﻿ 潜艇通海阀内流场仿真与优化设计
 舰船科学技术  2016, Vol. 38 Issue (3): 41-44,49 PDF

1. 中国舰船研究设计中心, 湖北武汉 430064;
2. 武汉第二船舶设计研究所, 湖北武汉 430064;
3. 华中科技大学能源与动力工程学院, 湖北武汉 430074

Numerical simulation of flow fields inside sea suction valve and optimization of the flow channel
BAI Zong-liang1, DUAN Chen2, SUN Rui-kang1, ZHOU Rui1, CHANG Hua-wei3
1. China Ship Development and Design Center, Wuhan 430064, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China;
3. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: Flow characters of a new sea suction valve are researched using CFD method in this paper. Based on numerical results, three measures are employed to optimize the flow channel and the CFD results show that the total pressure loss of the normal flow and reversed flow decreases 14.5%~23.46% and 24.6%~29.6% respectively after optimization. Flow resistance test is carried out according to JB/T 5296-1991. The differences of the total pressure loss between test data and numerical results are less than 12%.
Key words: CFDsea suction valveoptimum designtest
0 引言

1 计算模型及方法 1.1 模型及网格划分

 图 1 通海阀三维模型 Fig. 1 3D model of the sea suction valve

 图 2 计算网格 Fig. 2 Computational grid
1.2 计算方法及边界条件 1.2.1 计算方法

 $\frac{\partial \overline{{{u}_{i}}}}{\partial {{x}_{i}}}=0.$ (1)

 \begin{align} & \frac{\sigma \overline{{{u}_{i}}}}{\partial t}+\overline{{{u}_{j}}}\frac{\sigma \overline{{{u}_{i}}}}{\partial {{x}_{j}}}=\ \\ & \frac{1}{\rho }\frac{\partial \bar{p}}{\partial {{x}_{i}}}+\nu \frac{{{\partial }^{2}}\overline{{{u}_{i}}}}{\partial {{x}_{i}}\partial {{x}_{j}}}+\frac{\partial }{\partial {{x}_{j}}}+\frac{\partial }{\partial {{x}_{j}}}(\overline{u{{'}_{i}}u{{'}_{j}}})+{{S}_{i}}.\ \\ \end{align} (2)

1.2.2 边界条件

2 模拟结果与优化设计 2.1 模拟结果可靠性的试验验证

 图 3 试验台架上的试验阀 Fig. 3 The test valve on the test bench

 图 4 原阀进出口压差的试验值与计算值对比 Fig. 4 Test and calculated value of the differential pressure before optimization
2.2 结果分析与优化设计

 图 5 优化前进水工况速率分布图 Fig. 5 Velocity distribution before optimization

 图 6 优化前进水工况总压分布云图 Fig. 6 Total pressure distribution before optimization

 图 7 流道优化前后对比 Fig. 7 Structure of the valve before (a) and after (b) optimization

1）减小支撑导向筒长度、抬高支撑导向筒的位置，以避免其占据过大的出水流通空间，从而增大了喉部面积，减小喉部流速。

2）修改阀盘的外部型线使之更加接近流线，减少由于流道转折所引起的流动分离。

3）在以上2个措施的基础之上调整阀盘开度，用数值试验方法寻找最佳开度。

 图 8 优化后进水工况速率分布图 Fig. 8 Velocity distribution after optimization

 图 9 阀盘开度对总压损失的影响 Fig. 9 Impact of the valve opening on the total pressure drop
3 结语

 [1] 江山, 张京伟, 吴崇健, 等.通海阀内流场的三维数值模拟[J].中国舰船研究, 2009, 4(2):37-41.JIANG Shan, ZHANG Jing-wei, WU Chong-jian, et al.Three dimensional numerical simulation of flow fields inside sea suction valve[J].Chinese Journal of Ship Research, 2009, 4(2):37-41. [2] 崔铭超, 唐科范, 刘桦.基于CFD技术的阀门内流道优化[J].水动力学研究与进展, 2010, 25(4):438-445.CUI Ming-chao, TANG Ke-fan, LIU Hua.Optimization of the valve internal flow channel based on CFD approach[J].Chinese Journal of Hydrodynamics, 2010, 25(4):438-445. [3] 刘少刚, 刘海丰, 舒海生, 等.一种内支架结构对通海阀噪声的影响[J].海军工程大学学报, 2013, 25(2):35-39, 45.LIU Shao-gang, LIU Hai-feng, SHU Hai-sheng, et al.Effect of structure of stend on noise of outboard valve[J].Journal of Naval University of Engineering, 2013, 25(2):35-39, 45. [4] 刘少刚, 刘海丰, 舒海生, 等.通海阀内流道优化降低流噪声[J].哈尔滨工程大学学报, 2013, 31(4):511-516.LIU Shao-gang, LIU Hai-feng, SHU Hai-sheng, et al.Flow noise reduction of outboard valves based on internal flow path optimization[J].Journal of Harbin Engineering University, 2013, 31(4):511-516. [5] 蔡标华, 郑海斌.海水系统噪声分析及其减振降噪措施综述[J].舰船科学技术, 2009, 31(12):114-117.CAI Biao-hua, ZHENG Hai-bin.The noise analysis and control measures review in seawater system[J].Ship Science and Technology, 2009, 31(12):114-117. [6] 张玉祥, 杨柳.截止阀的建模与仿真实现[J].流体机械, 2007, 35(12):29-31.ZHANG Yu-xiang, YANG Liu.Modeling and simulation implementation of stop valve[J].Fluid Machinery, 2007, 35(12):29-31. [7] 卢云涛, 张怀新, 潘徐杰.四种湍流模型计算回转体流噪声的对比研究[J].水动力学研究与进展, 2008, 23(3):348-355.LU Yun-tao, ZHANG Huai-xin, PAN Xu-jie.Comparison between the simulations of flow-noise of a submarine-like body with four different turbulent models[J].Chinese Journal of Hydrodynamics, 2008, 23(3):348-355.