﻿ 基于ASA算法的大型小水线面双体船结构优化
 舰船科学技术  2016, Vol. 38 Issue (5): 17-20 PDF

1. 上海交通大学 海洋工程国家重点实验室, 上海 200240 ;
2. 上海交通大学 高新船舶与深海开发装备协同创新中心, 上海 200240 ;
3. 中国船舶工业集团公司 第七〇八研究所, 上海 200011

Structural optimization of a SWATH based on ASA algorithm
ZHANG Wei-yi1,2, TANG Wen-yong1,2, WEI Gang1,3
1. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China ;
2. Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration, Shanghai Jiaotong University, Shanghai 200240, China ;
3. The 708 Research Institute of CSSC, Shanghai 200011, China
Abstract: The structure and mechanical characteristics of Small Waterplane Area Twin Hull (SWATH) are usually more complicated than ordinary mono-hull ships, therefore there are more difficulties when doing structural optimization and design. When under transverse bending condition, the stress in many regions is very high. This paper utilizes adaptive simulated annealing algorithm to find better design variables. The approach obtained better results and validating the application in engineering practicability. This research provides reference when doing SWATH structural design or structural optimization.
Key words: small waterplane area twin hull     structural optimization     adaptive simulated annealing algorithm
0 引 言

1 主要参数及载荷工况 1.1 船舶主要数据

 图 1 大型小水线面双体船的全船有限元模型 Fig. 1 Finite element model of large scale SWATH
1.2 危险工况的确定

2 优化设计模型

 图 2 双体船船体的主要结构

3 优化求解方法

 ${{P}_{r}}(\varepsilon =E)=\frac{1}{Z(T)}{{e}^{(-\frac{E}{{{k}_{b}}T})}}。$ (1)

 $\frac{1}{Z(T)}\int_{0}^{\infty }{{{e}^{-\frac{E}{{{k}_{b}}T}}}}\text{d}E=1。$ (2)

 图 3 迭代次数与总重量的关系

4 结 语

1）对于小水线面双体船而言，其主要的控制工况为《小水线面双体船指南》中横向强度校核的工况 2。在结构设计的初期阶段，可以着重针对该工况进行结构设计与结构优化。

2）从优化结果上看，利用自适应模拟退火算法对小水线面双体船进行优化，可得到稳定的优化结果，能在满足衡准的前提下，有效降低小水线面双体船的结构重量。本文为解决其他小水线面双体船的结构设计与优化问题提供了一种快速、有效的解决办法。

 [1] 史文强, 于宪钊. 国外小水线面双体船发展状况及趋势[J]. 舰船科学技术 , 2012, 34 (S2) :4–19. SHI Wen-qiang, YU Xian-zhao. The development and future trend of foreign SWATH ships[J]. Ship Science and Technology , 2012, 34 (S2) :4–19. [2] 郑莎莎, 郑梓荫. 小水线面双体船船体结构问题探讨[J]. 船舶工程 , 2005, 27 (1) :12–18. [3] 李仲伟, 吴有生, 崔维成. 基于有限元法的小水线面双体船结构优化[J]. 船舶力学 , 2005, 9 (2) :99–108. [4] WU Y S, NI Q J, XIE W, et al. Hydrodynamic performance and structural design of a SWATH ship[J]. Journal of Ship Mechanics , 2008, 12 (3) :388–400. [5] SEKULSKI Z. Least-weight topology and size optimization of high speed vehicle-passenger catamaran structure by genetic algorithm[J]. Marine Structures , 2009, 22 (4) :691–711. DOI:10.1016/j.marstruc.2009.06.003 [6] HEGGELUND S E, MOAN T, OMA S. Transverse strength analysis of catamarans[J]. Marine Structures , 2000, 13 (6) :517–535. DOI:10.1016/S0951-8339(00)00059-9 [7] 程耿东. 结构优化新方法及其计算机实现[J]. 力学与实践 , 1992, 14 (1) :1–6. [8] KIRKPATRICK S, GELATT C D JR, VECCHI M P. Optimization by simulated annealing[J]. Science , 1983, 220 (4598) :671–680. DOI:10.1126/science.220.4598.671 [9] VAN LAARHOVEN P J M, AARTS E H L. Simulated annealing:Theory and applications[M]. Netherlands: Springer, 1987 .