﻿ 半潜式平台耦合动力响应分析
 舰船科学技术  2016, Vol. 38 Issue (5): 56-59,63 PDF

Coupled dynamic response analysis of semi-submersible platform
SUN Li-ping, NIU Zhi-you, LIU Zi-jian, ZHANG Li-jian
Harbin Engineering University, School of Ship Engineering, Harbin 150001, China
Abstract: Due to the specialist of the ocean environment, semi-submersible platform will be affected by the joint action of wind, wave and flow. The combination of wind, wave and flow cause six degrees of freedom in the direction of movement and affect operation of semi-submersible. Therefore, the platform motion response prediction and intensity check are particularly important. This article is chosen in the case of 1 000 meters depth, under the condition of frequency domain and time domain respectively, to simulate semi-submersible platform motion response. To predict the characteristics of semi-submersible platform motion response under the condition of frequency domain and time domain and comparative analysis is implemented on the platform heave motion of different combination of wind,wave and flow. To calculate the force size of designed mooring lines under the condition, then conduct intensity check.
Key words: semi-submersible platform     time domain     frequency domain     response prediction     mooring line     intensity check
0 引言

1 平台主尺度参数及水动力模型

 图 1 半潜式平台水动力模型 Fig. 1 Hydrdynamic model of semi-submersible platform
2 频域运动响应分析

 $RAO={{\eta }_{i}}/\xi .$ (1)

 图 2 平台纵荡 RAO Fig. 2 Sway RAO of semi-submersible platform

 图 3 平台横荡 RAO Fig. 3 Surge RAO of semi-submersible platform

 图 4 平台升沉 RAO Fig. 4 Heave RAO of semi-submersible platform

3 时域分析

3.1 海洋环境条件

3.2 时域条件下平台运动响应的求解

 \begin{align} & M\ddot{x}+C\dot{x}+{{D}_{1}}\dot{x}+{{D}_{2}}f(\dot{x})+K(x)x=q(t,x,\dot{x}), \\ & M=m+A(\omega )\text{,} \\ & A(\omega )={{A}_{\infty }}+a(\omega )\text{,} \\ & C(\omega )={{C}_{\infty }}+c(\omega )\text{,} \\ & {{C}_{\infty }}=C(\omega =\infty )\equiv 0. \\ \end{align} (2)

 图 5 半潜式平台纵荡响应曲线 Fig. 5 Surge response curve of semi-submersible platform

 图 6 半潜式平台横荡响应曲线 Fig. 6 Sway response curve of semi-submersible platform
3.3 不同风浪流组合下平台运动响应对比分析

3.4 系泊线拉力对比分析及安全校核 3.4.1 系泊线与平台连接处的模拟

 $N_{i}^{S}=K_{i}^{S}({{X}_{i}}+{{p}_{i}}+{{\theta }_{j}}\times {{p}_{k}}-{{r}_{i}}).$ (3)

3.4.2 系泊线拉力计算结果分析及安全校核

4 结语

1）对半潜式平台时域与频域运动响应进行预报可知，频域分析适合预报非线性影响较小的响应，适合于平台的初步设计及选型阶段。时域分析可以预报非线性较强的响应，预报较为精确，但时域分析耗时较长，计算复杂，适合后期的设计阶段。

2）对比不同工况组合下对系泊线拉力影响可知：浪、流、风为 0°，45°，30° 以及 180°，135°，150° 时半潜式平台升沉幅值最大，最大幅值为 2.733 m，同时系泊线产生的拉力最大，为最危险工况，但安全系数均大于 DNV 规范要求的 1.50，即所设计的系泊线符合安全规范的要求。

 [1] 王俊荣, 谢彬. 半潜式平台水动力性能及运动响应研究综述[J]. 中国造船 , 2009, 50 (S) :255–261. WANG Jun-rong, XIE Bin. Review of hydrodynamic properties and global motion prediction of semi-submersible[J]. Shipbuild-ing of China , 2009, 50 (S) :255–261. [2] YANG Li-jun, XIAO Long-fei, YANG Jian-min. Review on the study of hydrodynamics of semi-submersible platforms[J]. China Offshore Platform , 2009, 24 (1) :1–9. [3] 孟昭瑛, 任贵永. 半潜式平台工作原理和结构特点分析[J]. 中国海洋平台 , 1995, 10 (1) :35–37. MENG Zhao-ying, REN Gui-yong. Working principle and structural characteristic analysis of semi-submersible platforms[J]. China Offshore Platform , 1995, 10 (1) :35–37. [4] 陈鹏.深水半潜式平台系泊系统耦合动力响应研究[D].大连:大连理工大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10141-1011021344.htm [5] 张威, 冯玮, 谢彬. 深水半潜式平台运动响应预报方法的对比分析[J]. 中国海上油气 , 2009, 21 (1) :61–64. ZHANG Wei, FENG Wei, XIE Bin. Comparative analysis on forecasting procedures of deepwater semi-submersible platform motion-response[J]. China Offshore Oil and Gas , 2009, 21 (1) :61–64. [6] 刘应中, 缪国平, 李谊乐, 等. 系泊系统动力分析的时域方法[J]. 上海交通大学学报 , 1997, 31 (11) :7–12. LIU Ying-zhong, MIAO Guo-ping, LI Yi-le, et al. A time do-main computation method for dynamic behavior of mooring system[J]. Journal of Shanghai Jiaotong University , 1997, 31 (11) :7–12. [7] 聂武, 刘玉秋. 海洋工程结构动力分析[M]. 哈尔滨: 哈尔滨工程大学出版社, 2002 . [8] YILMAZ O, INCECIK A. Extreme motion response analysis of moored semi-submersibles[J]. Ocean Engineering , 1996, 23 (6) :497–517. DOI:10.1016/0029-8018(95)00057-7