对应降低了夹层板的吸能，其中有部分能量转化为超弹性材料的内能。

 [1] 张旭红, 王志华, 赵隆茂. 爆炸载荷作用下铝蜂窝夹芯板的动力响应[J]. 爆炸与冲击 , 2009, 29 (4) :356–360. ZHANG Xu-hong, WANG Zhi-hua, ZHAO Long-mao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion and Shock Waves , 2009, 29 (4) :356–360. [2] 赵桂平, 卢天健. 多孔金属夹层板在冲击载荷作用下的动态响应[J]. 力学学报 , 2008, 40 (2) :194–206. ZHAO Gui-ping, LU Tian-jian. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics , 2008, 40 (2) :194–206. [3] QIU X, DESHPANDE V S, FLECK N A. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading[J]. European journal of mechanics-a/Solids , 2003, 22 (6) :801–814. DOI:10.1016/j.euromechsol.2003.09.002 [4] XUE Z Y, HUTCHINSON J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences , 2003, 45 (4) :687–705. DOI:10.1016/S0020-7403(03)00108-5 [5] XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering , 2004, 30 (10) :1283–1305. DOI:10.1016/j.ijimpeng.2003.08.007 [6] XUE Z Y, HUTCHINSON J W. Crush dynamics of square honeycomb sandwich cores[J]. International Journal for Numerical Methods in Engineering , 2006, 65 (13) :2221–2245. DOI:10.1002/(ISSN)1097-0207 [7] 张健, 姚潞, 尹群, 等. 爆炸载荷下舱壁结构模型化技术研究及其结构响应分析[J]. 舰船科学技术 , 2014, 36 (7) :7–13. ZHANG JIAN, YAO Lu, YIN Qun, et al. Bulkhead structure modeling technology research and structure response analysis under blast loading[J]. Ship Science and Technology , 2014, 36 (7) :7–13. [8] 周红. 冲击载荷下SPS夹层板系统损伤特性研究[D]. 镇江:江苏科技大学, 2013. ZHOU Hong. Damage characteristics research of SPS (sandwich plate system) under impact load[D]. Zhenjiang:Jiangsu University of Science and Technology, 2013. [9] 周珂. 船舶舷侧结构的抗爆性能研究及优化设计[D]. 上海:上海交通大学, 2014. ZHOU Ke. Research and optimization of side structure with mechanical properties of blast-resistance[D]. Shanghai:Shanghai Jiaotong University, 2014. [10] 程子恒, 于渤, 倪长也, 等. 多种三明治结构抗冲击作用下动态性能的比较研究[J]. 应用力学学报 , 2014, 31 (5) :746–751. CHENG Zi-heng, YU Bo, NI Chang-ye, et al. Comparative study on the dynamic performance of a variety sandwich structures under impact loading[J]. Chinese Journal of Applied Mechanics , 2014, 31 (5) :746–751. [11] 邓磊, 王安稳, 毛柳伟, 等. 方孔蜂窝夹层板在爆炸载荷下的吸能特性[J]. 振动与冲击 , 2012, 31 (17) :186–189. DENG Lei, WANG An-wen, MAO Liu-wei, et al. Energy absorption characteristics of a square hole honeycomb sandwich plate under blast loading[J]. Journal of Vibration and Shock , 2012, 31 (17) :186–189. [12] 章振华, 谌勇, 华宏星, 等. 超弹性夹芯覆盖层抗冲击性能分析及实验研究[J]. 振动与冲击 , 2012, 31 (5) :132–134. ZHANG Zhen-hua, SHEN Yong, HUA Hong-xing, et al. Simulation and test for hyperelastic sandwich coatings in crush dynamics[J]. Journal of Vibration and Shock , 2012, 31 (5) :132–134. [13] 程和法. 铝/硅橡胶交织复合材料压缩力学行为的研究[J]. 甘肃工业大学学报 , 2003, 29 (4) :38–40. CHENG He-fa. Compression behavior of phase interpenetrating composite with aluminum silicate rubber[J]. Journal of Gansu University of Technology , 2003, 29 (4) :38–40. [14] 于辉, 白兆宏, 姚熊亮. 蜂窝夹层板的优化设计分析[J]. 中国舰船研究 , 2012, 7 (2) :60–64. YU Hui, BAI Zhao-hong, YAO Xiong-liang. The optimization design and analysis of honeycomb sandwich panel[J]. Chinese Journal of Ship Research , 2012, 7 (2) :60–64. [15] 张延昌, 顾金兰, 王自力, 等. 蜂窝夹层板结构抗冲击正交试验优化设计[J]. 兵工学报 , 2010, 31 (S1) :279–283. ZHANG Yan-chang, GU Jin-lan, WANG Zi-li, et al. Optimal design of shock-resistant honeycomb sandwich panel by orthogonal test[J]. Acta Armamentarii , 2010, 31 (S1) :279–283. [16] OGDEN R W. Large deformation isotropic elasticity:on the correlation of theory and experiment for compressible rubberlike solids[J]. Proceedings of the Royal Society of London. Series a. Mathematical and Physical Sciences , 1972, 328 (1575) :567–583. DOI:10.1098/rspa.1972.0096