﻿ 一种基于小孔径基阵的高精度水下目标被动定位方法
 舰船科学技术  2016, Vol. 38 Issue (3): 101-104 PDF

Method of passive localization with high accuracy bbased on subsize array for underwater target
PENG Shui, ZHANG Jun, ZHANG Yong-chao
No. 91388 Unit of PLA, Zhanjiang 524022, China
Abstract: It is practical to research the method of passive localization with high accuracy based on subsize array for underwater target. It is presented that the method based on array consisted of vector hydrophone and subsize circle array. The vector sensor placed in the the centre of the circle array can find the orientation of target for high accuracy, owe to the beam forming of subsize circle array. Then the localization of target can be accomplished with more than two hydrophone array. The multiple target can be distinguished based on vote from all of combinations of two array. As a result, the orientation accuracy of target is under one degree, and relative accuracy of range is under five percent. Therefore, the method presented in this article is proved.
Key words: passive localization    subsize array    high accuracy    multiple target
0 引言

1 矢量水听器测向原理

 $\theta ={{\tan }^{-1}}\left( \frac{{{v}_{y}}}{{{v}_{x}}} \right)$ (1)

 $v = \frac{p}{{\rho c}}$ (2)

 ${{v}_{y}}=\frac{s\left( t \right)\sin \theta +n\left( t \right)}{\rho c},$ (3)
 ${v_x} = \frac{{s\left( t \right)\cos \theta + n\left( t \right)}}{{\rho c}}$ (4)

 $\hat{\theta }={{\tan }^{-1}}\left[\frac{\int{\left[s\left( t \right)\sin \theta +n\left( t \right) \right]\text{d}t}}{\int{\left[s\left( t \right)\cos \theta +n\left( t \right) \right]\text{d}t}} \right]$ (5)
2 圆形阵与矢量水听器联合处理 2.1 单基阵测向

 图 1 基阵示意图 Fig. 1 Sketch map of array
 $\theta = {\tan ^{ - 1}}\left( {\frac{{\displaystyle\int {p{v_y}} }}{{\displaystyle\int {p{v_x}} }}} \right)$ (6)

 $p\left( t \right) = Ns\left( t \right) + \sqrt N n\left( t \right)$ (7)

 \begin{align} & {{V}_{y}}=\left[ Ns\left( t \right)+\sqrt{N}n\left( t \right) \right]\frac{s\left( t \right)\sin \theta +n\left( t \right)}{\rho c}= \\ & \frac{N{{s}^{2}}\left( t \right)\sin \theta +\left( N+\sqrt{N}\sin \theta \right)s\left( t \right)n\left( t \right)+\sqrt{N}{{n}^{2}}\left( t \right)}{\rho c} \\ \end{align} (8)
 \begin{align} & {{V}_{x}}=\left[ Ns\left( t \right)+\sqrt{N}n\left( t \right) \right]\frac{s\left( t \right)\cos \theta +n\left( t \right)}{\rho c}= \\ & \frac{N{{s}^{2}}\left( t \right)\cos \theta +\left( N+\sqrt{N}\cos \theta \right)s\left( t \right)n\left( t \right)+\sqrt{N}{{n}^{2}}\left( t \right)}{\rho c} \\ \end{align} (9)

 $\hat \theta = {\tan ^{ - 1}}\left( {\frac{{\int {{V_y}} }}{{{{\int V }_x}}}} \right) = \frac{{\int {N{s^2}\left( t \right)\sin \theta + \sqrt N {n^2}\left( t \right)} }}{{\int {N{s^2}\left( t \right)\cos \theta + \sqrt N {n^2}\left( t \right)} }}$ (10)

 图 2 测向误差与阵元数的关系 Fig. 2 Orientation error versus number of array element
2.2 多基阵测距

 图 3 多基阵目标定位示意图 Fig. 3 Sketch map of target localization for mutiple array

 \left\{ \begin{align} & {{r}_{1}}\cos {{\theta }_{1}}-{{r}_{2}}\cos {{\theta }_{2}}=a\text{,} \ & {{r}_{1}}\sin {{\theta }_{1}}-{{r}_{2}}\sin {{\theta }_{2}}=0 \ \end{align} \right. (11)

 ${{r}_{1}}=\left| \frac{a\sin {{\theta }_{2}}}{\sin \left( {{\theta }_{2}}-{{\theta }_{1}} \right)} \right|$ (12)
 ${r_2} = \left| {\frac{{a\sin {\theta _1}}}{{\sin \left( {{\theta _2} - {\theta _1}} \right)}}} \right|$ (13)
2.3 多目标分辨

 ${{r}_{1ij}}=\left| \frac{L\sin {{\theta }_{2i}}}{\sin \left( {{\theta }_{2i}}-{{\theta }_{1j}} \right)} \right|,j=1\text{,}2...M$ (14)
 ${{r}_{2ij}}=\left| \frac{L\sin {{\theta }_{1j}}}{\sin \left( {{\theta }_{2i}}-{{\theta }_{1j}} \right)} \right|,j=1,2...M$ (15)

3 仿真算例

 图 4 基阵和声源位置平面示意图 Fig. 4 Sketch map of position of array and sound source

 图 5 圆形阵波束图 Fig. 5 Beam pattern of circle array

 图 6 声源信号波形及频谱 Fig. 6 Waveform and spectrum of sound source

 图 7 圆形阵与矢量水听器相关输出 Fig. 7 Correlative output of circle array and vector hydrophone

4 结语

 [1] 毛卫宁. 水下被动定位方法回顾与展望[J]. 东南大学学报(自然科学版), 2001, 31(6):129-132. [2] THOMSON D, ELSON S. New generation acoustic positioning systems[C]//Proceedings of Oceans'02 MTS/IEEE. Biloxi, MI, USA:IEEE, 2002:1312-1318. [3] 曾林志, 徐国华, 徐兵, 等. 水下试验平台高精度定位系统研究[J]. 中国机械工程, 2014, 25(8):1021-1027. [4] BISWAS P, LIAN T C, WANG T C, et al. Semidefinite programming based algorithms for sensor network localization[J]. ACM Transactions on Sensor Networks, 2006, 2(2):188-200. [5] 张同伟, 杨坤德, 马远良, 等. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法[J]. 物理学报, 2015, 24(3):280-286. [6] 杨道军, 许伟杰, 刘林泉, 等. 高精度定位标定系统水下基准方位误差分析[J]. 声学技术, 2007, 26(2):189-192. [7] 刘流, 孟彧仟, 张自丽, 等. 双基阵节点被动测距方法实验研究[J]. 舰船电子工程, 2015, 35(4):63-64, 120. [8] 徐本连, 董学平, 王执铨. 双基阵纯方位目标跟踪的抗野值算法研究[J]. 东南大学学报(自然科学版), 2004, 34(S):199-203.