﻿ 基于CFD预报双桨式吊舱推进器水动力性能
 舰船科学技术  2016, Vol. 38 Issue (3): 14-19 PDF

Research on the CFD prediction method of hydrodynamic performance of tandem type podded propulsor
ZHU Zhi-chao, XIONG Ying
Naval Engineering Department, Naval University of Engineering, Wuhan 430033, China
Abstract: Based on viscous fluid theory, the hydrodynamics performance of tandem type pod propeller was discussed by using CFD technology. Then by numerical simulation of a single screw podded propulsor, and compared with the experimental results to verify the accuracy of numerical calculation method. The hydrodynamic performance of tandem type podded propulsor with different deflection angles is calculated by using the suitable numerical model and method. The results show an agreeable regularitywill provide reference for the prediction of hydrodynamic performance of tandem type podded propulsor.
Key words: tandem type    podded propulsor    CFD    hydronamic performance
0 引言

1 CFD 原理 1.1 控制方程

 $\frac{{\partial \rho }}{{\partial t}} + \frac{\partial }{{\partial {x_i}}}(\rho {u_i}) = 0,$ (1)
 $\frac{\partial }{{\partial t}}(\rho {u_i}) + \frac{\partial }{{\partial {x_j}}}(\rho {u_i}{u_j}) = - \frac{{\partial p}}{{\partial {x_i}}} + \frac{{\partial {\tau _{ij}}}}{{\partial {x_j}}} + \frac{\partial }{{\partial {x_j}}}( - \rho {\text{ }}\overrightarrow {{u_i}'{u_j}'} ).$ (2)

1.2 湍流模型

SST k-ω 模型为了使标准 k-ω 模型在近壁面区有更好的精度和算法稳定性而发展起来，因此本文采用 SST k-ω 模型。SST k-ω 两方程湍流模型如下：

$\begin{gathered} \frac{{\partial (\rho k)}}{{\partial t}} + \frac{{\partial (\rho k{u_i})}}{{\partial t}} = {P_k} - \frac{{\rho {k^{3/2}}}}{{{l_{k - \omega }}}} + \frac{\partial }{{\partial {x_i}}}[(\mu + \frac{{{\mu _t}}}{{{\sigma _k}}})\frac{{\partial k}}{{\partial {x_i}}}],\hfill \\ \begin{array}{*{20}{l}} {\frac{{\partial (\rho \varepsilon )}}{{\partial t}} + \frac{{\partial (\rho \varepsilon {u_i})}}{{\partial t}} = {\alpha _2}\frac{\omega }{k}{P_\omega } - {\beta _2}\rho {\omega ^2} + \frac{\partial }{{\partial {x_i}}}[(\mu + \frac{{{\mu _t}}}{{{\sigma _{{\omega ^2}}}}})\frac{{\partial k}}{{\partial {x_i}}}] + } \\ {\quad \quad \quad \quad \quad \quad 2\rho (1 - {F_1})\frac{{{\sigma _{{\omega ^2}}}}}{\omega }\frac{{\partial k}}{{\partial {x_i}}}\frac{{\partial \omega }}{{\partial {x_i}}}.} \end{array} \hfill \\ \end{gathered}$

${\mu _t} = \frac{{{\rho ^*}{\alpha _1}k}}{{\max ({\alpha _1}\omega ,S{F_2})}}.$

1.3 数值计算模型

2 计算模型 2.1 螺旋桨模型

 图 1 前后桨模型 Fig. 1 Model of fore and aft propellers
2.2 计算域及网格划分

 图 2 计算模型 Fig. 2 Calculation model
2.3 边界条件设置及计算方法

 图 3 计算域网格划分 Fig. 3 The computational domain mesh
3 计算结果与分析 3.1 计算方法验证

3.2 给定工况及参数定义

 图 4 两个坐标系 Fig. 4 Two coordinate systems
3.3 前后螺旋桨水动力性能

 图 5 不同偏转角时前桨推力系数曲线 Fig. 5 The thrust coefficient curves of fore propellers at different deflection angles
 图 6 不同偏转角时后桨推力系数曲线 Fig. 6 The thrust coefficient curves of aft propellers at different deflection angles
 图 7 不同偏转角时前桨扭矩系数曲线 Fig. 7 The torque coefficient curves of fore propellers at different deflection angles
 图 8 不同偏转角时后桨扭矩系数曲线 Fig. 8 The torque coefficient curves of aft propellers at different deflection angles

 图 9 不同进速系数时的前桨推力系数 Fig. 9 The thrust coefficient curves of fore propellers at different advance coefficients
 图 10 不同进速系数时的前桨扭矩系数 Fig. 10 The torque coefficient curves of fore propellers at different advance coefficients
 图 11 不同进速系数时的后桨推力系数 Fig. 11 The thrust coefficient curves of aft propellers at different advance coefficients
 图 12 不同进速系数时的后桨扭矩系数 Fig. 12 The torque coefficient curves of aft propellers at different advance coefficients
 图 13 吊舱推进器推力系数 Fig. 13 The thrust coefficient of pod propulsion
 图 14 吊舱单元横向力系数 Fig. 14 The lateral force coefficient of pod propulsion

3.4 吊舱单元水动力特性

 图 15 吊舱单元转矩系数 Fig. 15 The torque coefficient of pod propulsion
 图 16 0° 偏转角时吊舱推进器的敞水效率 Fig. 16 Pod thrusters open water efficiency at deflection of 0°

4 结语

1）吊舱舱体对前桨与后桨都有一定的影响，但对后桨的影响比较大，原因是后桨处于前桨和吊舱后，前桨尾流的加速、旋转和压力分布的变化以及舱体的阻塞对后桨水动力性能产生的重要的影响。

2）吊舱推进器的横向力与扭矩均随着偏转角的增大而增大，推力则随偏转角的增大而减小。

3）与传统桨舵推进系统相比，全回转吊舱推进器有着更好的操舵效果，使舰船有着更好的机动性、操纵性，能实现原地回转甚至倒车。

 [1] 熊鹰, 盛立, 杨勇. 吊舱式推进器偏转工况下水动力性能[J]. 上海交通大学学报, 2013, 47(6):956-961. XIONG Ying, SHENG Li, YANG Yong. Hydrodynamics performance of podded propulsion at declination angles[J]. Journal of Shanghai Jiaotong University, 2013, 47(6):956-961. [2] REICHEL M. Manoeuvring forces on azimuthing podded propulsor model[J]. Polish Maritime Research, 2007, 14(2):3-8. [3] 黄胜, 王超, 王诗洋. 不同湍流模型在螺旋桨水动力性能计算中的应用与比较[J]. 哈尔滨工程大学学报, 2009, 30(5):481-485. HUANG Sheng, WANG Chao, WANG Shi-yang. Application and comparison of different turbulence models in the computation of a propeller's hydrodynamic performance[J]. Journal of Harbin Engineering University, 2009, 30(5):481-485. [4] 马骋, 张旭, 钱正芳, 等. POD推进器技术发展及其应用前景[J]. 船舶工程, 2007, 29(6):25-29. MA Cheng, ZHANG Xu, QIAN Zheng-fang, et al. Technology development and its application prospect of POD thrusters[J]. Ship Engineering, 2007, 29(6):25-29. [5] GÜNTHER B. Resistance test, propulsion test and wake measurement[R]. Potsdam:SVAtech GmbH, 2006:13. [6] 贺伟, 陈克强, 李子如. 串列式吊舱推进器操舵工况水动力试验研究[J]. 华中科技大学学报(自然科学版), 2015, 43(1):107-111. HE Wei, CHEN Ke-qiang, LI Zi-ru. Experimental research on hydrodynamics of tandem podded propulsor in azimuthing conditions[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2015, 43(1):107-111.