地球物理学进展  2014, Vol. 29 Issue (5): 2066-2071   PDF    
倾斜台阶重力异常公式的改进
苏和明, 李文尧 , 王荣华, 周波帆    
昆明理工大学国土资源工程学院, 昆明 650093
摘要:现用的倾斜台阶重力异常表达式经正演计算发现三种情况下其重力异常曲线存在间断点:(1)斜面倾角过小或过大;(2)顶端埋深较浅;(3)埋深比大于5.8.异常曲线间断点的存在影响异常解释的结果,对倾斜台阶重力异常曲线存在间断点的研究尚未见相关的文献报道.本文对倾斜台阶重力异常表达式重新进行了数学推导,改进了倾斜台阶重力异常表达式.通过倾斜台阶模型正演计算验证,表明改进后的公式解决了原表达式存在间断点的问题.
关键词倾斜台阶     重力异常曲线     间断点     公式改进    
Some improvements on the formula for inclined steps gravity anomaly
SU He-ming, LI Wen-yao , WANG Rong-hua, ZHOU Bo-fan    
Faculty of Land Resources Engineering College, Kunming University of Science and Technology, Kunming 650093, China
Abstract: The inclined steps gravity anomaly formula after calculation was found inclined steps gravity anomaly curve have discontinuous point in the three cases:(1)Slant angle is too small or too large; (2) The top of buried depth is shallow; (3)Buried depth ratio greater than 5.8. The existence of gravity anomaly curve discontinuity point to influence the outcome of anomaly interpretation, gravity anomaly curve exists discontinuity point have not been reported. In this paper, Inclined steps gravity anomaly formula expression to derive a new mathematical formula, improvement the inclined steps gravity anomaly expression. By the inclined steps model verification, show that the improved formula to solve the original expression exists of discontinuous point issue.
Key words: Inclined steps     gravity anomaly curve     discontinuity point     improved formula    
0 引 言

倾斜台阶的重力异常表达式由Jung在1961年给出.其常用的表达式可从文献(Hubbert,1948Talwani et al., 1959Grant and West, 1965Stanley and Green, 1976蔡宗熹和姜兰,1986Won and Bevis, 1987Butler,1995杨辉和王宜昌,1998彭放等,1999张建中等,2000张胜业和潘玉玲,2004魏伟和刘天佑, 2005ab苑书金和于常青,2006刘天佑,2007汤井田等,2007张剑等,2007杨文采和于常青,2007房立华和吴建平,2009贾真和孟令顺,2009杨仁虎等,2009翟振和和孙中苗,2009解小莉等,2010李振海等,2012王彦国等,2013刘晓刚等,2014)中查得.文献中常用的倾斜台阶重力异常表达式经Matlab正演计算,发现倾斜台阶重力异常曲线在某些特定情况下存在间断点.异常曲线间断点的存在使倾斜台阶重力异常特定情况下无法进行正演,同时在该特定情况下进行反演时得不到该有的地质模型,对该问题的研究,尚未见相关文献报道,因此有必要对其进行研究.

1 倾斜台阶重力异常曲线间断点发现

图 1所示,坐标原点O选在倾斜台阶斜面与地面的交线上,X轴和该交线垂直,Z轴铅垂向下.台阶顶底面深度为h和H,斜面倾角为α,与围岩的密度差为Δσ,G为万有引力常数,其重力异常公式(重力勘探资料解释手册编写组著,1983)为

设倾斜台阶模型参数为:h=10 m,H=100 m,斜面倾角α分别为45°,90°和135°Δσ=1 g/cm3(曾华霖,2005).根据公式(1)正演计算的倾斜台阶重力异常曲线见图 2.

图 1 倾斜台阶坐标系示意图 Fig. 1 Schematic of inclined steps coordinate system
图 2 倾斜台阶重力异常曲线
(蓝、绿、红曲线为α=45°,90°,135°的重力异常曲线)
Fig. 2 Inclined steps gravity anomaly curve
(Blue,green,red curve is α=45°,90°,135°gravity anomaly curve)

图 2可见,当斜面倾角α=45°和135°时,倾斜台阶重力异常曲线不连续,存在间断点.除此外,发现以下两种情况:(1)倾斜台阶顶端埋深h较浅,如图 3所示顶端埋深h小于20 m时,倾斜台阶重力异常曲线出现了间断点;(2)倾斜台阶埋深比H/h大于5.8,如图 4所示,埋深比H/h大于5.8后,倾斜台阶重力异常曲线出现了间断点.

图 4 倾斜台阶重力异常曲线
(a)α=45°;(b)α=135°.(蓝至黄色曲线为H/h=5.4,5.7,5.8,5.9,6.1,6.4的重力异常曲线)
Fig. 4 Inclined steps gravity anomaly curve
(Blue to yellow curve is H/h=5.4,5.7,5.8,5.9,6.1,6.4 gravity anomaly curve)
2 间断点原因分析

倾斜台阶重力异常曲线为什么在以上情况中存在间断点?是哪里产生间断点,使重力异常曲线不连续?为研究方便,把公式(1)右边中括号的内容分成五部分:

为研究方便,选取斜面倾角α=45°的情况进行讨论.倾斜台阶模型参数h=10 m,H=100 m,Δσ=1 g/cm3.用Matlab(2)至(6)公式编程,运行程序,得如图 5所示各公式曲线.

图 5 函数曲线
(a、b、c、d、e分别为公式2、3、4、5、6的曲线)
Fig. 5 The function curve
(a、b、c、d、e respectively of the formula 2、3、4、5、6 function curve)

图 5可见,各函数曲线中,只有公式(6)曲线不连续,存在间断点.故倾斜台阶重力异常曲线存在间断点的主要原因在公式(6).

通过对公式(6)进一步的研究,认为

有两根x1,x2,致使Δg曲线出现间断点.

下面从数学上进行证明:

考察函数

在x1,x2处的连续性.

(1)若方程有两根,x1,x2,设x1<x2<0,那么:

∴函数f(x)在x1,x2处不连续.

(2)若方程有两根,x1<0,x2>0,同理:

∴函数f(x)在x1,x2处不连续.

(3)若方程有单根x0,易证x0<0,

∴f(x)在x0处连续.

综上所述,当x2sin2αcosα+(H+h)xsinαcosα+Hh=0 存在两根x1,x2时,函数f(x)=arctan

存在间断点,间断点为x1,x2.证明倾斜台阶重力异常表达式的曲线存在间断点.

由此,找到了倾斜台阶重力异常曲线存在间断点的原因.

3 倾斜台阶重力公式改进

为解决倾斜台阶重力异常曲线在上述情况存在间断点,用二度体基本公式(重力勘探资料解释手册编写组著,1983)重新推导倾斜台阶重力异常表达式.以下为数学推导的过程:

为了方便,先进行不定积分的计算:

(10)为改进后的公式.为验证公式(10)倾斜台阶重力异常曲线的连续,用公式(1)倾斜台阶模型同样的参数:h=10 m,H=100 m,α分别为45°,90°和135°,Δσ=1 g/cm3.经过Matlab编程运算,得如图 6所示.

图 6 倾斜台阶重力异常公式改进后异常曲线
(蓝、绿、红曲线为α=45°,90°,135°的重力异常曲线)
Fig. 6 The improved formula inclined steps

gravity anomaly curve
(Blue,green,red curve is α=45°,90°,135°gravity anomaly curve)

可见,改进后的倾斜台阶重力异常公式经正演计算,所得重力异常曲线是连续的.

为了进一步证明公式(10)所作曲线连续,给倾斜台阶模型任意斜面倾角(α=15°,25°,50°、125°、150°、165°);顶端埋深h最小为5 m;埋深比H/h等于10,远大于5.8界限.经过Matlab编程,得如图 7a所示.可见倾斜台阶重力异常曲线都未出现间断点.证明改进后公式(10)不论斜面倾角大小,顶端埋深浅,埋深比远大于5.8,倾斜台阶重力异常曲线都连续,没有出现间断点.

以该组参数,用原来倾斜台阶重力异常公式经正演计算,得如图 7b所示,可见倾斜台阶的斜面倾角过大或过小,顶端埋深浅,埋深比大于5.8时,重力异常曲线存在间断点的问题很明显.

图 7 原公式与改进后公式异常曲线对比
(a)公式改进后;(b)公式未改前.(从蓝至黄色曲线为 α=15°,25°,35°,145°,155°,165°的重力异常曲线)
Fig. 7 The original formula and improved formula inclined steps gravity anomaly curve comparison
(a)The improved formula;(b)The original formula.(From blue to yellow curve α=15°,25°,35°,145°,155°,165°gravity anomaly curve)

综上可知,改进的推导重力异常公式(10)是正确的,解决原来重力异常公式曲线存在间断点是有必要且有意义.

4 结 论

经正演计算及数学分析,发现常用的倾斜台阶重力异常公式在以下三种情况存在间断点:(1)顶端埋深h埋深较浅;(2)埋深比H/h大于5.8;(1)斜面倾角过小或者过大.重新推导的倾斜台阶重力异常公式(公式10),解决了原有公式存在间断点的问题.使该公式在任何情况下,都能解决倾斜台阶重力异常正演的问题,不会产生间断点,故建议今后采用公式(10).

致 谢 在本文的撰写过程中得到中国地质科学院地质研究所于常青研究员的指导和帮助,特此感谢!
参考文献
[1] Chen H G, Wu J S, Wang J L. 2002. Research in modiied simulated annealing gravity inversion [J]. Journal of Jilin University (Earth Science Edition). (in Chinese), 32(3): 294-298.
[2] Chen J, Wang J L, Wu J S, et al. 2000. Application of improved genetic algorithm to inversion of multi layered density interface [J]. Earth Science-Journal of China University of Geosciences (in Chinese), 25(6): 651-655.
[3] Duan B C, Xu S Z. 1997. A study of the scheme of extending edge in the processing of separating local field from regional field form agnetic gravity anomaly [J]. Journal of Computing Techniques for Geophysical and Geochemical Exploration, 12 (4): 298 -304.
[4] Jiang M, Wang Y X, NABELEK J, et al.The crust and upper mantle structure beneath the Himalaya orogenic belt: the result from local earthquake data analysis[J]. Acta Petrologica Sinica, 24(7): 1509-1516.
[5] Jing R Z, Bao G S,Chen S Q. 2003. A review of the researches for geophysical combinative inversion[J]. Progress in Geophysics, 18(3): 535-540.
[6] Jing X L, Yang C C, Li L. 2003. Adapted simulated annealing algorithm for geophysical problems [J]. Progress in Geophysics, 18(2): 327-330.
[7] Lu X F. 2011. Main Structural interfaces of Sichuan basin obtained from inversions of gravity anomalies through modified very fast simulated annealing method [D] [Master's thesis]. Xi an: Northwest University.
[8] Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies [J]. Geophysics, 39: 526-536.
[9] Parker R L. 1973. The rapid calculation of potential anomalies [J]. Geophysical Journal of the Royal Astronomical Society, 31: 447-455.
[10] Qin J X, Hao T Y, Xu Y, et al. The statistical analysis and the relationship between the tectonic units of the Moho Depth in the South China Sea and Adjacent Areas [J]. Chinese J. Geophys.(In Chinese), 2011, 54 (12): 3171-3183, DOI:3969//j. issn.0001-5733.2011.12.017.
[11] Qin J X. 2012. The study on the distribution of Moho depth and tectonic framework in China and the adjacent area[D] [Ph.D thesis]. Beijing: Graduate University of Chinese Academy of Sciences.
[12] Butler D K. 1995. Generalized gravity gradient analysis for 2-D inversion [J]. Geophysics, 60(4): 1018-1028.
[13] Cai Z X, Jiang L. 1986. Forward and inverse problems of gravity anomalies due to 2-D inclined faults[J]. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 8(1): 20-41.
[14] Fang L H, Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophys. (in Chinese), 24(1): 42-50.
[15] Grant F S, West G F. 1965. Interpretation theory in applied geophysics [M]. New York: McGraw.
[16] Gravity Exploration Data Explain the Manual Editing. 1983. Gravity exploration data explain the manual (in Chinese) [M]. Beijing: Geological Press, 23, 151.
[17] Hubbert M K. 1948. A line-integral method of computing the gravimetric effects of two-dimensional masses [J]. Geophysics, 13(2): 215-225.
[18] Jia Z, Meng L S. 2009. Some improvements on the formula for calculating the gravity anomaly due to a 2D homogeneous polygonal source[J]. Progress in Geophysics (in Chinese), 24(2): 462-467.
[19] Li Z H, Luo Z C, Zhong B. 2012. Gravity modeling and analyzing based on 3D Delaunay triangulation algorithm[J]. Chinese J. Geophys. (in Chinese), 55(7): 2259-2267.
[20] Liu T Y. 2007. An Introduction to Geophysics Exploration (in Chinese) [M]. Beijing: Geological Press.
[21] Liu X G, Yan Z C, Sun W, et al. 2014. Precision evaluation and analysis of least squares collocation method and spherical harmonic analysis method in the determination of the Earth's gravity field model[J]. Progress in Geophysics (in Chinese), 29(1): 46-50.
[22] Peng F, Xu Z X, Fang M. 1999. Grey inversion of gravity anomaly for inclined steps [J]. Earth Science-Journal of China University of Geosciences (in Chinese), 24(5): 516-518.
[23] Stanley J M, Green R. 1976. Gravity gradients and its interpretation of the truncated plate [J]. Geophysics, 41: 1370-1376.
[24] Talwani M, Worzel J L, Landisman M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone[J]. J. Geophys. Res., 64(1): 49-59.
[25] Tang J T, Ren Z Y, Hua X R. 2007. The forward modeling and inversion in geophysical electromagnetic field [J]. Progress in Geophysics (in Chinese), 22(4): 1181-1194.
[26] Wang Y G, Zhang F X, Liu C, et al. 2013. Edge detection in potential fields using optimal auto-ratio of vertical gradient[J]. Chinese Journal of Geophysics (in Chinese), 56(7): 2463-2472.
[27] Wei W, Liu T Y. 2005a. The application of the gradient method to the interpretation of gravity anomalies of two-dimensional faults [J]. Geophysical and Geochemical Exploration (in Chinese), 29(4): 347-350.
[28] Wei W, Liu T Y. 2005b. Step gradient of gravity anomaly interpretation [J]. Oil Geophysical Prospecting (in Chinese), 40(2): 238-242.
[29] Won I J, Bevis M. 1987. Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines [J]. Geophysics, 52(2): 232-238.
[30] Xie X L, Zheng L F, Wang J. 2010. A little discussion about the discontinuities [J]. China Education Innovation Herald (in Chinese), (1): 96.
[31] Yang H, Wang Y C. 1998. Forward computation of high order derivative of gravity anomaly relating to complex geologic body [J]. OGP (in Chinese), 33(2): 278-283.
[32] Yang W C, Yu C Q. 2007. On basic research problems in applied geophysics for deep oil and gas fields [J]. Progress in Geophysics (in Chinese), 22(4): 1238-1242.
[33] Yang R H, Chang X, Liu Y K. 2009. Viscoelastic wave modeling in heterogeneous and isotropic media[J]. Chinese J. Geophys. (in Chinese), 52(9): 2321-2327.
[34] Yuan S J, Yu C Q. 2006. Elastic impedance and seismic inversion in anisotropic media[J]. Progress in Geophysics (in Chinese), 21(2): 520- 523.
[35] Zeng H L. 2005. Gravitational field and gravity exploration (in Chinese) [M]. Beijing: Geological Press, 114-125.
[36] Zhai Z H, Sun Z M. 2009. Continuation model construction and application analysis of local gravity field based on least square collocation[J]. Chinese J. Geophys. (in Chinese), 52(7): 1700-1706.
[37] Zhang J Z, Zhou X X, Wang K B. 2000. 2-D gravity forward formula showing density variation depth [J]. OGP (in Chinese), 35(2): 202-207.
[38] Zhang S Y, Pan Y L. 2004. Applied geophysics (in Chinese) [M]. Wuhan: China University of Geosciences Press, 1, 24-150.
[39] Zhang J, Shi X M, Liu M H, et al. 2007. The spherical gravitational forward modeling based on MATLAB development environment [J]. Chinese Journal of Engineering Geophysics (in Chinese), 4(5): 460-464.
[40] 蔡宗熹, 姜兰. 1986. 二维倾斜台阶断层重力异常的正反演[J]. 物化探计算技术, 8(1): 20-41.
[41] 房立华, 吴建平. 2009. 倾斜界面和各向异性介质对接收函数的影响[J]. 地球物理学进展, 24(1): 42-50.
[42] 贾真, 孟令顺. 2009. 均匀多边形截面二度体重力异常计算公式的改进[J]. 地球物理学进展24(2): 462-467.
[43] 李振海, 罗志才, 钟波. 2012. 基于3D Delaunay剖分算法的重力建模与分析[J]. 地球物理学报, 55(7): 2259-2267.
[44] 刘天佑. 2007. 地球物理勘探概论[M]. 北京: 地质出版社.
[45] 刘晓刚, 闫志闯, 孙文等. 2014. 确定地球重力场模型的最小二乘配置法与调和分析法的精度评析[J]. 地球物理学进展, 29(1): 46-50.
[46] 彭放, 徐忠祥, 方敏. 1999. 倾斜台阶重力异常灰色反演[J]. 地球科学-中国地质大学学报, 24(5): 516-518.
[47] 汤井田, 任政勇, 化希瑞. 2007. 地球物理学中的电磁场正演与反演[J]. 地球物理学进展, 22(4): 1181-1194.
[48] 王彦国, 张凤旭, 刘财等. 2013. 位场垂向梯度最佳自比值的边界检测技术[J]. 地球物理学报, 56(7): 2463-2472.
[49] 魏伟, 刘天佑. 2005a. 梯度法解释复杂二维断裂重力异常[J]. 物探与化探, 29(4): 347-350.
[50] 魏伟, 刘天佑. 2005b. 台阶重力异常的梯度解释[J]. 石油地球物理勘探, 40(2): 238-242.
[51] 解小莉, 郑立飞, 王洁. 2010. 关于间断点的一点讨论[J]. 中国科教创新导刊, (1): 96.
[52] 杨辉, 王宜昌. 1998. 复杂形体重力异常高阶导数的正演计算 [J]. 石油地球物理物探, 33(2): 278-283.
[53] 杨文采, 于常青. 2007. 深层油气地球物理勘探基础研究[J]. 地球物理学进展, 22(4): 1238-1242.
[54] 杨仁虎, 常旭, 刘伊克. 2009. 基于非均匀各向同性介质的黏弹性波正演数值模拟[J]. 地球物理学报, 52(9): 2321-2327.
[55] 苑书金, 于常青. 2006. 各向异性介质中的弹性阻抗及其反演[J]. 地球物理学进展, 21(2): 520-523.
[56] 曾华霖. 2005. 重力场与重力勘探[M]. 北京: 地质出版社, 114-125.
[57] 翟振和, 孙中苗. 2009. 基于配置法的局部重力场延拓模型构建与应用分析[J]. 地球物理学报, 52(7): 1700-1706.
[58] 张建中, 周熙襄, 王克斌. 2000. 密度随深度变化的二度体重力正演公式[J]. 石油地球物理勘探, 35(2): 202-207.
[59] 张胜业, 潘玉玲. 2004. 应用地球物理学原理[M]. 武汉: 中国地质大学出版社, 1, 24-150.
[60] 张剑, 师学明, 刘梦花等. 2007. 基于MATLAB开发环境的球体重力正演[J]. 工程地球物理学报, 4(5): 460-464.
[61] 重力勘探资料解释手册编写组. 1983. 重力勘探资料解释手册[M]. 北京: 地质出版社, 23, 151.