地球物理学进展  2014, Vol. 29 Issue (6): 2518-2525   PDF    
深地震反射剖面上的"亮点"构造
卢占武1,2, 高锐1,2, 王海燕1,2, 李文辉1,2, 李洪强1,2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 国土资源部深部探测与地球动力学重点实验室, 北京 100037
摘要:深地震反射剖面方法是目前探测地壳结构最为精细的方法之一.在大量的深地震反射调查工作中,科学家们发现了地壳内部存在很多具有异常高振幅特征的 "亮点" 反射.与以往石油勘探中能够反映油气聚集的"亮点"反射不同的是,这些深地震反射的"亮点"构造通常位于中地壳尺度,其成因往往与板块俯冲、地壳增厚等地质事件有关.本文根据公开发表的文献,总结了的全球大陆范围内深地震反射剖面上的"亮点"构造分布,阐述了"亮点"反射的几种主要成因.并就我国青藏高原内部发现的"深反射亮点"进行了对比,建议了进一步的研究方向.
关键词亮点     构造     深地震反射剖面    
Bright spots in deep seismic reflection profiles
LU Zhan-wu1,2, GAO Rui1,2, WANG Hai-yan1,2, LI Wen-hui1,2, LI Hong-qiang1,2    
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key laboratory of Earth Probe and Geodynamics, Ministry of land and Resources of People's Republic of China, Beijing 100037, China
Abstract: Deep seismic reflection profiling is one of the finest methods to probe the crustal structure. By a lot of deep seismic reflection survey, the scientists found that there are many "bright spots" with unusually high amplitude reflection characteristics in the crust. There are different from the "bright spots" reflecting the hydrocarbon accumulation in oil exploration. The "deep reflection bright spots" are usually located in the crustal scale structures, which often are related to subduction, crustal thickening and other geological events. In this article, based on publicly reported in the literature, we sum up the global distribution of the "bright spots" on deep seismic reflection profiles, describe several causes of deep seismic reflection "bright spots." Moreover, we compare "deep reflection bright spots" in the Tibetan Plateau and suggest the direction for further research.
Key words: bright spots     structure     deep seismic reflection profiles    
0 引 言

地震剖面上的“亮点”,是指在地震剖面上地震反射波振幅相对增强的“点”.与上下左右的反射振幅相比,它更为突出明显(陆基孟和王永刚,2009).通常的石油地震剖面上的“亮点”技术,是基于真振幅技术,结合含油气地层的极性反转、偶极相位、波速异常效应等特征异常检测圈闭中石油、天然气聚集的一种直接方法,在国内外石油地震勘探中,“亮点”技术起到了很大的作用(Hammond,1974; Mahob et al., 1999; 何汉漪,2000吕公河等,2006王长城等,2011;杨辉等,2011宗兆云等,2012).然而,并非所有的“亮点”都是油气的反映.随着地壳尺度的深地震反射剖面的实施,在全球范围内发现了诸多显著的强振幅反射“亮点”,这些地壳内的强反射事件可能与板块俯冲过程中发生的板片残留、地壳增厚相关的部分熔融、流体或者岩浆作用有关.本文主要对全球大陆范围发现的深地震反射剖面的“亮点”(以下简称“深反射亮点”)构造进行较系统的总结研究,并给出了我国深部探测计划得到的“深反射亮点”的实例.

1 全球深地震反射剖面研究简况

深地震反射剖面方法是国际公认的探测岩石圈结构的先锋技术,其探测地壳精细结构的有效性已经在国际上多个深部探测计划中得以证实(Klemperer et al., 1985; Oliver,1993; Cook et al., 1999; Oncken,1998;Gao et al., 2000Brogi et al., 2005).20世纪70年代中期,美国开始实施COCORP计划,成功地为研究造山带、裂谷带、板块缝合带的结构和性质提供了较可靠的地震学证据,提出一些有关大陆演化的新观点.此后,西方各国纷纷建立了类似深部探测计划,如加拿大的LITHOPROBE计划、英国的BIRPS计划、德国的DEKORP计划、法国的ECORS计划、澳大利亚的ACORP计划等.此外俄罗斯、比利时、瑞典、挪威、瑞士等国也开展了相应的深地震反射研究,这些计划的实施获得了极为重要的成果,提供了地壳乃至上地幔的界面特征,使得对岩石圈结构有了一个全新的认识.进入新世纪,美国“地球探测计划-EarthScope”、“澳大利亚玻璃地球-GlassEarth和深部探测计划-Auscope”等一系列新的探测行动,在广泛应用于盆地、造山带岩石圈的形成和演化、地球动力学过程、地震孕育和发生的深部构造环境等地球科学问题的研究方面取得了丰硕的成果(杨文采,1991梁慧云和张先康,1996王海燕等,20062010).

在我国,最近五年实施的中国深部探测专项(SinoProbe)完成了6000余km深地震反射剖面的探测,使得我国进入深部探测的大国行列(董树文等,2012).

2 全球大陆深反射“亮点”分布

在大量的深地震反射调查工作中,科学家们在结晶大陆地壳内部发现了很多明显的具有异常高振幅特征的P波反射,并称之为“亮点”.这些“亮点”构造与以往石油勘探中能够反映油气聚集的振幅异常具有相似的特征.但是,深地震反射的“亮点”构造通常位于中地壳尺度,其成因往往与板块俯冲、地壳增厚等地质事件有关,可能是岩浆或流体的反映.图 1表示了公开报道的全球大陆范围内深地震反射剖面上的“亮点”构造分布,图中底图和部分反射亮点资料参考了(Ross,1999).图 1中可见,大陆“深反射亮点”主要集中在北美大陆和欧洲大陆,亚洲范围内主要是在我国青藏高原的南部和日本岛弧中部,澳大利亚东南部和南美洲西部有零星的分布.与图 1中序号所对应的“深反射亮点”信息见表 1.

图 1 全球大陆范围内深地震反射剖面上的“亮点”构造分布位置图
图中序号表示的内容见表 1.
Fig. 1 Location map of bright spots on deep seismic reflection profiles in the world
More information for numbers in Table. 1

表 1图 1对应的全球大陆范围内深地震反射剖面上的“亮点”位置信息表 Table 1 Corresponding to fig.1 to show bright spot information of deep seismic reflection profiles in mainl and in the world
3 “深反射亮点”分类及构造意义

3.1 岩浆型 “亮点”

根据目前公开发表的文献,岩浆体是对“深反射亮点”中最多的解释.其中最为成功的例子就是美国新墨西哥州的Socorro的“亮点”.美国COCORP探测计划实施的深地震反射剖面在新墨西哥州Socorro以北,发现在20 km深度上存在着显著的振幅增强的地震反射事件,综合考虑该地区微地震触发的剪切波和转换波反射、含有岩浆的流体、与岩浆倾入相关的地壳变形、较高的热流值、第四纪的火山活动等,认为该地区的“亮点”反射是由于岩浆活动引起的(Brown,1991).与之相似的是,在加州的Death Velley( de Voogd et al., 19861988)发现的“亮点”反射也被解释为“岩浆的反射”.

图 2 新墨西哥州Socorro 深地震反射剖面
(Line 2A线)中的“亮点”据(Brown,1991)
Fig. 2 Socorro bright spot of New
Mexico line 2A(after Brown 1991)

图 3 Death Valley深地震反射剖面
(Line 11)的“亮点”反射及真振幅曲线据(de Voogd et al., 19861988)
Fig. 3 Death Valley bright spots and true
amplitude displayafter (de Voogd et al., 19861988)

图 4 INDEPTH计划获得的藏南深地震反射剖面上的“亮点”反射实例据(Brown et al., 1996)
(a)未偏移时间剖面;(b)振幅曲线;(c)浅层时窗显示直达波初至为红色,代表正极性; (d)时窗显示“亮点”反射初至为蓝色,代表负极性.
Fig. 4 The bright spots in INDEPTH deep seismic reflection profiles in south Tibet(after Brown et al., 1996)
(a)Unmigrated time section;(b)Amplitude curve;(c)Shallow window,showing direct wave(first break,or FB)as red, which for an explosive source should be positive polarity;(d)Window across the Bright Spot. The first coherent event is blue,not red,indicating negative polarity.

在我国青藏高原的南部,INDEPTH计划所实施的深地震反射剖面中发现了大量的“亮点”反射.Larry Brown等人1996年在Science杂志上撰文,提出位于亚东-谷露裂谷北部之下15~18 km处(地震剖面5~6 s 双程时间)存在近水平的强反射带.其最明显的特点是局部地方出现的非常大的振幅值,或可称为“亮点”,其振幅值高出背景值13~22 dB.通过对初至波与壳内强反射波极性的分析,发现“亮点”反射与负的反射极性相对应,这就意味着他们代表的反射界面上的速度或者密度在减小,而非“亮点”附近都显示出正的反射极性.在可以产生大的波阻抗差和负的反射系数的变质岩石范围内,最有可能出现这种现象的地方应该是固体物质和流体物质的边界.结合大地电磁给出的20 km 深度上极低电阻率的事实(Chen et al., 1996),与深反射“亮点”一致的PS转换波解释的固-液界面的结果(Makovsky et al., 1996),以及接收函数给出的广泛存在的低速区域等因素,藏南发现的15~18 km深度上的“亮点”反射可能与岩浆作用有关,而这种岩浆最可能的来源是由于地壳增厚作用引发的西藏地壳部分熔融作用.

3.2 非岩浆型的流体

虽然很多证据表明地壳内的反射“亮点”是由于流体产生的,但是却不能将其全部解释为富含岩浆的流体.一些研究认为“深反射亮点”主要是卤水,而不是岩浆引起的.实际上,岩浆与地热卤水并不相互排斥,流体可以聚集在岩浆的顶部(Jahns and Burnham, 1969).此外,在大多数构造-岩浆事件的初期都需要水的存在(Wyllie,1977).

Tuscany南部的两个“亮点”可以解释卤水和岩浆之间的关系.Larderello-Travale和Monte Amiata地热区域,位于白垩系地层下方观测到的强烈的反射波被看作是一个“亮点”.然而,Larderello地区的白垩系地层出现在3~5 km深度下,Monte Amiata 地区出现在5~6 km之下.地球化学分析和重力研究表明,花岗岩体位于两个地热田的下方,但是深度太大而不能直接去与白垩系地层联系起来(Batini and Nicolich, 1985; Gianelli et al., 1988).显然,岩浆作用并不是在地壳深部产生流体的唯一途径.在深部,非岩浆的流体,例如变质水(Connolly,1997)乃至天然气(King,1966)确定是可以产生“亮点”反射的.

德国DEKORP 计划中的反射剖面在南部黑森林Dinkel 冰山和KTB钻井现场(Lüschen等,1993)均发现了“亮点”反射,二者的解释都与岩浆作用无关.例如,KTB 的亮点,尽管也可能与一个充满液体的多孔介质有关,但却没有相应的可以作为固体-流体界面的S波反射.对KTB “亮点”反射的解释或者是在非常薄的裂缝中有水的存在,或者是地壳中石英含量发生了变化.虽然Dinkel 冰山反射与S波反射一致,但它们却非常弱. 因此Dinkel 冰山被解释成为地壳成分变化所致,或许是这一深度上裂缝密度增加的缘故.

安第斯山脉下发现的“亮点”反射被解释成为变质流体.在智利,ANCORP'96计划的深地震反射剖面在20~30 km 深度上发现了倾斜的反射“亮点”(Quebrada Blanca 亮点),与上地幔40~80 km 深度上发现的高振幅反射层类似(The ANCORP Working Group,1999).这两个不同深度上的反射“亮点”振幅值都比背景振幅超出12 dB.地幔的“亮点”反射可能与俯冲洋壳中含水物质有关,其反射率的突然减小的原因应该是俯冲的前缘“脱水”造成的.而Quebrada Blanca 亮点反射则被解释为俯冲板块去水作用产生的流体活动.Connolly(1997)认为,如果一个间断面存在,变质流体不断流出可以产生高达10%的孔隙率.足够的孔隙率可以产生一个较高的反射率,特别是孔隙率都集中在一个不连续面上的时候,如在Quebrada Blanca 发生的渗透率的变化.

3.3 镁铁质的岩基

岩浆不能永远以流体的形式存在.传导和对流冷却可以使他们在几千年内冻结(Cathles,1977).如果岩浆具有与围岩相似的化学成分,不会产生明显的波阻抗,在反射地震剖面上也不会有显示.然而,如果在冷却过程中岩浆与围岩发生了较大的密度和波速上的差异,则会存在一个很强的反射界面.铁镁质(如玄武岩或者辉长岩)或者超铁镁质(如纯橄榄岩)物质(Vp>6400 m/s; p>2900 kg/m-3)侵入到大陆的基底(Vp=6000 m/s; p=2650 kg/m-3),则会产生强反射“亮点”,因为相关反射系数可以达到RC=0.2.

在瑞典Siljan Ring 碰撞构造域和美国蒙大拿州Purcell复背斜下方完成的科学钻探已经证实了地震强反射与岩基之间的关系(Juhlin and Pedersen, 1987; Juhlin,1990).加拿大Wollaston Lake下方(Mandler and Clowes, 1997),美国亚利桑那州的Bagdad(Litak and Hauser, 1992),加拿大阿尔伯塔Winagami(Ross and Eaton, 1997),Bothnia湾西部(Babel Working Group,1993)的镁铁质岩基都与明显的强反射有关.大多数这些已知和推断的岩基都表现为很强的,近水平的地震反射特征.有些是单一的事件,有些是几十公里深度范围发生的多套近水平的反射.还有一些“亮点”反射在横向跨度可以达到160 km(Mandler and Clowes, 1997).

3.4 层状下地壳

深地震反射剖面一个最重要的结果之一就是发现了下地壳和无反射的地幔上覆一个明显的强反射 Moho(Matthews and Cheadle, 1986).关于层状下地壳的反射有几种解释,包括地壳和地幔岩性的嵌入、韧性高应变带(糜棱岩)、充满液体的裂缝的下地壳和侵入的玄武岩床(Klemperer et al., 1986;Meissner et al., 1986).Buena Vista 的Moho 亮点反射可能是铁镁质物质入侵到下地壳底部的最直接的证据(Jarchow et al., 1993). 在内华达州的SRBS,普遍发育的是出现在中地壳的层状亮点反射,这些可以作为连接岩浆系统和层状下地壳的证据(Allmendinger et al., 1987).

4 青藏高原“深反射亮点”

青藏高原作为研究陆-陆碰撞最佳的实验室,其地壳内部的结构复杂多样.早在INDEPTH计划中,深地震反射剖面的探测发现了藏南的“亮点”反射.Brown等(Brown et al,1996)将其解释成为 “由于地壳增厚作用引发的西藏地壳部分熔融作用”.2008年开始执行的SinoProbe项目分别在藏北羌塘地体和青藏西部阿里地区部署实施了总计510 km的深地震反射剖面.这些剖面的重要发现之一就是位于中地壳的强反射“亮点”.这些具有高振幅值的强反射事件,埋深大约在6~8 s TWT(图 5b图 5c).这些深地震剖面上的“亮点”反射,可能更多的记录到了青藏高原形成过程中的特殊的地质事件.由于大规模的高导层的存在和可能存在的流体与岩石相互作用使得青藏高原的中地壳结构变得更加复杂(金胜等,2010张荣华等,2010闫永利等,2012),因此,对于这些深反射剖面上发现的发生于中地壳的“亮点”构造的解释显得至关重要.借鉴前人的工作经验,考虑SinoProbe深地震反射剖面数据的实际情况和青藏高原复杂地表地质条件,笔者认为应该从P波反射振幅、频率特征,是否发生极性反转,发生“亮点”反射地区的电性结构等方面入手进行研究,认真做好深地震反射剖面构造信息识别工作(李文辉等,2012),并充分考虑“亮点”反射发生的地质构造背景.只有这样,才能对青藏高原深地震反射的“亮点”做出合理的解释.

图 5 青藏高原内部“深反射亮点”
(a)青藏高原构造背景划分与亮点反射位置分布图.IYS-雅鲁藏布江缝合带; BNS-班公怒江缝合带; JS-金沙江缝合带;AKMS-阿尼玛卿-木孜塔格-昆仑缝合带;SQS-南祁连缝合带;DHS-党河南山缝合带;NQS-北祁连缝合带;KS-库地缝合带;STDS-藏南拆离系;MCT-主中央逆冲断裂;MBT-主边界逆冲断裂.1-正断裂;2-逆冲断裂;3-走滑断裂;4-缝合带;5-新生代火山岩;6-湖或上第三系盆地.蓝色星形为INDEPTH 剖面发现的“亮点”位置,见图 4所示.(b)SinoProbe剖面发现的羌塘地体内部“深反射亮点”, 见绿色星形标注.(c)SinoProbe剖面发现的阿里地区“深反射亮点”,见红色星形标注.
Fig. 5 Deep seismic reflection bright spots in Tibet
(a)Tectonic setting and location of the bright spots in Tibet. IYS-Indus-Yarlung Zangbo suture ; BNS-Bangong-Nujiang suture ; JS-Jinsha river suture ; AKMS-Ayimaqin-Kunlun-Mutztagh suture ; SQS-south Qilian suture ; DHS-Danghenanshan suture ; NQS-north Qilian suture ; KS-Kudi suture ; STDS-South Tibet Detachment System ; MCT-Main Central Thrust ; MBT-Main Boundary Thrust. 1-Normal fault; 2-thrust fault ; 3-strike-slip fault ; 4-suture ; 5-Cenozoic lava ; 6-lake or tertiary basin. Blue star is the location of bright spot acquired by INDEPTH project,shown in Fig. 4.(b)Qiangtang bright spots acquired by SinoProbe project,the location is shown as green star.(c)Ali bright spots acquired by SinoProbe project,the location is shown as red star.
5 结 语

根据公开报道文献,全球大陆“深反射亮点”主要集中在北美大陆和欧洲大陆,亚洲范围内主要是在我国青藏高原的南部和日本岛弧中部,澳大利亚东南部和南美洲西部有零星的分布. “深反射亮点”可能是由于岩浆、流体、铁镁质岩基、层状下地壳等多种原因形成的.我国青藏高原内部羌塘地体和阿里地区新发现了若干“深反射亮点”,应该从P波反射振幅、频率特征,极性等多方面进行综合研究,并充分考虑的地质构造背景,对青藏高原深地震反射的“亮点”做出合理的解释.

致 谢 感谢中国地质科学院吴珍汉研究员提供了青藏高原相关地质资料.感谢斯坦福大学Cyndi Kelly博士对阿里地区“亮点”反射有意义的讨论.SinoProbe西藏深地震反射剖面的野外采集是由中国石化集团西南石油局第五物探大队完成的,对他们的辛勤付出表示感谢.感谢审稿人提出宝贵意见.
参考文献
[1] Allmendinger R W, Nelson K D, Potter C J, et al. 1987. Deep seismic reflection characteristics of the continental crust[J]. Geology, 15(4): 304-310.
[2] Babel Working Group. 1993. Integrated seismic studies of the Baltic shield using data in the Gulf of Bothnia region[J]. Geophysical Journal International, 112(3): 305-324.
[3] Batini F, Nicolich R. 1985. P and S reflection seismic profiling and well logging in the Travale geothermal field[J]. Geothermics, 14(5-6): 731-747.
[4] Brocher T M. 1981. Geometry and physical properties of the Socorro, New Mexico, magma bodies[J]. J. Geophys. Res., 86(B10): 9420-9432.
[5] Brogi A, Lazzarotto A, Liotta D, et al. 2005. Crustal structures in the geothermal areas of southern Tuscany(Italy): Insights from the CROP 18 deep seismic reflection lines[J]. Journal of Volcanology and Geothermal Research, 148(1-2): 60-80.
[6] Brown L D. 1991. A new map of crustal 'terranes' in the United States from COCORP deep seismic reflection profiling[J]. Geophys. J. Int., 105(1): 3-13.
[7] Brown L D, Zhao W, Nelson K D, et al. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 274(5293): 1688-1690.
[8] Cameli G M, Dini I, Liotta D. 1993. Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (Southern Tuscany, Italy) [J]. Tectonophysics, 224(4): 413-423.
[9] Chen L, Booker J R, Jones A G, et al. 1996. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying [J]. Science, 274(5293): 1694-1696.
[10] Chmielowski J, Zandt G, Haberland C. 1999. The Central Andean Altiplano-Puna magma body[J]. Geophysical Research Letters, 26(6): 783-786.
[11] Connolly J A D. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism [J]. J. Geophys. Res., 102(B8): 18149-18173.
[12] Cook F A, Van der Velden J, Hall K W, et al. 1999. Frozen subduction in Canada's Northwest Territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian shield[J]. Tectonics, 18(1): 1-24.
[13] De Voogd B, Serpa L, Brown L, et al. 1986. Death Valley bright spot: A midcrustal magma body in the southern Great Basin, California? [J]. Geology, 14(1): 64-67.
[14] de Voogd B, Serpa L, Brown L. 1988. Crustal extension and magmatic processes: COCORP profiles from Death Valley and the Rio Grande rift [J]. Geological Society of America Bulletin, 100(10): 1550-1567.
[15] Dong S W, Li T D, Chen X H, et al. 2012. Progress of deep exploration in mainland China: A review[J]. Chinese Journal of Geophysics (in Chinese), 55(12): 3884-3901, doi: 10.6038/j.issn.0001-5733.2012.12.002.
[16] Gao R, Huang D D, Lu D Y, et al. 2000. Deep seismic reflection profile across the juncture zone between the Tarim basin and the west Kunlun Mountains[J]. Chinese Science Bulletin, 45(24): 2281-2286.
[17] Gianelli G, Puxeddu M, Batini F, et al. 1988. Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata(Tuscany, Italy) [J]. Geothermics, 17(5-6): 719-734.
[18] Goodwin E B, Thompson G A, Okaya D A. 1989. Seismic identification of basement reflectors: the Bagdad reflection sequence in the Basin and Range Province-Colorado Plateau transition zone, Arizona[J]. Tectonics, 8(4): 821-831.
[19] Hammer P T C, Clowes R M. 1996. Seismic reflection investigations of the Mount Cayley bright spot: A midcrustal reflector beneath the Coast Mountains, British Columbia[J]. J. Geophys. Res., 101(B9): 20119-20131.
[20] Hammond A L. 1974. Bright spot: better seismological indicators of gas and oil[J]. Science, 185(4150): 515-517.
[21] Hauser E, Potter C, Hauge T, et al. 1987. Crustal structure of eastern Nevada from COCORP deep seismic reflection data[J]. Geological Society of America Bulletin, 99(6): 833-844.
[22] He H Y. 2000. The seismic technology in 21th century[J]. Earth Science Frontiers (in Chinese), 7(3): 267-273.
[23] Henstock T J, Levander A. 2000. Impact of a complex overburden on analysis of bright reflections: A case study from the Mendocino Triple Junction[J]. J. Geophys. Res., 105(B9): 21711-21726.
[24] Jahns R H, Burnham C W. 1969. Experimental studies of pegmatite genesis; I, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 64(8): 843-864.
[25] Jarchow C M, Thompson G A, Catchings R D, et al. 1993. Seismic evidence for active magmatic underplating beneath the Basin and Range Province, western United States[J]. Journal of Geophysical Research, 98(B12): 22095-22108.
[26] Jin S, Wei W B, Wang S, et al. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics (in Chinese), 53(10): 2376-2385, doi: 10.3969/j.issn.0001-5733.2010.10.011.
[27] Juhlin C, Pedersen L B. 1987. Reflection seismic investigations of the Siljan impact structure, Sweden[J]. Journal of Geophysical Research, 92(B13): 14113-14122.
[28] Juhlin C. 1990. Interpretation of the reflections in the Siljan Ring area based on results from the Gravberg-1 borehole[J]. Tectonophysics, 173(1-4): 345-360.
[29] Jones A G. 1998. Waves of the future: Superior inferences from collocated seismic and electromagnetic experiments[J]. Tectonophysics, 286(1-4): 273-298.
[30] King M S. 1966. Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants[J]. Geophysics, 31(1): 50-73.
[31] Klemperer S L, Borwn L D, Oliver J E, et al. 1985. Some results of COCORP seismic reflection profiling in the Grenville-age Adirondack mountains, New York state[J]. J. Earth Sci., 22(2): 141-153.
[32] Klemperer S L, Hauge T A, Hauser E C, et al. 1986. The Moho in the northern Basin and Range province, Nevada, along the COCORP 40°N seismic-reflection transect[J]. Geological Society of America Bulletin, 97(5): 603-618.
[33] Klemperer S L. 1987. A relation between continental heat flow and the seismic reflectivity of the lower crust[J]. Journal of Geophysics, 61: 1-11.
[34] Korja A, Heikkinen P. 2005. The accretionary Svecofennian orogen—insight from the BABEL profiles[J]. Precambrian Research, 136(2-4): 241-268.
[35] Levander A, Henstock T J, Meltzer A S, et al. 1998. Fluids in the lower crust following Mendocino triple junction migration: active basaltic intrusion? [J]. Geology, 26(2): 171-174.
[36] Li W H, Gao R, Wang H Y. 2012. Research on structure information recognition of deep seismic reflection profiles [J]. Chines Journal of Geophysics (in Chinese), 55(12): 4138-4146, doi: 10.6038/j.issn.0001-5733.2012.12.026.
[37] Liang H Y, Zhang X K. 1996. Research programs and advances of deep seismic sounding for crust and upper mantle on world[J]. Progress in Geophysics (in Chinese), 11(1): 42-60.
[38] Litak R K, Hauser E C. 1992. The Bagdad Reflection Sequence as tabular mafic intrusions: evidence from seismic modeling of mapped exposures[J]. Geol. Soc. Am. Bull., 104(10): 1315-1325.
[39] Lüschen E, Sobolev S, Werner U, et al. 1993. Fluid reservoir(?) beneath the KTB drillbit indicated by seismic shear-wave observations[J]. Geophys. Res. Lett., 20(10): 923-926.
[40] Lüschen E. 1994. Crustal "bright spots" and anisotropy from multi-component P- and S-wave measurements in southern Germany[J]. Tectonophysics, 232(1-4): 343-354.
[41] Lü G H, Yu C Q, Dong N. 2006. The application of post-stack seismic attribute analysis in the oil-gas exploration and development[J]. Progress in Geophysics (in Chinese), 21(1): 161-166, doi: 10.3969/j.issn.1004-2903.2006.01.023.
[42] Lu J M, Wang Y G. 2009. The Principle of Seismic Exploration (third edition) (in Chinese)[M]. Beijing: China university of Petroleum Press.
[43] Mahob P N, Castagna J P, Young R A. 1999. AVO inversion of a gulf of Mexico bright spot-A case study[J]. Geophyscis, 64(5): 1480-1491.
[44] Makovsky Y, Klemperer S L, Ratschbacher L, et al. 1996. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet[J]. Science, 274(5293): 1690-1691.
[45] Mandler H A F, Clowes R M. 1997. Evidence for extensive tabular intrusions in the Precambrian shield of western Canada: A 160-km-long sequence of bright reflections [J]. Geology, 25(3): 271-274.
[46] Mandler H A F, Clowes R M. 1998. The HSI bright reflector: further evidence for extensive magmatism in the Precambrian of western Canada[J]. Tectonophysics, 288(1-4): 71-81.
[47] Matthews D H, Cheadle M J. 1986. Deep Reflections from the Caledonides and Variscides West of Britain and Comparison with the Himalayas[M]. American Geophysical Union.
[48] Mayer G, Mai P M, Plenefisch T, et al. 1997. The deep crust of the Southern Rhine Graben: reflectivity and seismicity as images of dynamic processes [J]. Tectonophysics, 275(1-3): 15-40.
[49] Oncken O. 1998. Orogenic mass transfer and reflection seismic patterns - evidence from DEKORP sections across the European Variscides (central Germany) [J]. Tectonophysics, 286(1-4): 47-61.
[50] The ANCORP Working Group. 1999. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle[J]. Nature, 397(6717): 341-344.
[51] Papasikas N, Juhlin C. 1997. Interpretation of reflections from the central part of the Siljan Ring impact structure based on results from the Stenberg-1 borehole [J]. Tectonophysics, 269(3-4): 237-345.
[52] Pratt T L, Mondary J F, Brown L D, et al. 1993. Crustal structure and deep reflector properties: Wide angle shear and compressional wave studies of the midcrustal Surrency Bright Spot beneath southeastern Georgia[J]. Journal of Geophysical Research, 98(B10): 17723-17735.
[53] Ross G M, Eaton D W. 1997. Winagami reflection sequence: Seismic evidence for postcollisional magmatism in the Proterozoic of western Canada[J]. Geology, 25(3): 199-202.
[54] Ross A. 1999. Seismic bright spots and continental rheology[Ph. D. thesis]. Ithaca: Cornell University.
[55] Ross G M, Eaton D W. 2002. Proterozoic tectonic accretion and growth of western Laurentia: results from Lithoprobe studies in northern Alberta[J]. Can. J. Earth Sci., 39(3): 313-329, doi: 10.1139/E01-081.
[56] Ryberg T, Fuis G S. 1998. The San Gabriel Mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California[J]. Tectonophysics, 286(1-4): 31-46.
[57] Pratt T L, Hauser E C, Hearn T M, et al. 1991. Reflection polarity of the Midcrustal Surrency bright spot beneath southeastern Georgia: Testing the fluid hypothesis[J]. Journal of Geophysical Research, 96(B6): 10145-41458.
[58] Ryberg T, Fuis G S. 1998. The San Gabriel Mountains bright reflective zone: possible evidence of young mid-crustal thrust faulting in southern California[J]. Tectonophysics, 286(1-4): 31-46.
[59] The ANCORP Working Group. 1999. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle [J]. Nature, 397(6717): 341-344.
[60] Umeda Y. 1990. High-amplitude seismic waves radiated from the bright spot of an earthquake[J]. Tectonophysics, 175(1-3): 81-92.
[61] Wang C C, Shi Z J, Hu X Q, et al. 2011. Geophysical response and formation mechanism analysis of fractured-vuggy reservoir in Maokou formation in southeast Sichuan[J]. Progress in Geophysics (in Chinese), 26(5): 1683-1689, doi: 10.3969/j.issn.1004-2903.2011.05.022.
[62] Wang H Y, Gao R, Lu Z W, et al. 2006. Precursor of detecting the interior earth: Development and applications of deep seismic reflection[J]. Progress in Exploration Geophysics (in Chinese), 29(1): 7-13.
[63] Wang H Y, Gao R, Lu Z W, et al. 2010. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile[J]. Acta Geologica Sinica (in Chinese), 84(6): 818-839.
[64] Wright C, Barton T, Goleby B R, et al. 1990. The interpretation of expanding spread reflection profiles: examples from central and eastern Australia[J]. Tectonophysics, 173(1-4): 73-82.
[65] Wyllie P J. 1977. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Geol. Soc. Land. J., 134(2): 215-234.
[66] Yan Y L, Ma X B, Chen Y, et al. 2012. The study of magnetotelluric sounding on Coqên- Xainza profile in Tibet[J]. Chines Journal of Geophysics (in Chinese), 55(8): 2636-2642, doi: 10.6038/j.issn.0001-5733.2012.08.015.
[67] Yang W C. 1991. Deep seismic refection surveys for lithosphere[J]. Progress in Geophysics (in Chinese), 6(3): 61-68.
[68] Yang H, Wen B H, Dai X F, et al. 2011. Comprehensive predication of hydrocarbon deposits in volcanic rock by gravity, magnetic, electrical and seismic data and its application [J]. Chinese Journal of Geophysics (in Chinese), 54(2): 286-293, doi: 10.3969/j.issn.0001-5733.2011.02.003.
[69] Zhang R H, Zhang X T, Hu S M. 2010. Experimental study on water and water rock interactions in the mid-crust conditions and its significance[J]. Chinese Journal of Geophysics (in Chinese), 53(9): 2244-2256, doi: 10.3969/j.issn.0001-5733.2010.09.026.
[70] Zong Z Y, Ying X Y, Wu G C. 2012. Fluid identification method based on compressional and shear modulus direct inversion [J]. Chinese Journal of Geophysics (in Chinese), 55(1): 284-292.
[71] 董树文, 李廷栋, 陈宣华,等. 2012. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报, 55(12): 3884-3901, doi: 10.6038/j.issn.0001-5733.2012.12.002.
[72] 何汉漪. 2000. 二十一世纪的地震勘探技术[J]. 地学前缘, 7(3): 267-273.
[73] 金胜, 魏文博, 汪硕,等. 2010. 青藏高原地壳高导层的成因及动力学意义探讨——大地电磁探测提供的证据[J]. 地球物理学报, 53(10): 2376-2385, doi: 10.3969/j.issn.0001-5733.2010.10.011.
[74] 李文辉, 高锐, 王海燕,等. 2012. 深地震反射剖面构造信息识别研究[J]. 地球物理学报, 55(12): 4138-4146, doi: 10.6038/j.issn.0001-5733.2012.12.026.
[75] 梁慧云, 张先康. 1996. 各国地壳上地幔深地震反射研究计划与进展[J]. 地球物理学进展, 11(1): 42-60.
[76] 陆基孟, 王永刚. 2009. 地震勘探原理(第三版)[M]. 北京: 中国石油大学出版社.
[77] 吕公河, 于常青, 董宁. 2006. 叠后地震属性分析在油气田勘探开发中的应用[J]. 地球物理学进展, 21(1): 161-166, doi: 10.3969/j.issn.1004-2903.2006.01.023.
[78] 王长城, 施泽进, 胡修权,等. 2011. 川东南茅口组缝洞型储层地球物理响应特征及形成机制研究[J]. 地球物理学进展, 26(5): 1683-1689, doi: 10.3969/j.issn.1004-2903.2011.05.022.
[79] 王海燕, 高锐, 卢占武,等. 2006. 地球深部探测的先锋—深地震反射方法的发展与应用[J]. 勘探地球物理进展, 29(1): 7-13.
[80] 王海燕, 高锐, 卢占武,等. 2010. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 84(6): 818-839.
[81] 闫永利, 马晓冰, 陈赟,等. 2012. 西藏错勤-申扎剖面大地电磁测深研究[J]. 地球物理学报, 55(8): 2636-2642, doi: 10.6038/j.issn.0001-5733.2012.08.015.
[81] 杨文采. 1991. 用于岩石层调查的深地震反射[J]. 地球物理学进展, 6(3): 61-68.
[82] 杨辉, 文百红, 戴晓峰,等. 2011. 火山岩油气藏重磁电震综合预测方法及应用[J]. 地球物理学报, 54(2): 286-293, doi: 10.3969/j.issn.0001-5733.2011.02.003.
[83] 张荣华, 张雪彤, 胡书敏. 2010. 中地壳的水和水岩相互作用实验及其地球物理涵义[J]. 地球物理学报, 53(9): 2244-2256, doi: 10.3969/j.issn.0001-5733.2010.09.026.
[84] 宗兆云, 印兴耀, 吴国忱. 2012. 基于叠前地震纵横波模量直接反演的流体检测方法[J]. 地球物理学报, 55(1): 284-292, doi: 10.6038/j.issn.0001-5733.2012.01.028.