交通污染与自闭症关系的研究进展
田宇, 黄丹妮, 金永堂     
浙江大学医学部公共卫生学院环境医学系环境表观遗传实验室
摘要: 自闭症是一种神经发育障碍性疾病,严重影响儿童及成年后的生活。该病的主要表现为社会沟通及交流障碍、兴趣狭窄及重复刻板行为。近年来,自闭症发病率的逐年增加引起了社会各界关注。目前认为自闭症的发病与环境因素、遗传和表观遗传学均有关系,环境因素如交通污染等可通过神经毒性作用、影响个体遗传或表观遗传的方式引起自闭症,因此交通污染与自闭症的关系已逐渐成为热点研究方向。本文就交通污染与自闭症的关系及可能机制进行综述,尤其是交通污染引起的神经损伤、自闭症相关遗传改变和表观遗传学改变,以期为自闭症病因及机制研究提供帮助,并对自闭症的预防和治疗提供理论支持。
关键词: 自闭症    交通污染    机制    
Advances on Relationship between Autism and Traffic Pollution
TIAN Yu, HUANG Danni, JIN Yongtang
Abstract: Autism is a neurodevelopmental disorder that seriously affects the lives of children and adults. The main manifestations of the disease are social and communication disorders, narrow interests, and repetitive behaviors. In recent years, increasing incidence of autism has aroused attention of society. It is believed that the pathogenesis of autism is related to environmental factors, heredity, and epigenetics. Environmental factors, such as traffic pollution, can cause autism through neurotoxic effects, affecting individual heredity or epigenetics. Therefore, the relationship between traffic pollution and autism has gradually become a hot research direction. This article reviews the relationship between traffic pollution and autism and its possible mechanisms, especially the neurological damage, genetic and epigenetic changes related to autism caused by traffic pollution, in order to provide help for the study of the etiology and mechanism of autism as well as provide theoretical support for prevention and treatment of autism.
Key words: autism    traffic-related air pollution    mechanism    

自闭症主要发病于婴幼儿时期,是一种以语言沟通障碍、社会交往受限、兴趣狭窄及行为刻板重复为主要特征的神经发育障碍性疾病。2012年统计分析显示全球范围内自闭症患病率为62/10 000[1]。美国流行病学调查显示2012年美国自闭症患病率为1.46%,到2016年数据则上升为2.47%[2-3]。国内2013年报道称大陆地区儿童自闭症患病率为11.8/10 000,2018年调查称上海市自闭症患病率为8.3/10 000,且调查者认为该数值很有可能被低估[4-5]。虽然自闭症的病因未明,但目前认为遗传、表观遗传以及一些环境有害因素都与自闭症发病有关。人类自闭症数据库网站根据已发表的所有自闭症相关文献进行统计,发现与自闭症相关的基因达一千多个,家族队列研究表明遗传因素占比约为55%[6]。但自闭症患者之间存在很大程度的临床异质性和遗传异质性,90%自闭症患者的病因无法全部归为遗传因素。提示遗传因素对自闭症的解释作用有限,后天因素在自闭症发病中的作用不可小觑[7]。随着全球空气污染问题日益加剧,交通污染已被多项研究证实与自闭症有关[8-10]。本文将总结近年来与交通污染有关的自闭症研究,为将来明确自闭症病因及发病机制、促进患者预后和治疗提供一些参考。

1 交通污染与自闭症

空气污染物包含上百种化合物,对人体健康危害比较严重的成分包括重金属、颗粒物(particulate matter, PM)及柴油机尾气(diesel exhaust, DE)等,主要来自交通尾气排放。交通尾气的排放高度主要在(0.3~2) m,正好是人类呼吸带范围,且不易扩散流动,影响最大、危害最广。近十几年来,许多人群和动物研究确认了自闭症与交通污染的相关性。Volk等[11-13]根据出生证明和居住史中报告的地址来估计母亲怀孕期和产后第一年的交通污染暴露情况,使用线源空气质量扩散模型和logistic回归模型比较了交通污染物暴露对子代自闭症发病的危险性,发现妊娠期(OR=1.98[95%CI, 1.20~3.31])或产后第一年(OR=3.10 [95%CI, 1.76~5.57])暴露于较高水平交通污染者子代出现自闭症的危险性更高,其中NO2、PM2.5和PM10均与自闭症发病有关。同年,Becerra等[14]也发现了自闭症与交通污染物臭氧、PM2.5及氮氧化物的关联,与后来的研究[15-18]一致。最近,Kalkbrenner等[19]研究了155种空气污染物,发现自闭症诊断与丙醛、甲基叔丁基醚、溴化物、1,4-二氧六环、二苯并呋喃和乙二醇醚显著相关,其中多种污染物来源于交通尾气排放。

动物实验也为这一推断提供了证据[20]。颗粒物或柴油机尾气暴露会导致小/大鼠出现一种或多种自闭症样表现[21-26],如,沟通困难、社会交往障碍、新颖性缺失及频繁整理毛发等刻板行为。出生前将小鼠暴露于低水平柴油机尾气,会使子代雄鼠出现因社会隔离导致的领土防御性攻击[27]。小鼠出生后早期暴露于浓缩颗粒物环境中,会导致短期记忆的持续性损害和冲动样行为[28-29]。并且,这种暴露存在窗口期,妊娠期及出生早期对交通污染暴露最敏感,相当于人类孕晚期(妊娠7—9个月)[30-31]

2 交通污染引起自闭症的潜在机制

基因—环境相互作用对个体的影响主要有两种:一种是直接交互作用,即受到环境影响后个体基因遗传多态性或拷贝数变异对其产生损害或保护作用;二是环境影响使个体基因发生表观遗传变化,这可能造成基因功能的长期调节。虽然交通相关的空气污染物在自闭症发病中的影响已被确认,但其作用机制仍未探明。有研究[32-33]认为交通污染物引起自闭症与促使机体产生一系列氧化应激和神经炎症等细胞毒性或损伤有关。有研究发现自闭症患者存在基因突变。但这些基因突变是否与交通污染有关?交通污染是否可以引起个体基因改变进而产生自闭症?对此,有学者认为具有关键酶遗传多态性的个体对交通污染暴露更加敏感。虽然发现了众多与自闭症有关联的基因,但没有哪个基因突变或基因拷贝数变异与自闭症构成直接因果关系,似乎任何一个基因都不可能完全解释这种复杂疾病的发病机制。此外,我们已经知道基因表达会受到环境因素的高度调节,环境因素可在不改变基因遗传序列的前提下,通过DNA甲基化、组蛋白修饰及染色质重塑等方式使表型发生改变。自闭症患者大脑中经常出现表观遗传改变,提示交通污染物还可能通过表观遗传调控对自闭症起作用。

第一,交通污染物会造成神经系统损害。柴油机尾气及细颗粒物对中枢神经系统的影响已在多项体内外实验中得到证实,在不同的大脑区域,特别是海马和嗅球,观察到小胶质细胞活化、脂质过氧化和神经炎症增加[34-45]。动物实验发现交通尾气及颗粒物会激活小胶质细胞,继而产生氧化物质和促炎细胞因子,如IL-6,产生神经发育毒性作用[23, 25, 34-35, 47, 49]。神经形成发育关键期的超细颗粒物暴露会导致小鼠,尤其是雄鼠胼胝体及相关髓鞘的减少[23]、白质发育异常及脑室肥大[23, 49]、多巴胺和谷氨酸失调及兴奋—抑制失衡[25, 29, 35, 46]、杏仁核星型细胞活异常[23]等改变。

第二,交通污染与基因多态性导致的自闭症遗传易感性有关。交通污染物可以与一些氧化应激、神经炎症相关基因产生交互作用驱动自闭症发生[47],并且人群中一些参与氧化反应和炎症过程的酶具有遗传多态性,在一定的环境因素作用下可加剧或减弱神经毒性。研究证明[47-50]自闭症儿童的氧化应激、蛋氨酸代谢相关的基因型显著降低,脂质过氧化增加,可能与谷胱甘肽转移酶(GSTM1、GSTP1)、谷胱甘肽过氧化物酶(GPX1)的多态性调节有关[51-55]。并且,自闭症患者体内GCLM(谷胺酸半胱氨酸连接酶修饰亚基,参与谷胱甘肽合成)水平下降了37%,GCL活性降低38%[56],谷胱甘肽含量减少[57]。Costa等[33]利用GCLM基因缺陷小鼠来模拟人类GCLM基因多态性,在DE急性暴露后,缺陷型和杂合型小鼠大脑中氧化应激和神经炎症相关标志物丙二醛和白细胞介素-1β水平更高。此外,Reelin基因多态性与交通污染物也存在交互作用,杂合型小鼠在DE暴露后出现了自闭症样行为[58],与下文中提到的Reelin表观遗传调控结果一致。

第三,交通污染物可通过表观调控的方式影响自闭症的发生。人群研究利用二代测序技术和基因芯片技术在自闭症患者脑部、血液及淋巴细胞中均已发现了多个异常甲基化位点[59-64]。Sun等[65]通过全组蛋白乙酰化关联分析和染色质免疫共沉淀测序等方法,发现68%自闭症患者脑皮质区超过5 000个顺式调节因子乙酰化增加,涉及突触传递、离子运输、行为和免疫功能。人体试验[66]发现DE短期急性暴露可致炎症和氧化应激基因、重复性元件LINE-1和Alu、以及微小RNA中的CpG位点DNA甲基化改变,为空气污染物影响基因表达的表观遗传修饰途径提供了可能性。此外,胎盘在胚胎发育过程中的关键作用使它成为联系孕母—胚胎的良好中介,怀孕期间母亲暴露于环境毒物可以通过DNA甲基化和调控微小RNA表达等途径影响胎盘表观基因组,最终调节胎儿的发育[67-68]。Tachibana等[69]通过动物染毒实验证明孕鼠接触柴油机颗粒物会导致子代与神经元分化和神经发生相关基因的启动子CpG岛区DNA甲基化异常,提示产前柴油机颗粒物暴露可能导致全基因组、尤其是大脑DNA甲基化异常引起神经细胞在生命早期阶段形成和发育异常,从而产生自闭症。Chang等[22, 70]的实验证明,妊娠期DE暴露会使子代大脑和胎盘中炎症因子IL-6水平上升,激活JAK2/STAT3通路,使DNA甲基转移酶1(DNMT1)表达增加[71]。DNMT1可与Reelin基因(在发育中的大脑神经迁移和神经元极性建立的过程中起着重要作用,在成人大脑皮质和海马区GABA能中间神经元中表达并调节学习和记忆过程[72])启动子结合[73-74]而抑制其转录与翻译,使小鼠产生自闭症样社会行为缺陷[22]。与此同时,DNMT1也可以减少谷氨酸脱羧酶67(GAD67,是将谷氨酸转换成γ-氨基丁酸(GABA)的限速酶,是抑制性GABA能中间神经元的标志物)的表达[75-76]。在自闭症患者[55, 77]和动物模型[23, 78]中均发现谷氨酸水平升高,可能与GAD67水平下调削弱谷氨酸转化,干扰机体兴奋—抑制平衡有关。

3 总结与展望

在自闭症病因研究中,尽管发现了一些与自闭症有重要联系的基因,但它并不能解释大多数自闭症病例,可见出生前后环境因素暴露在自闭症形成中发挥着重要作用,DNA甲基化、组蛋白乙酰化等由环境介导的表观遗传机制是潜在的探索方向。人群研究和动物模型已经为我们提出了部分与交通污染有关的自闭症病因机制,可能氧化应激、神经炎症及神经发育有关。但是环境、遗传和表观遗传改变等因素并非独立存在,而是相互作用、紧密联系,使自闭症成为一种复杂的多因素疾病,再加上遗传多态性以及表观遗传修饰可逆性,使我们在自闭症病因研究中面临更多挑战。因此,今后仍需要大样本量的人群研究来发现相关环境危险因素,通过高通量测序技术探索新的基因位点和DNA甲基化、组蛋白甲基化或乙酰化位点,借助更多环境暴露动物模型揭示自闭症的环境—遗传—表观遗传机制,为自闭症的预防和治疗提供新的可能。

参考文献
[1]
Elsabbagh M, Divan G, Koh YJ, et al. Global prevalence of autism and other pervasive developmental disorders[J]. Autism Res, 2012, 5(3): 160-179. DOI:10.1002/aur.v5.3
[2]
Christensen DL, Baio J, Van Naarden BK, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2012[J]. MMWR Surveill Summ, 2016, 65(3): 1-23. DOI:10.15585/mmwr.ss6503a1
[3]
Xu GF, Strathearn L, Liu BY, et al. Prevalence of Autism Spectrum Disorder Among US children and adolescents, 2014-2016[J]. JAMA, 2018, 319(1): 81-82. DOI:10.1001/jama.2017.17812
[4]
Sun X, Allison C, Matthews FE, et al. Prevalence of autism in mainland China, Hong Kong and Taiwan:a systematic review and meta-analysis[J]. Mol Autism, 2013, 4: 7. DOI:10.1186/2040-2392-4-7
[5]
Jin ZJ, Yang Y, Liu SJ, et al. Prevalence of DSM-5 autism spectrum disorder among school-based children aged 3~12 years in Shanghai, China[J]. J Autism Dev Disord, 2018, 48(7): 2434-2443. DOI:10.1007/s10803-018-3507-z
[6]
Sandin S, Lichtenstein P, Kuja-Halkola R, et al. The familial risk of autism[J]. JAMA, 2014, 311(17): 1770-1777. DOI:10.1001/jama.2014.4144
[7]
Waye MMY, Cheng HY. Genetics and epigenetics of autism:A review[J]. Psychiatry Clin Neurosci, 2018, 72(4): 228-224. DOI:10.1111/pcn.2018.72.issue-4
[8]
Sealey LA, Hughes BW, Sriskanda AN, et al. Environmental factors in the development of autism spectrum disorders[J]. Environ Int, 2016, 88: 288-298. DOI:10.1016/j.envint.2015.12.021
[9]
Christensen J, Gronborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism[J]. JAMA, 2013, 309(16): 1696-1703. DOI:10.1001/jama.2013.2270
[10]
Rijlaarsdam J, Van IJzendoorn MH, Verhulst FC, et al. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits:The moderating role of OXTR rs53576 genotype[J]. Autism Res, 2017, 10(3): 430-438.
[11]
Volk HE, Lurmann F, Penfold B, et al. Traffic-related air pollution, particulate matter, and autism[J]. JAMA Psychiatry, 2013, 70(1): 71-77. DOI:10.1001/jamapsychiatry.2013.266
[12]
Volk HE, Hertz-Picciotto I, Delwiche L, et al. Residential proximity to freeways and autism in the CHARGE study[J]. Environ Health Perspect, 2011, 119(6): 873-877. DOI:10.1289/ehp.1002835
[13]
Volk HE, Kerin T, Lurmann F, et al. Autism spectrum disorder:interaction of air pollution with the MET receptor tyrosine kinase gene[J]. Epidemiology, 2014, 25(1): 44-47. DOI:10.1097/EDE.0000000000000030
[14]
Becerra TA, Wilhelm M, Olsen J, et al. Ambient air pollution and autism in Los Angeles county, California[J]. Environ Health Perspect, 2013, 121(3): 380-386. DOI:10.1289/ehp.1205827
[15]
Kaufman JA, Wright JM, Rice G, et al. Ambient ozone and fine particulate matter exposures and autism spectrum disorder in metropolitan Cincinnati, Ohio[J]. Environ Res, 2019, 171: 218-227. DOI:10.1016/j.envres.2019.01.013
[16]
Fu PF, Guo XB, Cheung FMH, et al. The association between PM2.5 exposure and neurological disorders:A systematic review and meta-analysis[J]. Sci Total Environ, 2019, 655: 1240-1248. DOI:10.1016/j.scitotenv.2018.11.218
[17]
Kerin T, Volk H, Li WY, et al. Association between air pollution exposure, cognitive and adaptive function, and ASD severity among children with autism spectrum disorder[J]. J Autism Dev Disord, 2018, 48(1): 137-150. DOI:10.1007/s10803-017-3304-0
[18]
Pagalan L, Bickford C, Weikum W, et al. Association of prenatal exposure to air pollution with autism spectrum disorder[J]. JAMA Pediatr, 2019, 173(1): 86-92. DOI:10.1001/jamapediatrics.2018.3101
[19]
Kalkbrenner AE, Windham GC, Zheng C, et al. Air toxics in relation to autism diagnosis, phenotype, and severity in a U.S. Family-Based Study[J]. Environ Health Perspect, 2018, 126(3): 037004. DOI:10.1289/EHP1867
[20]
Ema M, Naya M, Horimoto M, et al. Developmental toxicity of diesel exhaust:a review of studies in experimental animals[J]. Reprod Toxicol, 2013, 42: 1-17.
[21]
Li K, Li L, Cui B, et al. Early postnatal exposure to airborne fine particulate matter induces autism-like phenotypes in male rats[J]. Toxicol Sci, 2018, 162(1): 189-199. DOI:10.1093/toxsci/kfx240
[22]
Chang YC, Cole TB, Costa LG. Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice[J]. Part Fibre Toxicol, 2018, 15(1): 18. DOI:10.1186/s12989-018-0254-4
[23]
Allen JL, Oberdorster G, Morris-Schaffer K, et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution:Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders[J]. NeuroToxicology, 2017, 59: 140-154. DOI:10.1016/j.neuro.2015.12.014
[24]
Church JS, Tijerina PB, Emerson FJ, et al. Perinatal exposure to concentrated ambient particulates results in autism-like behavioral deficits in adult mice[J]. NeuroToxicology, 2018, 65: 231-240. DOI:10.1016/j.neuro.2017.10.007
[25]
Allen JL, Liu XF, Weston D, et al. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation[J]. Toxicol Sci, 2014, 140(1): 160-178. DOI:10.1093/toxsci/kfu059
[26]
Thirtamara Rajamani K, Doherty-Lyons S, Bolden C, et al. Prenatal and early-life exposure to high-level diesel exhaust particles leads to increased locomotor activity and repetitive behaviors in mice[J]. Autism Res, 2013, 6(4): 248-257. DOI:10.1002/aur.2013.6.issue-4
[27]
Yokota S, Oshio S, Moriya N, et al. Social isolation-induced territorial aggression in male offspring is enhanced by exposure to diesel exhaust during pregnancy[J]. PLoS One, 2016, 11(2): e0149737. DOI:10.1371/journal.pone.0149737
[28]
Allen JL, Conrad K, Oberdorster G, et al. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice[J]. Environ Health Perspect, 2013, 121(1): 32-38.
[29]
Allen JL, Liu XF, Weston D, et al. Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinson's disease phenotype in male mice[J]. NeuroToxicology, 2014, 41: 80-88. DOI:10.1016/j.neuro.2014.01.004
[30]
Bayer SA, Altman J, Russo RJ, et al. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat[J]. NeuroToxicology, 1993, 14(1): 83-144.
[31]
Kalkbrenner AE, Windham GC, Serre ML, et al. Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders[J]. Epidemiology, 2015, 26(1): 30-42. DOI:10.1097/EDE.0000000000000173
[32]
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism:Causal concepts and the state of science[J]. Autism Res, 2018, 11(4): 554-586. DOI:10.1002/aur.2018.11.issue-4
[33]
Costa LG, Cole TB, Coburn J, et al. Neurotoxicity of traffic-related air pollution[J]. NeuroToxicology, 2017, 59: 133-139. DOI:10.1016/j.neuro.2015.11.008
[34]
Block ML, Wu X, Pei Z, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons:the role of microglia, phagocytosis, and NADPH oxidase[J]. FASEB J, 2004, 18(13): 1618-1620. DOI:10.1096/fj.04-1945fje
[35]
Roqué PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms[J]. NeuroToxicology, 2016, 56: 204-214. DOI:10.1016/j.neuro.2016.08.006
[36]
Myhre O, Låg M, Villanger GD, et al. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD):Need for novel strategies for mechanisms and causalities[J]. Toxicol Appl Pharmacol, 2018, 354: 196-214. DOI:10.1016/j.taap.2018.03.015
[37]
Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease-Evidence from epidemiological and animal studies[J]. Biomed J, 2018, 41(3): 141-162. DOI:10.1016/j.bj.2018.06.001
[38]
Wei HY, Feng Y, Liang F, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter[J]. Toxicology, 2017, 380: 94-103. DOI:10.1016/j.tox.2017.01.017
[39]
Mumaw CL, Levesque S, McGraw C, et al. Microglial priming through the lung-brain axis:the role of air pollution-induced circulating factors[J]. FASEB J, 2016, 30(5): 1880-1891. DOI:10.1096/fj.201500047
[40]
Cole TB, Coburn J, Dao K, et al. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain[J]. Toxicology, 2016, 374: 1-9. DOI:10.1016/j.tox.2016.11.010
[41]
Chen JC, Wang XH, Wellenius GA, et al. Ambient air pollution and neurotoxicity on brain structure:Evidence from women's health initiative memory study[J]. Ann Neurol, 2015, 78(3): 466-476.
[42]
Durga M, Devasena T, Rajasekar A. Determination of LC50 and sub-chronic neurotoxicity of diesel exhaust nanoparticles[J]. Environ Toxicol Pharmacol, 2015, 40(2): 615-625. DOI:10.1016/j.etap.2015.06.024
[43]
Costa LG, Cole TB, Coburn J, et al. Neurotoxicants are in the air:convergence of human, animal, and in vitro studies on the effects of air pollution on the brain[J]. BioMed Res Int, 2014, 2014: 736385.
[44]
Levesque S, Taetzsch T, Lull ME, et al. Diesel exhaust activates and primes microglia:air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity[J]. Environ Health Perspect, 2011, 119(8): 1149-1155. DOI:10.1289/ehp.1002986
[45]
Gerlofs-Nijland ME, Van Berlo D, Cassee FR, et al. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain[J]. Part Fibre Toxicol, 2010, 7: 12. DOI:10.1186/1743-8977-7-12
[46]
Allen JL, Liu XF, Pelkowski S, et al. Early postnatal exposure to ultrafine particulate matter air pollution:persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice[J]. Environ Health Perspect, 2014, 122(9): 939-945. DOI:10.1289/ehp.1307984
[47]
Frustaci A, Neri M, Cesario A, et al. Oxidative stress-related biomarkers in autism:systematic review and meta-analyses[J]. Free Radic Biol Med, 2012, 52(10): 2128-2141. DOI:10.1016/j.freeradbiomed.2012.03.011
[48]
Han Y, Xi QQ, Dai W, et al. Abnormal transsulfuration metabolism and reduced antioxidant capacity in Chinese children with autism spectrum disorders[J]. Int J Dev Neurosci, 2015, 46: 27-32. DOI:10.1016/j.ijdevneu.2015.06.006
[49]
El-Ansary A, Bjørklund G, Chirumbolo S, et al. Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder[J]. Metab Brain Dis, 2017, 32(4): 1209-1221. DOI:10.1007/s11011-017-0029-x
[50]
Chauhan A, Chauhan V, Brown WT, et al. Oxidative stress in autism:increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins[J]. Life Sci, 2004, 75(21): 2539-2549. DOI:10.1016/j.lfs.2004.04.038
[51]
Main PA, Angley MT, O'Doherty CE, et al. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders:a systematic review and meta-analysis[J]. Nutr Metab (Lond), 2012, 9: 35. DOI:10.1186/1743-7075-9-35
[52]
Ming X, Johnson WG, Stenroos ES, et al. Genetic variant of glutathione peroxidase 1 in autism[J]. Brain Dev, 2010, 32(2): 105-109. DOI:10.1016/j.braindev.2008.12.017
[53]
Williams TA, Mars AE, Buyske SG, et al. Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype[J]. Arch Pediatr Adolesc Med, 2007, 161(4): 356-361.
[54]
Buyske S, Williams TA, Mars AE, et al. Analysis of case-parent trios at a locus with a deletion allele:association of GSTM1 with autism[J]. BMC Genet, 2006, 7: 8.
[55]
Jacob S, Brune CW, Badner JA, et al. Family-based association testing of glutamate transporter genes in autism[J]. Psychiatr Genet, 2011, 21(4): 212-213.
[56]
Gu F, Chauhan V, Chauhan A. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects:alterations in the activities and protein expression of glutathione-related enzymes[J]. Free Radic Biol Med, 2013, 65: 488-496. DOI:10.1016/j.freeradbiomed.2013.07.021
[57]
Rose S, Melnyk S, Pavliv O, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain[J]. Transl Psychiatry, 2012, 2(7): e134. DOI:10.1038/tp.2012.61
[58]
Biamonte F, Latini L, Giorgi FS, et al. Associations among exposure to methylmercury, reduced Reelin expression, and gender in the cerebellum of developing mice[J]. NeuroToxicology, 2014, 45: 67-80. DOI:10.1016/j.neuro.2014.09.006
[59]
Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids:promising directions in autism spectrum disorders[J]. Transl Psychiatry, 2018, 8: 14. DOI:10.1038/s41398-017-0062-x
[60]
Ladd-Acosta C, Hansen KD, Briem E, et al. Common DNA methylation alterations in multiple brain regions in autism[J]. Mol Psychiatry, 2014, 19(8): 862-871. DOI:10.1038/mp.2013.114
[61]
Voineagu I, Wang XC, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology[J]. Nature, 2011, 474(7351): 380-384. DOI:10.1038/nature10110
[62]
Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders[J]. Epigenomics, 2015, 7(3): 503-519. DOI:10.2217/epi.15.1
[63]
Shen E, Shulha H, Weng ZP, et al. Regulation of histone H3K4 methylation in brain development and disease[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1652): 20130514. DOI:10.1098/rstb.2013.0514
[64]
Balan S, Iwayama Y, Maekawa M, et al. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects[J]. Mol Autism, 2014, 5(1): 49.
[65]
Sun WJ, Poschmann J, Cruz-Herrera Del Rosario R, et al. Histone acetylome-wide association study of autism spectrum disorder[J]. Cell, 2016, 167(5): 1385-1397. DOI:10.1016/j.cell.2016.10.031
[66]
Jiang RW, Jones MJ, Sava F, et al. Short-term diesel exhaust inhalation in a controlled human crossover study is associated with changes in DNA methylation of circulating mononuclear cells in asthmatics[J]. Part Fibre Toxicol, 2014, 11: 71. DOI:10.1186/s12989-014-0071-3
[67]
Marsit CJ. Placental epigenetics in children's environmental health[J]. Semin Reprod Med, 2016, 34(1): 36-41.
[68]
Shallie PD, Naicker T. The placenta as a window to the brain:A review on the role of placental markers in prenatal programming of neurodevelopment[J]. Int J Dev Neurosci, 2019, 73: 41-49. DOI:10.1016/j.ijdevneu.2019.01.003
[69]
Tachibana K, Takayanagi K, Akimoto A, et al. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring[J]. J Toxicol Sci, 2015, 40(1): 1-11. DOI:10.2131/jts.40.1
[70]
Chang YC, Daza R, Hevner R, et al. Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization:evidence for a Reelin-related pathogenic pathway induced by interleukin-6[J]. Brain Behav Immun, 2019. DOI:10.1016/j.bbi.2019.01.013
[71]
Parker-Athill E, Luo DY, Bailey A, et al. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism[J]. J Neuroimmunol, 2009, 217(1-2): 20-27. DOI:10.1016/j.jneuroim.2009.08.012
[72]
Santana J, Marzolo MP. The functions of Reelin in membrane trafficking and cytoskeletal dynamics:implications for neuronal migration, polarization and differentiation[J]. Biochem J, 2017, 474(18): 3137-3165. DOI:10.1042/BCJ20160628
[73]
Lintas C, Sacco R, Persico AM. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects[J]. J Neurodev Disord, 2016, 8: 18. DOI:10.1186/s11689-016-9151-z
[74]
Dong E, Ruzicka WB, Grayson DR, et al. DNA-methyltransferase1(DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients[J]. Schizophr Res, 2015, 167(1-3): 35-41. DOI:10.1016/j.schres.2014.10.030
[75]
Satta R, Maloku E, Zhubi A, et al. Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons[J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16356-16361. DOI:10.1073/pnas.0808699105
[76]
Zhou R, Chen F, Chang F, et al. Persistent overexpression of DNA methyltransferase 1 attenuating GABAergic inhibition in basolateral amygdala accounts for anxiety in rat offspring exposed perinatally to low-dose bisphenol A[J]. J Psychiatr Res, 2013, 47(10): 1535-1544. DOI:10.1016/j.jpsychires.2013.05.013
[77]
Chao HT, Chen HM, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes[J]. Nature, 2010, 468(7321): 263-269. DOI:10.1038/nature09582
[78]
Sandhu KV, Lang D, Müller B, et al. Glutamic acid decarboxylase 67 haplodeficiency impairs social behavior in mice[J]. Genes Brain Behav, 2014, 13(4): 439-450. DOI:10.1111/gbb.2014.13.issue-4
DOI: 10.13421/j.cnki.hjwsxzz.2019.02.019
中国疾病预防控制中心主办。
0
田宇, 黄丹妮, 金永堂
TIAN Yu, HUANG Danni, JIN Yongtang
交通污染与自闭症关系的研究进展
Advances on Relationship between Autism and Traffic Pollution
环境卫生学杂志, 2019, 9(2): 190-195
Journal of Environmental Hygiene, 2019, 9(2): 190-195
DOI: 10.13421/j.cnki.hjwsxzz.2019.02.019

相关文章

工作空间