地球旋转对于地球物理流体力学中的许多现象都有深刻影响,它的作用是通过在流体动力学Navier-Stokes方程中出现额外加速度项2Ω×V,其中Ω=Ω0(0,cosφ,sinφ)为Coriolis矢量,V=(u,v,w)是三维速度矢量,Ω0是地球旋转角速度,φ是纬度. 许多研究Rossby波的工作都忽略了地球旋转作用的水平分量,即作了“传统近似”. Long(1964)得到β平面近似下Rossby波振幅演变满足Korteweg-de Vries(KdV)方程. Redekopp(1977)和Wadati(1973)从正压流体和分层流体的模式推导了Rossby孤立波振幅演变满足KdV方程和改进的KdV方程(mKdV),极大地推广了Long的结果. Charney和Straus(1980)基于准地转位涡方程考虑了含有地形、非绝热加热和摩擦的正压大气模式,开创了大气多平衡态非线性动力学的研究. Boyd(1980,1983)采用多重尺度法,从基本方程出发推导出在正压流体中小振幅Rossby 孤立波振幅演变满足非线性KdV方程和mKdV方程. 刘式适和谭本馗(1992)研究了Rossby参数 f=2Ω0sinφ随纬度的变化,罗德海(Luo,1991; 罗德海,1995)用推广的β平面近似模式研究了Rossby孤立波和β随纬度变化的关系,得到β随纬度变化可能是偶极子阻塞的原因. 达朝究和丑纪范(2008)考虑了地形随时间缓慢变化时Rossby波振幅的演变. 宋健和杨联贵(宋健和杨联贵,2010; 宋健等,2012,2013)给出了β效应和地形效应对Rossby孤立波振幅的影响.
然而,就动力学角度而言,“传统近似”也一直是个有争议的问题(Philips,1966,1968; Veronis,1968; Wangsness,1970). 近年来,在地球物理流体动力学的许多研究中,Coriolis力的水平分量 fH=2Ω0cosφ的作用也越来越引起重视(Leibovich and Lele,1985; Draghici,1987; Sun,1995; White and Bromley,1995). White和Bromley(1995)和Burger(1991)通过对纬向动量平衡的尺度分析表明,对于行星尺度的大气运动,保留 fHw是可取的. Draghici(1987)注意到在中尺度运动的范围内也有 fHu大于dw/dt. 赵强和刘式适(2001,2004)从原始方程出发考虑了地球旋转水平分量对赤道β平面上的波动和Rossby波的影响,Gerkema和Shrira(2005)也从原始方程出发考虑了非传统近似下的近惯性波,但他们都作了线性近似. 赵强和于鑫(2008)考虑了完整Coriolis力作用下的非线性Rossby波的解,但也作了半地转近似. 刘全生等(2014)考虑了推广的β平面作用下具有完整Coriolis力的Rossby孤立波,但也作了半地转近似. 本文从含有完整Coriolis力的位涡方程出发研究了非线性的Rossby波,得到了非线性Rossby波振幅满足的演化方程.
1 数学模型既含有Coriolis力垂直分量又含有水平分量的位涡方程为(Dellar and salmon,2005)
侧边界条件为刚壁条件为
假设Coriolis力的水平分量fH为常数,垂直分量f是纬度的函数f=β(y)y.
引入无量纲参数为
这样,位涡方程(1)和边界条件(2)化为
假设流函数由基本流函数和扰动流函数两部分构成,公式为
下面我们通过不同的摄动方法求解方程(7).
2 演化方程的推导 2.1 非齐次Boussinesq方程为了使方程中的非线性和频散效应相平衡,引入缓慢变量为
,扰动流函数展开为
,从而
,其中Φ1(y)满足条件为
方程(17)是一个非齐次的Boussinesq方程,系数R0和S0依赖于β(y)和U(y),进一步验证基本流有切变,非线性β效应是Rossby波产生的重要因子. 而非齐次项f(X)依赖于Coriolis力的水平分量fH和底地形,说明Coriolis力的水平分量fH和底地形可以作为强迫力作用在非线性Rossby波上,从而影响Rossby波振幅的经向结构,进而影响波动的演变规律.如果考虑传统近似fH=0或底地形取为平底,则方程(17)化为齐次的Boussinesq方程,此情况与宋健和赖俊峰(2010)不考虑地形和外源的结论一致.
2.2 改进的Korteweg-de Vries方程如果引进缓慢变量为
,利用类似的方法可以得到非线性Rossby波振幅A(X,T)满足下面的mKdV方程
从方程(23)可以看出,Coriolis力的水平分量fH出现在系数T1中,从而可以影响波动传播的频率特征. 如果考虑传统近似fH=0,则方程(23)中系数T1=0,方程退化为Song和Yang(2009)的结果.
3 结 论本文研究了完整Coriolis力作用下的近赤道非线性Rossby波振幅的演化规律,进一步验证基本流有切变,非线性β效应是Rossby波产生的重要因子. 同时也说明了Coriolis力的水平分量fH和底地形可以作为强迫力作用在非线性Rossby波上,从而影响波动经向结构的振幅. Coriolis力的水平分量fH还可以影响波动传播的频率特征. 如果考虑传统近似fH=0,本文的结论与宋健和赖俊峰(2010)不考虑地形和外源的结果以及宋健和杨联贵(2010)的结果一致.
致 谢 感谢审稿专家的修改意见和编辑部的大力支持!
| [1] | Boyd J P. 1980. Equatorial solitary waves. Part 1: Rossby solitons[J]. Journal of Physical Oceanography, 10(11): 1699-1717. |
| [2] | Boyd J P. 1983. Equatorial solitary waves. Part 2: Rossby solitons[J]. Journal of Physical Oceanography, 13(3): 428-449. |
| [3] | Burger A P. 1991. The potential vorticity equation: From planetary to small scale[J]. Tellus A, 43(3): 191-197. |
| [4] | Charney J G, Straus D M. 1980. Form-drag instability, multiple equilibria and propagating planetry waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences, 37(6): 1157-1176. |
| [5] | Da C J, Chou J F. 2008. KdV equation with a forcing term for the evolution of the amplitude of Rossby waves along a slowly changing topography[J]. Acta Physica Sinica (in Chinese), 57(4): 2595-2599. |
| [6] | Dellar P J, Salmon R. 2005. Shallow water equations with a complete Coriolis force and topography[J]. Physics of Fluids, 17(10): 106601, doi: 10.1063/1.2116747. |
| [7] | Draghici I. 1987. Non-hydrostatic Coriolis effects in an isentropic coordinate frame[J]. Russian Meteorology and Hydrology, 17: 45-54. |
| [8] | Gerkema T, Shrira V I. 2005. Near-inertial waves in the ocean: Beyond the ‘traditional approximation’[J]. Journal of Fluid Mechanics, 529: 195-219. |
| [9] | Leibovich S, Lele S K. 1985. The influence of the horizontal component of the Earth's angular velocity on the instability of the Ekman layer[J]. Journal of Fluid Mechanics, 150: 41-87. |
| [10] | Liu Q S, Song J, Yang L G. 2014. Solitary Rossby waves with beta effect and stratification effect in the Coriolis force[J]. Progress in Geophysics (in Chinese), 29(1): 57-60, doi: 10.6038/pg20140108. |
| [11] | Liu S K, Tan B K. 1992. Rossby waves with the change of β[J]. Applied Mathematics and Mechanics (in Chinese), 13(1): 35-44. |
| [12] | Long R R. 1964. Solitary waves in the Westerlies[J]. Journal of the Atmospheric Sciences, 21(2): 197-200. |
| [13] | Luo D H. 1991. Nonlinear Schrodinger equation in the rotational barotropic atmosphere and atmospheric blocking[J]. Acta Meteorologica Sinica, 5(5): 587-597. |
| [14] | Luo D H. 1995. Solitary Rossby waves with the beta parameter and dipole blocking[J]. Quarterly Journal of Applied Meteorlolgy (in Chinese), 6(2): 220-227. |
| [15] | Philips N A. 1966. The equations of motion for a shallow rotating atmosphere and the “traditional approximation”[J]. Journal of the Atmospheric Sciences, 23(5): 626-628. |
| [16] | Philips N A. 1968. Reply to G. Veronis's comments on Phillips(1966)[J]. Journal of the Atmospheric Sciences, 25(6): 1155-1157. |
| [17] | Redekopp L G. 1977. On the theory of solitary Rossby waves[J]. Journal of Fluid Mechanics, 82(4): 725-745. |
| [18] | Song J, Yang L G. 2009. Modified KdV equation for solitary Rossby waves with β effect in barotropic fluids[J]. Chinese Physics B, 18(7): 2873-2877. |
| [19] | Song J, Lai J F. 2010. Forced solitary Rossby wave with beta effect and topography effect in barotropic flows[J]. Acta Physica Sinica (in Chinese), 59(7): 4756-4760. |
| [20] | Song J, Yang L G. 2010. Force solitary Rossby waves with beta effect and topography effect in stratified flows[J]. Acta Physica Sinica (in Chinese), 59(5): 3309-3314. |
| [21] | Song J, Yang L G, Liu Q S. 2012. Solitary Rossby waves with beta effect and topography effect in a barotropic atmospheric model[J]. Progress in Geophysics (in Chinese), 27(2): 393-397, doi: 10.6038/j.issn.1004-2903.2012.02.001. |
| [22] | Song J, Liu Q S, Yang L G. 2013. Algebraic solitary Rossby waves excited slowly changing topography and beta effect[J]. Progress in Geophysics (in Chinese), 28(4): 1684-1688, doi: 10.6038/pg20130407. |
| [23] | Sun W Y. 1995. Unsymmetrical symmetric instability[J]. Quarterly Journal of the Royal Meteorological Society, 121(522): 419-431. |
| [24] | Veronis G. 1968. Comments on Phillips's proposed simplification of the equations of motion for a shallow rotating atmosphere[J]. Journal of the Atmospheric Sciences, 25(6): 1154-1155. |
| [25] | Wadati M. 1973. The modified Korteweg-de Vries equation[J]. Journal of the Physical Society of Japan, 34(5): 1289-1296. |
| [26] | Wangsness R K. 1970. Comments on “The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’”[J]. Journal of the Atmospheric Sciences, 27(3): 504-506. |
| [27] | White A A, Bromley R A. 1995. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force[J]. Quarterly Journal of the Royal Meteorological Society, 121(522): 399-418. |
| [28] | Zhao Q, Liu S K. 2001. Influence of the horizontal component of the earth's rotation on waves on the equatorial β-plane[J]. Acta Meteorologica Sinica (in Chinese), 59(2): 242-245. |
| [29] | Zhao Q, Liu S K. 2004. Effect of the horizontal component of the earth's rotation on Rossby waves[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(1): 146-150. |
| [30] | Zhao Q, Yu X. 2008. Exact solutions to the nonlinear Rossby waves with a complete representation of the Coriolis force[J]. Chinese Journal of Geophysics (in Chinese), 51(5): 1304-1308, doi: 10.3321/j.issn:0001-5733.2008.05.004. |
| [31] | 达朝究, 丑纪范. 2008. 缓变地形下Rossby波振幅演变满足的带有强迫项的KdV方程[J]. 物理学报, 57(4): 2595-2599. |
| [32] | 刘全生, 宋健, 杨联贵. 2014. Coriolis力作用下的β效应与层结效应的Rossby孤立波[J]. 地球物理学进展, 29(1): 57-60, doi: 10.6038/pg20140108. |
| [33] | 刘式适, 谭本馗. 1992. 考虑β变化下的Rossby波[J]. 应用数学和力学, 13(1): 35-44. |
| [34] | 罗德海. 1995. 考虑β随纬度变化下的Rossby孤立波与偶极子阻塞[J]. 应用气象学报, 6(2): 220-227. |
| [35] | 宋健, 赖俊峰. 2010. 正压流体中具有β效应与地形效应的强迫Rossby孤立波[J]. 物理学报, 59(7): 4756-4760. |
| [36] | 宋健, 刘全生, 杨联贵. 2013. 缓变地形下β效应的Rossby代数孤立波[J]. 地球物理学进展, 28(4): 1684-1688, doi: 10.6038/pg20130407. |
| [37] | 宋健, 杨联贵. 2010. 层结流体中具有β效应与地形效应的强迫Rossby孤立波[J]. 物理学报, 59(5): 3309-3314. |
| [38] | 宋健, 杨联贵, 刘全生. 2012. 正压大气模式下具有β效应与地形效应的Rossby孤立波[J]. 地球物理学进展, 27(2): 393-397, doi: 10.6038/j.issn.1004-2903.2012.02.001. |
| [39] | 赵强, 刘式适. 2001. 地球旋转向量水平分量对赤道β平面上波动的影响[J]. 气象学报, 59(2): 242-245. |
| [40] | 赵强, 刘式适. 2004. 地球旋转水平分量对Rossby波的影响[J]. 大气科学, 28(1): 146-150. |
| [41] | 赵强, 于鑫. 2008. 完整Coriolis力作用下的非线性Rossby波的精确解[J]. 地球物理学报, 51(5): 1304-1308, doi: 10.3321/j.issn:0001-5733.2008.05.004. |
2016, Vol. 31

