地球物理学报  2021, Vol. 64 Issue (8): 2684-2700   PDF    
上地幔剪切波各向异性约束下的中国大陆岩石圈底部的剪切拖曳力和应变率
朱涛, 郭颖星     
中国地震局地球物理研究所, 北京 100081
摘要:地幔对流在岩石圈底部产生的剪切拖曳力和应变率的估计有助于理解和认识板块构造运动、岩石圈变形特征和应力分布格局、地壳长期运动状态和克拉通演化的深部动力学环境,但准确地估计它们是一个挑战.本文利用核相剪切波分裂各向异性约束下获得的全球和区域地震速度结构"耦合"的地幔对流模型计算了中国大陆岩石圈底部的剪切拖曳力和应变率.结果表明,与地幔对流速度相比,剪切拖曳力和应变率具有更加复杂的分布格局;剪切拖曳力的大小位于前人估计的范围之内,但其最大值明显较小,不超过4.0 MPa.中国西部的剪切拖曳力明显大于东部;剪切应变率不超过45/100 Ma;地幔黏度的横向变化可能会导致剪切拖曳力与剪切应变率呈负相关关系.
关键词: 数值模拟      地幔对流      剪切应力      剪切应变率     
Lithospheric basal shear traction and strain rate beneath Mainland China constrained by uppermantle shear-wave splitting anisotropy
ZHU Tao, GUO YingXing     
Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
Abstract: Estimation of shear traction and strain rate at the base of the lithosphere due to mantle convection is very helpful to understand the deep geodynamic environment of plate motions, lithospheric deformation and stress pattern, long-term crustal motion and cratonic evolution, howbeit estimating them precisely remains challenging. In this paper, we use global and regional seismic tomography-based mantle flow models to compute the lithospheric basal shear traction and strain rate beneath Mainland China under the constraints of core-refracted shear-wave splitting anisotropy. Our results indicate that, compared with convective velocity, lithospheric basal shear traction and strain rate has more complex pattern; the magnitude of shear traction lies in the range of previous estimations, but has a smaller upper limit that is not above 4.0 MPa; Shear traction beneath the western China is significantly greater than that beneath the eastern China; lithospheric basal shear strain rate is not greater than 45/100 Ma beneath Mainland China; laterally variable mantle viscosity could lead to an inverse relationship between shear traction and shear strain rate.
Keywords: Numerical modeling    Mantle convection    Shear stress    Shear strain rate    
0 引言

地幔对流产生的作用在岩石圈底部(即岩石圈和软流圈分界面)的剪切拖曳力是板块构造运动的力源之一(Chapple and Tullis, 1977),是造成岩石圈变形、大尺度应力状态和分布格局(Fu 19831990Steinberger et al., 2001王建和叶正仁,2005)、影响地壳长期运动状态(黄建平等,2008祝爱玉等,2019)和克拉通演化(Kaban et al., 2015Paul et al., 2019)的一个重要因素.因此,岩石圈底部地幔对流剪切拖曳力的估计具有十分重要的意义.然而,对它的精确估计是一个难题.

自20世纪60年代以来,对岩石圈底部地幔对流剪切拖曳力的估计从未间断,主要采用了两类地球动力学方法.第一类是基于重力异常驱动的地幔对流模型.在这类模型中,假定了地球上半部分由两层组成:外层是刚性和静止的;内层是黏性的,且具有足够大的尺寸以使得可以忽略下边界的重力效应和常黏滞系数1021 Pa·s,以及在静止的刚性外层和黏性内层之间的分界面满足水静力学平衡.通过这些假定,极大地简化了模型,便可将重力异常和岩石圈底部的剪切拖曳力联系起来,直接估算出一阶近似的岩石圈底部的剪切拖曳力场(Pick et al., 1988傅容珊,1990).在估算时,可分为3种情况.第一,采用Runcorn(1964, 1967)建立的根据卫星重力位球谐系数来估算地幔对流导致的岩石圈底部的剪切拖曳力的公式(如,Runcorn,1967Liu et al., 1976Liu, 1977, 1978, 1979, 1980a, b19811985黄培华和傅容珊,1982Fu,1986楼海等,2000)进行估算;第二,采用在Runcorn方法的基础上考虑了岩石层厚度变化(如,Eshagh and Tenzer, 2015Eshagh, 2014, 2015Tenzer and Eshagh, 2015)的公式进行估算;以及第三,采用改进的可利用地表测量的重力数据的Runcorn公式(如,Pick et al., 1988熊熊等, 2003, 2010)进行估算.利用这类方法,他们估算了全球、区域(如,太平洋板块、亚洲、澳大利亚、非洲板块)和局部区域(如,中亚、青藏高原、天山造山带、蒙古—贝加尔地区和板内火山)之下的岩石圈底部的剪切拖曳力.拖曳力在碰撞带(如,喜马拉雅碰撞带)、俯冲带(如,西太平洋俯冲带)和构造边界带(如,青藏高原和塔里木盆地之间的阿尔金断裂带)的最大量级可达100 MPa,但是在其他区域,其量级一般小于10 MPa.第二类地幔对流模型中的地幔流体可能由地表运动板块、地幔密度异常、地球内部热异常或者它们的组合来驱动.一些研究者利用全球大地水准面异常约束的地幔热对流模型(Fu,1986傅容珊,1990)或区域均衡重力异常约束的上地幔小尺度地幔对流模型(傅容珊等, 1994a, b王景赟等,2000)计算了全球(傅容珊,1990)、华北(Fu et al., 1996)、青藏高原(傅容珊等,1998)和天山造山带(王景赟等,2000)岩石圈底部的地幔对流速度场和剪切拖曳力场.他们(Fu,1986傅容珊,1990Fu et al., 1996傅容珊等, 1994a, b1998王景赟等,2000)发现在中国及邻区,岩石圈底部的剪切拖曳力一般小于6.0 MPa.在这类地幔对流的计算中,为了简化计算和建立与大地水准面异常的联系,假定了地幔瑞利数不超过临界值的1.5倍(<105),但实际地球地幔的瑞利数远远大于这个值.对于上地幔,瑞利数约为106,而对于全地幔,其值约为107(傅容珊和黄建华,2001).另外,与大多数基于重力异常的地幔对流模型的方法(第一类方法)一样,这类模型也采用了常地幔黏度和常岩石圈厚度的假设.一些研究者利用基于地震速度结构的地幔对流模型预测了全球(Conrad and Lithgow-Bertelloni, 2006朱涛,2011Paul et al., 2019)、欧亚板块(Warners-Ruckstuhl et al., 2012)和北美板块(Eaton and Frederiksen, 2007)岩石圈底部的剪切拖曳力,发现其值一般小于8.0 MPa.在这类(基于地震速度结构的)模型中,地幔密度异常是由地震速度异常通过速度-密度转换系数直接转换而来的,一般采用了随深度或者同时随深度和温度变化的黏度结构.特别地,Conrad和Lithgow-Bertelloni(2006)Paul等(2019)在研究中不但考虑了地幔温度和黏度的横向变化,而且还考虑了岩石圈厚度、温度和黏度的横向变化.

显然,Conrad和Lithgow-Bertelloni(2006)Paul等(2019)的模型更加接近地球的真实情况.不过,他们采用了全球地幔对流模型,且在估算地幔密度异常时仅采用了全球尺度的地震速度结构,不利于用来研究诸如中国大陆等的区域尺度的岩石圈底部的剪切拖曳力场和应变率场.为了解决这个问题,我们对模型进行了改进,建立了基于Koulakov(2011)的亚洲区域尺度的上地幔地震速度结构和全球尺度的地震速度结构(Grand,2002Simmons et al., 2010Ritsema et al., 2011Houser et al., 2008)相互耦合的区域地幔对流模型.同时,与他们(Conrad and Lithgow-Bertelloni, 2006Paul et al., 2019)的模型一样,本文的模型既考虑了岩石圈厚度、温度和黏度的横向变化,也考虑了地幔温度和黏度的横向变化.由于本文所采用的亚洲区域地震模型的横向分辨率明显比全球尺度的高,因此本文的模型更有利于用来估算地幔对流导致的中国大陆岩石圈底部的剪切拖曳力和应变率场,进而有助于深化认识和理解中国大陆构造运动、岩石圈应力分布格局、地壳长期运动、地震孕育和发生等的深部动力学环境和过程.

1 地幔对流模型

本文采用了Zhu和Guo(2021)建立的剪切波分裂各向异性约束下的地幔对流模型来计算中国大陆岩石圈底部的剪切拖曳力和应变率.它是区域地幔对流模型,其内部充满了不可压缩的、具有无穷大普朗特数和满足Boussinesq近似的牛顿流体(如,傅容珊和黄建华,2001).模型中的地幔流由无净旋转(NNR)参考框架下描述的地表板块运动和估算自全球和区域地震速度异常的地幔密度异常共同驱动(如,Zhu,2018朱涛,2018).这些地幔对流模型具有足够大的计算域:在纬度方向上从10°N延伸到70°N、经度方向上从60°E延伸到150°E,并且在深度方向上包含了整个地幔,使得计算模型的侧边界离中国大陆任何部分的距离超过了1000 km.这样可以避免侧边界引起的人工回流的影响(如,Liu and Stegman, 2011Zhu,2014).模型具有192(纬度)×288(经度)×64(深度)个有限单元网格.中国大陆大致位于网格中心.网格在水平方向的分辨率是固定的,约35 km,但在深度方向上的分辨率是变化的:从地表到400 km深度为20 km、400 km到1000 km为40 km、以及1000 km以深的区域约为64 km.模型的上边界(地表)为NNR-MORVEL56模型(Argus et al., 2011)描述的板块运动速度边界,下边界(核幔边界)为应力自由边界.采用已经经过验证的CitcomS程序(Moresi et al., 1996Zhong et al., 2000, 2008Tan et al., 2006)进行计算.模型使用了与Zhu(2018)朱涛(2018)相同的基本参数(表 1).

表 1 动力学模型的基本参数 Table 1 Basic parameters used in geodynamic models

模型中的黏度η(r, T)是随深度和温度同时变化的,其无量纲形式(如,Huang and Zhong, 2005Conrad and Lithgow-Bertelloni, 2006Korenaga,2009Zhu,2018朱涛,2018Paul et al., 2019)可以表述为

(1)

其中,η(r)为随深度变化的黏度.T为温度且T = Tr + δT(Tr为径向温度;δT为横向变化的温度异常).E是激活能且E=E*/(RΔT).T0为无量纲地表温度且T0=TsT.本文使用的黏度η(r, T)是Zhu和Guo(2021)在中国大陆核相剪切波分裂各向异性约束下所获得的.首先,他们(Zhu and Guo, 2021)把Forte等(2010)在与全球地幔对流相关的观测值(非静力学自由空气重力场、核幔边界的椭球率异常和板块运动的水平散度)和冰期均衡调整数据约束下获得的径向黏度结构作为参考模型.通过在参考模型的软流层黏度前乘以系数β的方法获得系列的软流层黏度结构(注:仅改变了参考模型的软流层黏度),从而获得了一系列的随深度变化的黏度η(r);其次,通过速度-密度转换系数把地震波速度异常转换为地幔密度异常.对于地幔,通过状态方程将地幔密度异常转换为地幔温度异常δT.Tr采用了Steinberger和Calderwood(2006)的结果.对于大陆和海洋岩石圈的温度结构,分别采用了误差函数和半空间冷却模型来进行计算.由此便可以通过式(1)获得一系列的随深度和温度同时变化的黏度结构η(r, T);再次,通过地幔对流模型来预测剪切波分裂各向异性的快波偏振方向.考虑到快波偏振方向会随着深度变化(如,高原等,2010),预测的偏振方向是各观测台站(图 1中蓝色线段的中点)下整个软流层中的平均值;最后,通过对比分析预测的偏振方向与最小切向能量方法(Silver 19881991)的测量结果(图 1中蓝色线段),确定了不同地震速度结构下的最佳黏度结构.

图 1 最小切向能量法获得的中国大陆剪切波各向异性数据(附录A) 线段的长度和方向分别代表剪切波分裂的时间和快方向.蓝色线段代表台站的各向异性需要软流层各向异性的贡献才能完全解释.粉色粗实线表示区域分界线.细的深棕色实线表示断层或次级区域边界线.JG—准噶尔盆地,TS—天山造山带,TM—塔里木盆地,AL—阿拉善块体,TP—青藏高原,YC—川滇地区,SC—华南,NC—华北,OD—鄂尔多斯盆地,NEC—东北.区域和块体的划分依据张国民等(2005). Fig. 1 SWS in Mainland China measured by the transverse component minimization method (Appendix A) Bars indicate φ and δt of measured SWS, respectively; Blue bars indicate the stations where asthenospheric anisotropy is required to interpret the measured δt; thick pink lines indicate region boundaries; and thin dark brown lines indicate faults or sub-region boundaries. JG—Junggar basin, TS—Tianshan orogen, TM—Tarim basin, AL—Alxa block, TP—Tibetan Plateau, YC—Yunnan-Sichuan region, SC—South China, NC—North China, OD—Ordos basin, NEC—Northeast China. Regions and blocks are defined following Zhang et al. (2005).

模型所采用的地幔密度异常由两部分组成.一部分来自区域P波速度异常(Koulakov,2011).它主要覆盖了模型中欧亚大陆的上地幔,且在中国大陆的横向分辨率明显比全球地震模型的高,因此可以更好地用于研究中国大陆的地球动力学问题.在转换中,速度-密度转换系数dlnρ/dlnvp=0.15;另一部分来自4个全球S波速度模型.它们主要用来获得Koulakov(2011)模型覆盖区域之外的计算域的密度异常.这些地震速度模型分别为Grand(2002)模型的升级版TX2011、GYPSUM(Simmons et al., 2010)、S40RTS(Ritsema et al., 2011)和HMSLS06 (Houser et al., 2008),相应的dlnρ/dlnvs=0.2、0.15、0.2和0.2.通过这种方式,将横向分辨率相对较差的全球速度结构和横向分辨率相对较高的区域速度结构在地幔对流模型中实现了“耦合”.由于热中性浮力的“构造岩石圈”中的化学成分差异是造成大陆岩石圈中的地震速度异常的主要原因(如,Jordan,1975),而除了地表板块运动之外,本文的地幔对流仅仅由热浮力所驱动,所以在将地震速度异常转换为密度异常时,没有考虑大陆岩石圈和克拉通地区的地震速度异常,即在大陆岩石圈和克拉通地区,速度异常被强制设置为零.通过状态方程和Calderwood(2000)提供的随深度变化的热扩散系数将地幔密度异常转换为δT.它与Tr结合便获得了地幔温度结构,然后通过式(1)便获得了随温度变化的黏度结构(如,Zhu,2018朱涛,2018).

模型还考虑了岩石圈厚度和黏度的横向变化(如,Conrad and Lithgow-Bertelloni, 2006Conrad et al., 2007Conrad and Behn, 2010).岩石圈厚度由两部分组成.在中国大陆,采用了地震-热岩石圈厚度(安美建和石耀霖,2006),而在中国大陆之外的区域,采用了根据不同地震层析成像结果推断的岩石圈厚度的平均值(Steinberger and Becker, 2018).在计算岩石圈温度结构时,与前人(如,Conrad and Lithgow-Bertelloni, 2006Conrad et al., 2007Conrad and Behn, 2010)所采用的方法一样,假定大陆岩石圈年龄为300 Ma、温度随深度的分布符合误差函数且岩石圈底部温度为1350 ℃(如,Kumar and Gordon, 2009Jiménez-Díaz et al., 2012; Liu and Hasterok, 2016; Zhu et al., 2020);海洋岩石圈温度满足半空间冷却模型,海洋岩石圈年龄来自Müller等(2008).图 2显示了一个穿过日本大陆和华北克拉通地区的黏度剖面.

图 2 基于Koulakov(2011)的区域P波和Grand(2002)的TX2011全球S波速度结构的地幔对流模型所使用的北纬37°的一个黏度剖面 Fig. 2 A viscosity section along latitude 37°N used by the mantle convection model based on a combination of the regional P-wave velocity from Koulakov (2011) and global S-wave velocity from TX2011 presented by Grand (2002)

在计算中,采用的收敛标准是最后两次迭代获得的速度和压力之间的差异同时小于10-4.

2 结果及分析 2.1 岩石圈底部的黏度

不同地震速度模型的岩石圈底部的黏度结构(图 3aceg)具有非常相似的分布特征:在青藏高原、阿拉善块体、天山造山带、准噶尔盆地、塔里木盆地、鄂尔多斯盆地、川滇地区北部、四川盆地及其周缘和长白山地区的黏度相对较高,一般大于1020 Pa·s,而在川滇地区南部、除四川盆地及其周缘之外的华南、华北和除长白山地区之外的东北的黏度相对较低,一般小于5.62×1019 Pa·s.岩石圈底部的地幔黏度存在明显的横向变化.对于GYPSUM、HMSLS06、S40RTS和TX2011模型,横向黏度变化的量级分别为2.08(最大:1.11×1021 Pa·s;最小:9.22×1018 Pa·s;平均:1.61×1020 Pa·s;图 3a)、1.97(最大:1.04×1021 Pa·s;最小:1.10×1019 Pa·s;平均:1.49×1020 Pa·s;图 3c)、2.10(最大:1.04×1021 Pa·s;最小:8.31×1018 Pa·s;平均:1.48×1020 Pa·s;图 3e)和2.10(最大:1.22×1021 Pa·s;最小:9.67×1018 Pa·s;平均:1.62×1020 Pa·s;图 3g).基于这4个地震速度结构预测的中国大陆岩石圈底部的(算术)平均黏度的最大值为1.10×1021 Pa·s,最小值为9.54×1018 Pa·s,以及平均值为1.16×1020 Pa·s(表 2图 3i),其横向变化的量级约为2.06.也就是说,中国大陆岩石圈底部的黏度的横向变化范围约为2个量级.不同区域的岩石圈底部的黏度分布范围和平均值见表 2.

图 3 基于不同地震速度结构的地球动力学模型预测的中国大陆岩石圈底部的黏度(a、c、e、g、i)和地幔对流速度(b、d、f、h、j)以及它们的平均结果 Fig. 3 Viscosity (a, c, e, g, i) and mantle convective velocity (b, d, f, h, j) at the base of the lithosphere of Mainland China predicted by geodynamic models based on different seismic velocity structures and their average
表 2 中国大陆不同区域的岩石圈底部的估算值 Table 2 Estimates at the base of the lithosphere beneath different regions in Mainland China
2.2 岩石圈底部的水平速度场

基于不同地震速度结构的地球动力学模型预测的岩石圈底部的水平速度场的基本特征非常相似(图 3bdfh).地幔对流速率一般不超过4.5 cm·a-1.较高的地幔对流速率(>2.5 cm·a-1)出现在青藏高原中部、天山造山带、塔里木盆地中部、阿拉善块体中部、川滇地区北部、鄂尔多斯盆地、华南西缘和东缘、华北东南缘和北缘、以及除松辽盆地之外的东北绝大部分区域,而剩余区域的较低,一般小于2.0 cm·a-1,尤其在川滇地区南部、华南的江南造山带和华夏块体的过渡带、以及华北南部一般小于1.0 cm·a-1(图 3bdfh).不同的全球S波速度结构会造成岩石圈底部的对流速率的变化.对于GYPSUM、HMSLS06、S40RTS和TX2011模型,对流速率分别为0.04~4.05 cm·a-1(平均:2.07 cm·a-1图 3b)、0.04~3.84 cm·a-1(平均:2.02 cm·a-1图 3d)、0.02~4.11 cm·a-1(平均:2.09 cm·a-1图 3f)和0.07~4.19 cm·a-1(平均:2.13 cm·a-1图 3h),相应的空间变化范围分别为2.00、1.98、2.31和1.78个量级.基于这4个地震速度结构预测的中国大陆岩石圈底部的(算术)平均对流速率为0.01~3.99 cm·a-1(平均:2.07 cm·a-1图 3j表 2),其空间变化约为2.60个量级.这表明,中国大陆岩石圈底部的对流速率具有明显的横向变化,其空间变化范围可达2个量级以上,但平均速率约为2.0 cm·a-1.不同区域的岩石圈底部的水平对流速率分布范围和平均值见表 2.

岩石圈底部地幔流的基本特征是自西向东流动(图 3中黑色箭头),与地表板块运动的方向一致(图 3中的棕色箭头).但是,除了在青藏高原中部、准噶尔盆地、鄂尔多斯盆地南缘和四川盆地的地幔对流方向与地表板块运动的方向基本重合之外,在其他区域,如天山造山带、塔里木盆地、阿拉善块体、川滇地区、鄂尔多斯盆地、除四川盆地之外的华南、华北和东北,地幔对流方向明显偏离了地表板块运动速度的方向,尤其在川滇地区南部、华南南部和东部、华北和东北,这表明了地幔密度异常驱动的地幔对流对整个地幔对流系统的显著影响.也就是说,仅以地表板块运动驱动的简单软流层流动模型可能在探讨青藏高原中部、准噶尔盆地、鄂尔多斯盆地南缘和四川盆地的软流层各向异性成因时是合理的,但在其他区域,可能就失效了.

2.3 岩石圈底部的剪切拖曳力和应变速率

球坐标系(rθφ)下剪切拖曳力与应变率的关系:

(2)

(3)

其中,uruθuφ为对流速率,ττ为剪切拖曳力,为剪切应变率.利用式(2)和(3),结合不同地震速度结构下的地幔对流速率和黏度结构,获得了中国大陆岩石圈底部的剪切拖曳力和应变率(图 4).

图 4 基于不同地震速度结构的地球动力学模型预测的中国大陆岩石圈底部的剪切拖曳力(a、c、e、g、i)和应变速率(b、d、f、h、j)以及它们的平均结果 Fig. 4 Shear traction (a, c, e, g, i) and strain rate (b, d, f, h, j) at the base of the lithosphere of Mainland China predicted by geodynamic models based on different seismic velocity structures and their average

图 4可以看出,与岩石圈底部的对流速度一样,基于不同地震速度结构的岩石圈底部的剪切拖曳力和应变率场的基本特征也是非常相似的.但是,与自西向东的地幔物质流动不同,它们并不是呈现出自西向东拖曳的简单特征.在准噶尔盆地、天山造山带、阿拉善块体、塔里木盆地和华南大部分区域,岩石圈底部的拖曳力的方向主要为由北西向南东;在青藏高原,西端主要为由西向东或由南西西向北东东,然后呈现出发散状态,接着在中东部转变为由北西向南东方向;在川滇地区,从北部的北西向南东方向转变为南部的由西向东或北北西向南南东方向;在鄂尔多斯盆地,主要为由西向东方向;在华北,从北部的由(近)北向(近)南转变为南部的由北西向南东方向;以及在东北,从北部的由北东向南西转变为南部的由北北东向南南西方向.

在天山、帕米尔造山带与塔里木盆地的过渡带、青藏高原的拉萨地块、华南的江南造山带和东北的长白山造山带,剪切拖曳力较大,一般大于1.5 MPa,而其他区域的较小,一般小于1.0 MPa,尤其在准噶尔盆地、塔里木盆地中部、青藏高原的柴达木盆地西缘、巴颜喀拉块体中部偏西和羌塘块体中部区域、川滇地区、华南的南部沿海地区、鄂尔多斯盆地、华北和东北的大部分地区,剪切拖曳力一般小于0.5 MPa.图 4还表明,中国大陆岩石圈底部的剪切拖曳力最大不超过4.0 MPa.对于GYPSUM、HMSLS06、S40RTS和TX2011模型,岩石圈底部的剪切拖曳力分别为0.004~3.21 MPa(平均:0.71 MPa;图 4a)、0.013~3.96 MPa(平均:0.73 MPa;图 4c)、0.002~3.46 MPa(平均:0.64 MPa;图 4e)和0.005~2.86 MPa(平均:0.60 MPa;图 4g),相应的空间变化范围分别为2.90、2.48、3.24和2.76个量级.基于这4个地震速度结构预测的中国大陆岩石圈底部的(算术)平均剪切拖曳力为0.03~3.37 MPa(平均:0.67 MPa;图 4i),其空间变化约为2.05个量级.这表明,虽然中国大陆岩石圈底部的剪切拖曳力具有明显的横向变化,其空间变化约为2个量级,但平均值不超过1.0 MPa.

剪切拖曳力大并不意味着剪切应变率高.图 4表明,在剪切拖曳力较小(<1.0 MPa)的川滇地区南部、华南东缘和华北东南缘,剪切应变率相对较高,一般大于20/100 Ma,而在剪切拖曳力较大的天山、帕米尔造山带与塔里木盆地的过渡带、青藏高原的拉萨地块、华南的江南造山带和东北的长白山造山带,剪切应变率中等,在(15~20)/100 Ma.值得注意的是,在东北的东北部,剪切拖曳力很小(<0.5 MPa),但是剪切应变率却不低,位于中等剪切的范围.对于整个中国大陆而言,岩石圈底部的剪切应变率不超过45/100 Ma.基于GYPSUM、HMSLS06、S40RTS和TX2011的地球动力学模型预测的岩石圈底部的剪切应变率分别为(0.04~36.21)/100 Ma(平均:8.67/100 Ma;图 4b)、(0.20~41.66)/100 Ma(平均:10.09/100 Ma;图 4d)、(0.06~39.35)/100 Ma(平均:9.04/100 Ma;图 4f)和(0.05~29.85)/100 Ma(平均:7.36/100 Ma;图 4h),相应的空间变化范围分别为2.96、2.32、2.82和2.78个量级.基于这4个地震速度结构预测的中国大陆岩石圈底部的(算术)平均剪切应变率的最大值为34.66/100 Ma,最小值为0.47/100 Ma,以及平均值为8.79/100 Ma(图 4j表 2),其空间变化范围约为1.87个量级.这表明,中国大陆岩石圈底部的平均剪切应变率不超过10/100 Ma,空间变化范围约为2个量级.

3 讨论

利用Runcorn(1964, 1967)及其改进方法获得的岩石圈底部的最大剪切拖曳力可达100 MPa的量级(如,黄培华和傅容珊,1982Eshagh and Tenzer, 2015Eshagh,2015).不过它们主要出现在边界带如喜马拉雅碰撞带、阿尔金断裂带、西太平洋俯冲带,而在其他区域,剪切拖曳力一般小于10 MPa(Liu,1978朱岳清等,1984Fu,1989傅容珊,1990熊熊等, 2003, 2010Eshagh and Tenzer, 2015Eshagh,2015Tenzer and Eshagh, 2015).换句话说,在中国的绝大部分区域,该方法获得岩石圈底部的剪切拖曳力小于10 MPa(图 5).特别地,在华北和中国台湾地区,其值分别为2.0~7.5 MPa(朱岳清等,1984)和0~3.0 MPa(Tenzer and Eshagh, 2015)(图 5).力矩平衡分析给出了大陆岩石圈底部和海洋板块下的剪切拖曳力为0.1~4.0 MPa的估计结果(图 5Chapple and Tullis, 1977),这与中国台湾地区的(0~3.0 MPa;Tenzer and Eshagh, 2015图 5)相当.运动学和动力学模型预测的全球、欧亚大陆、北美板块的岩石圈底部的剪切拖曳力在0~8 MPa之间(傅容珊,1990Conrad and Lithgow-Bertelloni, 2006Eaton and Frederiksen, 2007朱涛,2011Paul et al., 2019图 5),这与利用重力数据获得的结果相当.本文预测的中国大陆岩石圈底部的拖曳力为0~3.37 MPa,其位于前人结果的范围内,但是最大值明显低于一些研究者(如,傅容珊, 1990, 6 MPa;Conrad and Lithgow-Bertelloni, 2006,8 MPa;朱涛, 2011, 6.6 MPa)利用地球动力学模型预测的结果,而与另一些地球动力学模型预测的结果,如Paul等(2019)的4.0 MPa非常接近.

图 5 前人获得的岩石圈底部剪切拖曳力 MC—中国大陆,GL—全球,NA—北美板块,TW—中国台湾地区,EA—欧亚大陆,MB—蒙古—贝加尔裂谷区. Fig. 5 Previous shear traction at the base of the lithosphere MC—Mainland China, GL—Global, NA—North American plate, TW—Taiwan region of China, EA—Eurasian continent, MB—Mongolia-Baikal Rift zone.

本文获得的岩石圈底部的剪切拖曳力表明,在准噶尔盆地、天山造山带、塔里木盆地、阿拉善块体、青藏高原、川滇地区、鄂尔多斯盆地、华南、华北和东北地区的岩石圈底部的拖曳力分别为0.21~1.26 MPa(平均:0.50 MPa)、0.49~2.11 MPa(平均:1.12 MPa)、0.11~2.23 MPa(平均:1.06 MPa)、0.18~1.50 MPa(平均:0.70 MPa)、0.05~2.17 MPa(平均:0.79 MPa)、0.09~0.78 MPa(平均:0.33 MPa)、0.03~0.90 MPa(平均:0.33 MPa)、0.09~1.91 MPa(平均:0.84 MPa)、0.05~0.75 MPa(平均:0.34 MPa)和0.04~3.37 MPa(平均:0.40 MPa)(表 2图 6a).由此可以看出,中国大陆西部岩石圈底部的剪切拖曳力相对较高,几乎都大于中国大陆的平均值0.67 MPa,而东部的较低,明显低于整个中国大陆的平均值(表 2图 6a).青藏高原的平均剪切拖曳力(0.79 MPa)与利用重力和结构模型预测的(0.92 MPa;Eshagh and Tenzer, 2015)比较接近.

图 6 中国大陆不同区域的岩石圈底部的(a)剪切拖曳力和(b)剪切应变率空间分布范围(黑色矩形)及平均值(白色十字) Fig. 6 Spatial range (black bars) and average (white cross) of (a) shear traction and (b) shear strain rate at the base of the lithosphere beneath different regions of Mainland China

前人在估计岩石圈底部的剪切拖曳力时,几乎都假定地幔黏度为常量或者仅仅随着深度变化(如,Runcorn, 1964, 1967Liu et al., 1976; Liu, 1977, 1978, 1979, 1980a, b19811985黄培华和傅容珊,1982朱岳清等,1984Fu, 1986, 1989傅容珊,1990Fu et al., 1996傅容珊等, 1994a, b1998楼海等,2000王景赟等,2000熊熊等, 2003, 2010Eshagh and Tenzer, 2015Eshagh, 2014, 2015Tenzer and Eshagh, 2015Chapple and Tullis, 1977Warners-Ruckstuhl et al., 2012Eaton and Frederiksen, 2007),这意味着剪切拖曳力越大的区域,剪切应变率就越高,反之,就越低(参考式(2)—(3)).Paul等(2019)的研究表明,地幔黏度的横向变化会导致剪切拖曳力和应变率呈现负相关,即剪切拖曳力越大,并不意味着剪切应变率就越高,而可能会越低.本文结果支持了Paul等(2019)的结论.因此,边界带,如喜马拉雅碰撞带、阿尔金断裂带、西太平洋俯冲带的大剪切拖曳力,对于常黏度地幔,会导致高剪切应变率(Liu,1978朱岳清等,1984Fu,1989Eshagh and Tenzer, 2015Eshagh,2015Tenzer and Eshagh, 2015),但对于横向黏度变化的地幔,可能会获得差异明显、甚至相反的结果.显然,考虑了地幔黏度横向变化的模型,是更符合实际地球情况的.

本文获得的岩石圈底部的剪切应变率表明,在准噶尔盆地、天山造山带、塔里木盆地、阿拉善块体、青藏高原、川滇地区、鄂尔多斯盆地、华南、华北和东北地区的岩石圈底部的剪切应变率分别为(2.38~12.12)/100 Ma(平均:4.99/100 Ma)、(4.04~15.40)/100 Ma(平均:8.93/100 Ma)、(0.47~16.77)/100 Ma(平均:7.95/100 Ma)、(2.46~15.30)/100 Ma(平均:8.76/100 Ma)、(0.62~12.15)/100 Ma(平均:4.81/100 Ma)、(0.72~32.86)/100 Ma(平均:11.12/100 Ma)、(1.06~9.08)/100 Ma(平均:3.81/100 Ma)、(1.04~34.66)/100 Ma(平均:13.94/100 Ma)、(1.65~28.28)/100 Ma(平均:13.24/100 Ma)和(1.14~19.23)/100 Ma(平均:9.40/100 Ma)(表 2图 6b).对比分析图 4左侧的岩石圈底部的剪切拖曳力和右侧的剪切应变率以及图 6a图 6b,可以得知,虽然中国西部的岩石圈底部的剪切拖曳力相对较高,但是剪切应变率却不高(<9.0/100 Ma),尤其在青藏高原,其剪切应变率非常低,约为4.81/100 Ma;而在几个剪切拖曳力很小的区域,如川滇地区(0.33 MPa)、华北(0.34 MPa)和东北(0.40 MPa),剪切应变率却很高,分别为11.12/100 Ma、13.24/100 Ma和9.40/100 Ma(表 2),这与Paul等(2019)获得的结果是一致的.

4 结论

根据本文的计算结果和分析可知,地幔对流在中国大陆岩石圈底部产生的剪切拖曳力和应变率具有比对流速度更加复杂的分布格局.剪切拖曳力的大小在前人估计的范围之内,具有约2个量级的空间变化,最大值(~3.5 MPa)明显比前人估计的要低.中国西部的剪切拖曳力相对较大,几乎都大于平均值0.67 MPa,而东部的较低,明显低于平均值.中国大陆岩石圈底部的剪切应变率不超过45/100 Ma,空间变化约2个量级.横向变化的地幔黏度可能会导致剪切拖曳力与剪切应变率呈负相关关系,因此虽然在川滇地区南部、华南东缘和华北东南缘的剪切拖曳力较小,但是剪切应变率却相对较高,而在剪切拖曳力较大的天山、帕米尔造山带与塔里木盆地的过渡带、青藏高原的拉萨地块、华南的江南造山带和东北的长白山造山带,剪切应变率并非很高,仅属于本文认为的中等剪切应变率.

附录A  中国大陆地核折射相剪切波各向异性的贡献者

Silver和Chan(1991), Makeyeva等(1992), McNamara等(1994), 郑斯华和高原(1994), Hirn等(1995), 丁志峰和曾融生(1996), Guilbert等(1996), Sandvol等(1997), Wolfe和Vernon(1998), Iidaka和Niu(2001), 刘希强等(2001), Liu等(2008), 罗艳等(2004), Chen等(2005, 2010, 2017), Flesch等(2005), Herquel和Tapponnier(2005), Zhao和Zheng(2005), Huang等(2000, 2007, 2008, 2011, 2015), Chang等(2008, 2009, 2011, 2012, 2014, 2015a, b, 2017), 常利军等(2006, 2010, 2015, 2016, 2008a, b, 2012), Lev等(2006), Li和Chen(2006), Sol等(2007), Wang等(2007, 2008, 2013, 2014), 王琼等(2013), Fu等(2008, 2010), Oreshin等(2008), Bai等(2009), 江丽君等(2010), 胡亚轩等(2011), 苗庆杰等(2011), 张丽芬等(2011), 张洪双等(2013), Zhao等(2010), Li和Niu(2010), 李永华等(2010), Li等(2017), 冯强强等(2012), 冯永革等(2016), Soto等(2012), Shi等(2012, 2015), 吴萍萍等(2012), Wu等(2015a, b, 2019), 强正阳和吴庆举(2015), Cherie等(2016), Yu和Chen(2016), Bhukta等(2018), Kong等(2018), Ju等(2019), Mandal(2019).

致谢  非常感谢三位匿名审稿专家为本稿件的改进和完善提出的建设性意见和建议.
References
An M J, Shi Y L. 2006. Review on lithospheric thickness research of the Chinese continent. Earth Science Frontiers (in Chinese), 13(3): 23-30.
Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12: Q11001. DOI:10.1029/2011GC003751
Bai L, Iidaka T, Kawakatsu H, et al. 2009. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data. Physics of the Earth and Planetary Interiors, 176(1-2): 33-43. DOI:10.1016/j.pepi.2009.03.008
Bhukta K, Khan P K, Mandal P. 2018. Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geoscience Frontiers, 9(6): 1911-1920. DOI:10.1016/j.gsf.2017.12.003
Calderwood A R. 2000. Mineral physics constraints on the chemical composition and temperature of the Earth's mantle[Ph. D. thesis]. Canada: University of British Columbia.
Chang L J, Wang C Y, Ding Z F. 2006. A study on SKS splitting beneath the Yunnan region. Chinese Journal of Geophysics (in Chinese), 49(1): 197-204.
Chang L J, Wang C Y, Ding Z F, et al. 2008a. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 51(2): 431-438. DOI:10.3321/j.issn:0001-5733.2008.02.015
Chang L J, Wang C Y, Ding Z F. 2008. Seismic anisotropy of upper mantle in Sichuan and adjacent regions. Science in China Series D: Earth Sciences, 51(12): 1683-1693. DOI:10.1007/s11430-008-0147-8
Chang L J, Wang C Y, Ding Z F. 2008b. A study on SKS splitting beneath Capital area of China. Acta Seismologica Sinica (in Chinese), 30(6): 551-559.
Chang L J, Wang C Y, Ding Z F. 2009. Seismic anisotropy of upper mantle in eastern China. Science in China Series D: Earth Sciences, 52(6): 774-783. DOI:10.1007/s11430-009-0073-4
Chang L J, Ding Z F, Wang C Y. 2010. Variations of shear wave splitting in the 2010 Yushu MS7.1 earthquake region. Chinese Journal of Geophysics (in Chinese), 53(11): 2613-2619. DOI:10.3969/j.issn.0001-5733.2010.11.009
Chang L J, Wang C Y, Ding Z F. 2011. Upper mantle anisotropy in the Ordos Block and its margins. Science China Earth Sciences, 54(6): 888-900. DOI:10.1007/s11430-010-4137-2
Chang L J, Wang C Y, Ding Z F. 2012. Upper mantle anisotropy beneath North China from shear wave splitting measurements. Tectonophysics, 522-523: 235-242. DOI:10.1016/j.tecto.2011.12.009
Chang L J, Wang C Y, Ding Z F. 2012. Upper mantle anisotropy beneath North China. Chinese Journal of Geophysics (in Chinese), 55(3): 886-896. DOI:10.6038/j.issn.0001-5733.2012.03.018
Chang L J, Ding Z F, Wang C Y. 2014. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region. Science China Earth Sciences, 57: 2045-2052. DOI:10.1007/s11430-014-4866-8
Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese Journal of Geophysics (in Chinese), 58(11): 4052-4067. DOI:10.6038/cjg20151114
Chang L J, Flesch L M, Wang C Y, et al. 2015a. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophysical Research Letters, 42(14): 5813-5819. DOI:10.1002/2015GL064568
Chang L J, Wang C Y, Ding Z F, et al. 2015b. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis. Science China Earth Sciences, 58: 1872-1882. DOI:10.1007/s11430-015-5098-2
Chang L J, Ding Z F, Wang C Y. 2016. Upper mantle anisotropy beneath the northern segment of the North-South tectonic belt in China. Chinese Journal of Geophysics (in Chinese), 59(11): 4035-4047. DOI:10.6038/cjg20161109
Chang L J, Ding Z F, Wang C Y, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699: 93-101. DOI:10.1016/j.tecto.2017.01.025
Chapple W M, Tullis T E. 1977. Evaluation of the forces that drive the plates. Journal of Geophysical Research, 82(14): 1967-1984. DOI:10.1029/JB082i014p01967
Chen H C, Niu F L, Obayashi M, et al. 2017. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range. Earth and Planetary Science Letters, 471: 32-41. DOI:10.1016/j.epsl.2017.04.030
Chen W P, Martin M, Tseng T L, et al. 2010. Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth and Planetary Science Letters, 295(1-2): 297-304. DOI:10.1016/j.epsl.2010.04.017
Chen Y P, Wang L S, Mi N, et al. 2005. Shear wave splitting observations in the Chinese Tianshan orogenic belt. Geophysical Research Letters, 32: L07306. DOI:10.1029/2004GL021686
Cherie S G, Gao S S, Liu K H, et al. 2016. Shear wave splitting analyses in Tian Shan: Geodynamic implications of complex seismic anisotropy. Geochemistry, Geophysics, Geosystems, 17(6): 1975-1989. DOI:10.1002/2016GC006269
Conrad C P, Lithgow-Bertelloni C. 2006. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophysical Research Letters, 33: L05312. DOI:10.1029/2005GL025621
Conrad C P, Behn M D, Silver P G. 2007. Global mantle flow and the development of seismic anisotropy: differences between the oceanic and continental upper mantle. Journal of Geophysical Research, 112: B07317. DOI:10.1029/2006JB004608
Conrad C P, Behn M D. 2010. Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochemistry, Geophysics, Geosystems, 11: Q05W05. DOI:10.1029/2009GC002970
Ding Z F, Zeng R S. 1996. Observation and study of shear wave anisotropy in Tibetan plateau. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 39(2): 211-220.
Eaton D W, Frederiksen A. 2007. Seismic evidence for convection-driven motion of the North American plate. Nature, 446(7134): 428-431. DOI:10.1038/nature05675
Eshagh M. 2014. From satellite gradiometry data to subcrustal stress due to mantle convection. Pure and Applied Geophysics, 171: 2391-2406. DOI:10.1007/s00024-014-0847-2
Eshagh M. 2015. On the relation between Moho and sub-crustal stress induced by mantle convection. Journal of Geophysics and Engineering, 12: 1. DOI:10.1088/1742-2132/12/1/1
Eshagh M, Tenzer R. 2015. Sub-crustal stress determined using gravity and crust structure models. Computational Geosciences, 19: 115-125. DOI:10.1007/s10596-014-9460-9
Feng Q Q, Wu Q J, Li Y H, et al. 2012. Shear wave splitting in Xinjiang region. Acta Seismologica Sinica (in Chinese), 34(3): 296-307.
Feng Y G, Yu Y, Chen Y S, et al. 2016. Upper mantle anisotropy analysis around the western Altyn Tagh fault. Chinese Journal of Geophysics (in Chinese), 59(5): 1629-1636. DOI:10.6038/cjg20160508
Flesch L M, Holt W E, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth and Planetary Science Letters, 238(1-2): 248-268. DOI:10.1016/j.epsl.2005.06.023
Forte A M, Quéré S, Moucha R, et al. 2010. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints. Earth and Planetary Science Letters, 295(3-4): 329-341. DOI:10.1016/j.epsl.2010.03.017
Fu R S, Huang P H. 1983. The global stress field in the lithosphere obtained from the satellite gravitational harmonics. Physics of the Earth and Planetary Interiors, 31(3): 269-276. DOI:10.1016/0031-9201(83)90102-4
Fu R S. 1986. A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients. Physics of the Earth and Planetary Interiors, 44(3): 257-263. DOI:10.1016/0031-9201(86)90074-9
Fu R S. 1989. Earth's geoid anomaly, mantle convection and stress field under the lithosphere. Physics of the Earth and Planetary Interiors, 54(1-2): 50-54. DOI:10.1016/0031-9201(89)90186-6
Fu R S. 1990. Earth's geoid anomalies mantle convection and stress field under lithosphere. Journal of China University of Science and Technology (in Chinese), 20(2): 184-190.
Fu R S, Huang J H. 1990. Global stress pattern constrained on deep mantle flow and tectonic features. Physics of the Earth and Planetary Interiors, 60(1-4): 314-323. DOI:10.1016/0031-9201(90)90271-X
Fu R S, Huang J H, Liu W Z, et al. 1994a. Correlation equation between regional gravity isostatic anomalies and small scale convection in the upper mantle. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 37(5): 638-646.
Fu R S, Chang X H, Huang J H, et al. 1994b. Regional gravity isostatic anomaly and small scale convection model in upper mantle. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 37(Suppl.): 249-258.
Fu R S, Huang J H, Wei Z X. 1996. The upper mantle flow beneath the North China Platform. Pure and Applied Geophysics, 146: 649-659. DOI:10.1007/BF00874737
Fu R S, Huang J H, Xu Y M, et al. 1998. Study of the mantle dynamics of the lithosphere movements in the region from Qinghai-Xizang plateau to Tianshan mountain. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 41(5): 658-668.
Fu Y V, Chen Y J, Li A B. 2010. Seismic anisotropy beneath the Chinese Mainland. Earthquake Science, 23: 583-595. DOI:10.1007/s11589-010-0758-y
Fu Y V, Chen Y J, Li A B, et al. 2008. Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophysical Research Letters, 35: L02308. DOI:10.1029/2007GL031753
Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605. DOI:10.1007/s11434-010-4135-y
Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360(1800): 2475-2491. DOI:10.1098/rsta.2002.1077
Guilbert J, Poupinet G, Jiang M. 1996. A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (Northern Tibetan Plateau). Physics of the Earth and planetary Interiors, 95(3-4): 167-174. DOI:10.1016/0031-9201(95)03120-0
Herquel G, Tapponnier P. 2005. Seismic anisotropy in western Tibet. Geophysical Research Letters, 32: L17306. DOI:10.1029/2005GL023561
Hirn A, Jiang M, Sapin M, et al. 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375(6532): 571-574. DOI:10.1038/375571a0
Houser C, Masters G, Shearer P, et al. 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophysical Journal International, 174(1): 195-212. DOI:10.1111/j.1365-246X.2008.03763.x
Fu R S, Huang J H. 2001. Geodynamics (in Chinese). Beijing: Higher Education Press.
Hu Y X, Cui D X, Ji L Y, et al. 2011. Seismic anisotropy of upper mantle in Ordos block and adjacent regions. Chinese Journal of Geophysics (in Chinese), 54(6): 1549-1558. DOI:10.3969/j.issn.0001-5733.2011.06.014
Huang J P, Fu R S, Zheng Y, et al. 2008. The influence of mantle convection to the lithosphere deformation of China mainland. Chinese Journal of Geophysics (in Chinese), 51(4): 1048-1057. DOI:10.3321/j.issn:0001-5733.2008.04.013
Huang J S, Zhong S J. 2005. Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. Journal of Geophysical Research, 110: B05404. DOI:10.1029/2004JB003153
Huang P H, Fu R S. 1982. Global stress field of mantle convection currents under lithosphere. Journal of China University of Science and Technology (in Chinese), 12(2): 102-108.
Huang W C, Ni J F, Tilmann F, et al. 2000. Seismic polarization anisotropy beneath the central Tibetan plateau. Journal of Geophysical Research, 105(B12): 27979-27989. DOI:10.1029/2000JB900339
Huang Z C, Wang L S, Xu M J, et al. 2007. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China. Geophysical Research Letters, 34: L20301. DOI:10.1029/2007GL031236
Huang Z C, Xu M J, Wang L S, et al. 2008. Shear wave splitting in the southern margin of the Ordos Block, North China. Geophysical Research Letters, 35: L19301. DOI:10.1029/2008GL035188
Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117. DOI:10.1016/j.epsl.2011.03.038
Huang Z C, Wang L S, Xu M J, et al. 2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth and Planetary Science Letters, 432: 354-362. DOI:10.1016/j.epsl.2015.10.027
Iidaka T, Niu F L. 2001. Mantle and crust anisotropy in the eastern China region inferred from waveform splitting of SKS and PpSms. Earth, Planets and Space, 53: 159-168. DOI:10.1186/BF03352373
Jiang L J, Li Y H, Wu Q J. 2010. The shear wave splitting of Central Tien Shan and its implications. Chinese Journal of Geophysics (in Chinese), 53(6): 1399-1408. DOI:10.3969/j.issn.0001-5733.2010.06.018
Jiménez-Díaz A, Ruiz J, Villaseca C, et al. 2012. The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy. Journal of Geodynamics, 58: 29-37. DOI:10.1016/j.jog.2012.01.005
Jordan T H. 1975. The continental tectosphere. Reviews of Geophysics, 13(3): 1-12. DOI:10.1029/RG013i003p00001
Ju C H, Zhao J M, Ning H, et al. 2019. Seismic anisotropy of the crust and upper mantle beneath western Tibet revealed by shear wave splitting measurements. Geophysical Journal International, 216: 535-544. DOI:10.1093/gji/ggy448
Kaban M K, Mooney W D, Petrunin A G. 2015. Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nature Geoscience, 8: 797-800. DOI:10.1038/NGEO2525
Kong F S, Wu J, Liu L, et al. 2018. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses. Tectonophysics, 747-748: 68-78. DOI:10.1016/j.tecto.2018.09.013
Korenaga J. 2009. Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophysical Journal International, 179(1): 154-170. DOI:10.1111/j.1365-246X.2009.04272.x
Koulakov I. 2011. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. Journal of Geophysical Research, 116: B04301. DOI:10.1029/2010JB007938
Kumar R R, Gordon R G. 2009. Horizontal thermal contraction of oceanic lithosphere: The ultimate limit to the rigid plate approximation. Journal of Geophysical Research, 114: B01403. DOI:10.1029/2007JB005473
Lev E, Long M D, Van der Hilst R D. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251(3-4): 293-304. DOI:10.1016/j.epsl.2006.09.018
Li A B, Chen C Z. 2006. Shear wave splitting beneath the central Tien Shan and tectonic implications. Geophysical Research Letters, 33: L22303. DOI:10.1029/2006GL027717
Li J, Niu F L. 2010. Seismic anisotropy and mantle flow beneath Northeast China inferred from regional seismic networks. Journal of Geophysical Research, 115: B12327. DOI:10.1029/2010JB007470
Li S L, Guo Z, Chen Y J. 2017. Complicated 3D mantle flow beneath Northeast China from shear wave splitting and its implication for the Cenozoic intraplate volcanism. Tectonophysics, 709: 1-8. DOI:10.1016/j.tecto.2017.04.015
Li Y H, Wu Q J, Feng Q Q, et al. 2010. Seismic anisotropy beneath Qinghai province revealed by shear wave splitting. Chinese Journal of Geophysics (in Chinese), 53(6): 1374-1383. DOI:10.3969/j.issn.0001-5733.2010.06.016
Liu H S, Chang E S, Wyatt G H. 1976. Small-scale mantle convection system and stress field under the Pacific plate. Physics of the Earth and Planetary Interiors, 13(3): 212-217. DOI:10.1016/0031-9201(76)90095-9
Liu H S. 1977. Convection pattern and stress system under the African plate. Physics of the Earth and Planetary Interiors, 15(1): 60-68. DOI:10.1016/0031-9201(77)90010-3
Liu H S. 1978. Mantle convection pattern and subcrustal stress field under Asia. Physics of the Earth and Planetary Interiors, 16(3): 247-256. DOI:10.1016/0031-9201(78)90018-3
Liu H S. 1979. Convection-generated stress concentration and seismogenic models of the Tangshan earthquake. Physics of the Earth and Planetary Interiors, 19(4): 307-318. DOI:10.1016/0031-9201(79)90003-7
Liu H S. 1980a. Convection generated stress field and intra-plate volcanism. Tectonophysics, 65(3-4): 225-244. DOI:10.1016/0040-1951(80)90076-1
Liu H S. 1980b. Mantle convection and subcrustal stress under Australia. Modern Geology, 7: 29-36.
Liu H S. 1981. Geodynamics of Cenozoic deformation in central Asia. Physics of the Earth and Planetary Interiors, 25(1): 64-70. DOI:10.1016/0031-9201(81)90130-8
Liu H S. 1985. Geodynamical basis for crustal deformation under the Tibetan Plateau. Physics of the Earth and Planetary Interiors, 40(1): 43-60. DOI:10.1016/0031-9201(85)90004-4
Liu K H, Gao S S, Gao Y, et al. 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research, 113: B01305. DOI:10.1029/2007JB005178
Liu L J, Stegman D R. 2011. Segmentation of the Farallon slab. Earth and Planetary Science Letters, 311(1-2): 1-10. DOI:10.1016/j.epsl.2011.09.027
Liu L J, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353(6307): 1515-1519. DOI:10.1126/science.aaf6542
Liu X Q, Zhou H L, Li H, et al. 2001. Anisotropy of the upper mantle in Chinese Mainland and its vicinity. Acta Seismologica Sinica (in Chinese), 23(4): 337-348.
Lou H, Wang C Y, Wang F. 2000. Dynamic features of the Tianshan orogen deduced from satellite gravity data. Acta Seismologica Sinica (in Chinese), 22(5): 482-490.
Luo Y, Huang Z X, Peng Y J, et al. 2004. A study on SKS wave splitting beneath the China mainland and adjacent regions. Chinese Journal of Geophysics (in Chinese), 47(5): 812-821. DOI:10.3321/j.issn:0001-5733.2004.05.012
Makeyeva L I, Vinnik L P, Roecker S W. 1992. Shear-wave splitting and small-scale convection in the continental upper mantle. Nature, 358(6382): 144-147. DOI:10.1038/358144a0
Mandal P. 2019. Shear-wave splitting in the Rajasthan craton, India. Journal of Asian Earth Sciences, 173: 1-10. DOI:10.1016/j.jseaes.2019.01.007
McNamara D E, Owens T J, Silver P G, et al. 1994. Shear wave anisotropy beneath the Tibetan Plateau. Journal of Geophysical Research, 99(B7): 13655-13665. DOI:10.1029/93JB03406
Miao Q J, Liu X Q, Li Y H, et al. 2011. Study on seismic anisotropy of upper mantle beneath Shandong region. Acta Seismologica Sinica (in Chinese), 33(6): 746-754.
Moresi L, Zhong S J, Gurnis M. 1996. The accuracy of finite element solutions of Stokes's flow with strongly varying viscosity. Physics of the Earth and Planetary Interiors, 97(1-4): 83-94. DOI:10.1016/0031-9201(96)03163-9
Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9: Q04006. DOI:10.1029/2007GC001743
Oreshin S, Kiselev S, Vinnik L, et al. 2008. Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data. Earth and Planetary Science Letters, 271(1-4): 75-87. DOI:10.1016/j.epsl.2008.03.048
Paul J, Ghosh A, Conrad C P. 2019. Traction and strain-rate at the base of the lithosphere: an insight into cratonic survival. Geophysical Journal International, 217: 1024-1033. DOI:10.1093/gji/ggz079
Pick M, Charvátová-Jakubcová I, Novotny O. 1988. Modification of the Runcorn's equations on convection flows. Studia Geophysica et Geodaetica, 32: 47-53. DOI:10.1007/BF01629000
Qiang Z Y, Wu Q J. 2015. Upper mantle anisotropy beneath the north of northeast China and its dynamic significance. Chinese Journal of Geophysics (in Chinese), 58(10): 3540-3552. DOI:10.6038/cjg20151010
Ritsema J, Deuss A, van Heijst H J, et al. 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3): 1223-1236. DOI:10.1111/j.1365-246X.2010.04884.x
Runcorn S K. 1964. Satellite gravity measurements and a laminar viscous flow model of the Earth's mantle. Journal of Geophysical Research, 69(20): 4389-4394. DOI:10.1029/JZ069i020p04389
Runcorn S K. 1967. Flow in the mantle inferred from the low degree harmonics of the geopotential. Geophysical Journal of the Royal Astronomical Society, 14(1-4): 375-384.
Sandvol E, Ni J, Kind R, et al. 1997. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. Journal of Geophysical Research, 102(B8): 17813-17823. DOI:10.1029/97JB01424
Shi Y T, Gao Y, Su Y J, et al. 2012. Shear-wave splitting beneath Yunnan area of Southwest China. Earthquake Science, 25(1): 25-34. DOI:10.1007/s11589-012-0828-4
Shi Y T, Gao Y, Tai L X, et al. 2015. The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China. Journal of Asian Earth Sciences, 111: 505-516. DOI:10.1016/j.jseaes.2015.06.015
Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185): 34-39. DOI:10.1038/335034a0
Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96(B10): 16429-16454. DOI:10.1029/91JB00899
Simmons N A, Forte A M, Boschi L, et al. 2010. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115: B12310. DOI:10.1029/2010JB007631
Sol S, Meltzer A, Bürgmann R, et al. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6): 563-566. DOI:10.1130/G23408A.1
Soto G L, Sandvol E, Ni J F, et al. 2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet. Journal of Geophysical Research, 117: B05308. DOI:10.1029/2011JB008919
Steinberger B, Calderwood A. 2006. Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations. Geophysical Journal International, 167: 1461-1481. DOI:10.1111/j.1365-246X.2006.03131.x
Steinberger B, Schmeling H, Marquart G. 2001. Large-scale lithospheric stress field and topography induced by global mantle circulation. Earth and Planetary Science Letters, 186(1): 75-91. DOI:10.1016/S0012-821X(01)00229-1
Steinberger B, Becker T W. 2018. A comparison of lithospheric thickness models. Tectonophysics, 746: 325-338. DOI:10.1016/j.tecto.2016.08.001
Tan E, Choi E, Thoutireddy P, et al. 2006. GeoFramework: Coupling multiple models of mantle convection within a computational framework. Geochemistry, Geophysics, Geosystems, 7: Q06001. DOI:10.1029/2005GC001155
Tenzer R, Eshagh M. 2015. The sub-crustal stress field in the Taiwan region. Terrestrial Atmospheric and Oceanic Sciences, 26(3): 261-268. DOI:10.3319/TAO.2014.12.04.01(T)
Wang C Y, Chang L J, Lü Z Y, et al. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern. Science in China Series D: Earth Sciences, 50(8): 1150-1160. DOI:10.1007/s11430-007-0053-5
Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366. DOI:10.1130/G24450A.1
Wang C Y, Flesch L M, Chang L J, et al. 2013. Evidence of active mantle flow beneath South China. Geophysical Research Letters, 40(19): 5137-5141. DOI:10.1002/grl.50987
Wang C Y, Chang L J, Ding Z F, et al. 2014. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese Mainland. Science China Earth Sciences, 57: 132-143. DOI:10.1007/s11430-013-4675-5
Wang J, Ye Z R. 2005. Effects of mantle flow on generation and distribution of global lithospheric stress field. Chinese Journal of Geophysics (in Chinese), 48(3): 584-590. DOI:10.3321/j.issn:0001-5733.2005.03.016
Wang J Y, Huang J H, Fu R S. 2000. Elastic lithosphere, regional isostatic gravity anomaly and small scale convection in the upper mantle. Crustal Deformation and Earthquake (in Chinese), 20(4): 1-9.
Wang Q, Gao Y, Shi Y T, et al. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS. Chinese Journal of Geophysics (in Chinese), 56(3): 892-905. DOI:10.6038/cjg20130318
Warners-Ruckstuhl K N, Govers R, Wortel R. 2012. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate. Geophysical Journal International, 189(3): 1253-1276. DOI:10.1111/j.1365-246X.2012.05427.x
Watts A B, Zhong S. 2000. Observations of flexure and the rheology of oceanic lithosphere. Geophysical Journal International, 142: 855-875. DOI:10.1046/j.1365-246x.2000.00189.x
Wolfe C J, Vernon F L Ⅲ. 1998. Shear-wave splitting at central Tien Shan: evidence for rapid variation of anisotropic patterns. Geophysical Research Letters, 25(8): 1217-1220. DOI:10.1029/98GL00838
Wu C L, Xu T, Badal J, et al. 2015a. Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet. Tectonophysics, 659: 91-101. DOI:10.1016/j.tecto.2015.07.030
Wu C L, Tian X B, Xu T, et al. 2019. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements. Earth and Planetary Science Letters, 514: 75-83. DOI:10.1016/j.epsl.2019.02.037
Wu J, Zhang Z J, Kong F S, et al. 2015b. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth and Planetary Science Letters, 413: 167-175. DOI:10.1016/j.epsl.2015.01.002
Wu P P, Wang C Y, Ding Z F, et al. 2012. Seismic anisotropy of upper mantle beneath the Dabie-Sulu and its adjacent areas. Chinese Journal of Geophysics (in Chinese), 55(8): 2539-2550. DOI:10.6038/j.issn.0001-5733.2012.08.006
Xiong X, Xu H Z, Teng J W, et al. 2003. Mantle convection generated stress field beneath Tibetan Plateau and its adjacent areas and its geodynamic implication. Geomatics and Information Science of Wuhan University (in Chinese), 28(6): 692-696.
Xiong X, Shan B, Wang J Y, et al. 2010. Small-scale upper mantle convection beneath the Mongolia-Baikal Rift zone and its geodynamic significance. Chinese Journal of Geophysics (in Chinese), 53(7): 1594-1604. DOI:10.3969/j.issn.0001-5733.2010.07.010
Yu Y, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos. Earth and Planetary Science Letters, 455: 1-6. DOI:10.1016/j.epsl.2016.08.0267|25|11229|2010|||
Zhang G, Ma H, Wang H, et al. 2005. Boundaries between active tectonic blocks and strong earthquakes in the China Mainland. Chinese Journal of Geophysics (in Chinese), 38(3): 602-610.
Zhang H S, Teng J W, Tian X B, et al. 2013. Lithospheric thickness and upper mantle anisotropy beneath the northeastern Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 56(2): 459-471. DOI:10.6038/cjg20130210
Zhang L F, Yao Y S, Liao W L, et al. 2011. Research on the upper mantle seismic anisotropy beneath Hubei and its geodynamic implication. Chinese Journal of Geophysics (in Chinese), 54(1): 35-43. DOI:10.3969/j.issn.0001-5733.2011.01.005
Zhao J M, Yuan X H, Liu H B, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229-11233. DOI:10.1073/pnas.1001921107
Zhao L, Zheng T Y. 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophysical Research Letters, 32: L10309. DOI:10.1029/2005GL022585
Zheng S H, Gao Y. 1994. Azimuthal anisotropy in lithosphere on the Chinese Mainland from observations of SKS at CDSN. Acta Seismologica Sinica (in Chinese), 16(2): 131-140.
Zhong S J, Zuber M T, Moresi L, et al. 2000. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research, 105(B5): 11063-11082. DOI:10.1029/2000JB900003
Zhong S J, McNamara A, Tan E, et al. 2008. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9: Q10017. DOI:10.1029/2008GC002048
Zhu A Y, Zhang D N, Zhu T, et al. 2018. Influence of mantle convection to the crustal movement pattern in the northeastern margin of the Tibetan Plateau based on numerical simulation. Science China Earth Sciences, 61: 1644-1658. DOI:10.1007/s11430-017-9236-7
Zhu T. 2011. A preliminary study on whole mantle convection stress in consideration of lateral viscosity variation. Acta Seismologica Sinica (in Chinese), 33(5): 582-594.
Zhu T. 2014. Tomography-based mantle flow beneath Mongolia-Baikal area. Physics of the Earth and Planetary Interiors, 237: 40-50. DOI:10.1016/j.pepi.2014.10.003
Zhu T. 2018. Insights into asthenospheric anisotropy and deformation in Mainland China. Geophysical Journal International, 212: 1902-1919. DOI:10.1093/gji/ggx504
Zhu T. 2018. The depth of shear wave splitting anisotropy in the Yunnan region inferred from mantle convection simulation. Chinese Journal of Geophysics (in Chinese), 61(3): 948-962. DOI:10.6038/cjg2018L0137
Zhu T, Guo Y X. 2021. Asthenospheric rheology beneath Mainland China inferred from mantle flow simulation and shear-wave splitting measurements. Tectonophysics, in Press.
Zhu T, Ma X X. 2021. Uppermantle shear-wave splitting measurements in Mainland China: A review. Earth-Science Reviews, 212: 103437. DOI:10.1016/j.earscirev.2020.103437
Zhu T, Zhan Y, Unsworth M, et al. 2020. High-resolution lithosphere viscosity structure and the dynamics of the 2008 Wenchuan earthquake area: new constraints from magnetotelluric imaging. Geophysical Journal International, 222(2): 1352-1362. DOI:10.1093/gji/ggaa214
Zhu Y Q, Qiang Z J, Ma L. 1984. Small-scale mantle convection, subcrustal stress field and seismicity in the North China region. Seismology and Geology (in Chinese), 6(3): 29-37.
安美建, 石耀霖. 2006. 中国大陆岩石圈厚度分布研究. 地学前缘, 13(3): 23-30. DOI:10.3321/j.issn:1005-2321.2006.03.005
常利军, 王椿镛, 丁志峰. 2006. 云南地区SKS波分裂研究. 地球物理学报, 49(1): 197-204. DOI:10.3321/j.issn:0001-5733.2006.01.026
常利军, 王椿镛, 丁志峰, 等. 2008a. 青藏高原东北缘上地幔各向异性研究. 地球物理学报, 51(2): 431-438. DOI:10.3321/j.issn:0001-5733.2008.02.015
常利军, 王椿镛, 丁志峰. 2008b. 首都圈地区SKS波分裂研究. 地震学报, 30(6): 551-559.
常利军, 丁志峰, 王椿镛. 2010. 2010年玉树7.1级地震震源区横波分裂的变化特征. 地球物理学报, 53(11): 2613-2619. DOI:10.3969/j.issn.0001-5733.2010.11.009
常利军, 王椿镛, 丁志峰. 2012. 华北上地幔各向异性研究. 地球物理学报, 55(3): 886-896. DOI:10.6038/j.issn.0001-5733.2012.03.018
常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58(11): 4052-4067. DOI:10.6038/cjg20151114
常利军, 丁志峰, 王椿镛. 2016. 南北构造带北段上地幔各向异性特征. 地球物理学报, 59(11): 4035-4047. DOI:10.6038/cjg20161109
丁志峰, 曾融生. 1996. 青藏高原横波分裂的观测研究. 地球物理学报, 39(2): 211-220. DOI:10.3321/j.issn:0001-5733.1996.02.008
冯强强, 吴庆举, 李永华, 等. 2012. 新疆地区S波分裂研究. 地震学报, 34(3): 296-307. DOI:10.3969/j.issn.0253-3782.2012.03.002
冯永革, 于勇, 陈永顺, 等. 2016. 阿尔金断裂西部邻区的上地幔各向异性研究. 地球物理学报, 59(5): 1629-1636. DOI:10.6038/cjg20160508
傅容珊. 1990. 岩石层底部切向应力场及地球大地水准面异常. 中国科学技术大学学报, 20(2): 184-190.
傅容珊, 黄建华, 刘文忠, 等. 1994a. 区域重力异常和上地幔小尺度对流相关方程及对流拖曳力场. 地球物理学报, 37(5): 638-646.
傅容珊, 常筱华, 黄建华, 等. 1994b. 区域重力均衡异常和上地幔小尺度对流模型. 地球物理学报, 37(增刊Ⅱ): 249-258.
傅容珊, 黄建华, 徐耀民, 等. 1998. 青藏高原-天山地区岩石层构造运动的地幔动力学机制. 地球物理学报, 41(5): 658-668. DOI:10.3321/j.issn:0001-5733.1998.05.009
傅容珊, 黄建华. 2001. 地球动力学. 北京: 高等教育出版社.
高原, 吴晶, 易桂喜, 石玉涛. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系. 科学通报, 55(29): 2837-2843.
胡亚轩, 崔笃信, 季灵运, 等. 2011. 鄂尔多斯块体及其周缘上地幔各向异性分析研究. 地球物理学报, 54(6): 1549-1558. DOI:10.3969/j.issn.0001-5733.2011.06.014
黄建平, 傅容珊, 郑勇, 等. 2008. 地幔对流拖曳力对中国大陆岩石层变形的影响. 地球物理学报, 51(4): 1048-1057. DOI:10.3321/j.issn:0001-5733.2008.04.013
黄培华, 傅容珊. 1982. 应用卫星重力数据研究全球岩石层下地幔流应力场. 中国科学技术大学学报, 12(2): 102-108.
江丽君, 李永华, 吴庆举. 2010. 中天山及邻区S波分裂研究及其动力学意义. 地球物理学报, 53(6): 1399-1408. DOI:10.3969/j.issn.0001-5733.2010.06.018
李永华, 吴庆举, 冯强强, 等. 2010. 青海地区S波分裂研究. 地球物理学报, 53(6): 1374-1383. DOI:10.3969/j.issn.0001-5733.2010.06.016
刘希强, 周惠兰, 李红, 等. 2001. 中国大陆及邻区上地幔各向异性研究. 地震学报, 23(4): 337-348. DOI:10.3321/j.issn:0253-3782.2001.04.001
楼海, 王椿镛, 王飞. 2000. 卫星重力资料揭示的新疆天山地区构造动力学状态. 地震学报, 22(5): 482-490. DOI:10.3321/j.issn:0253-3782.2000.05.005
罗艳, 黄忠贤, 彭艳菊, 等. 2004. 中国大陆及邻区SKS波分裂研究. 地球物理学报, 47(5): 812-821. DOI:10.3321/j.issn:0001-5733.2004.05.012
苗庆杰, 刘希强, 李永华, 等. 2011. 山东地区上地幔各向异性研究. 地震学报, 33(6): 746-754. DOI:10.3969/j.issn.0253-3782.2011.06.005
强正阳, 吴庆举. 2015. 中国东北地区北部上地幔各向异性及其动力学意义. 地球物理学报, 58(10): 3540-3552. DOI:10.6038/cjg20151010
王建, 叶正仁. 2005. 地幔对流对全球岩石圈应力产生与分布的作用. 地球物理学报, 48(3): 584-590. DOI:10.3321/j.issn:0001-5733.2005.03.016
王景赟, 黄建华, 傅容珊. 2000. 弹性岩石层、区域重力异常和上地幔小尺度对流. 地壳形变与地震, 20(4): 1-9. DOI:10.3969/j.issn.1671-5942.2000.04.001
王琼, 高原, 石玉涛, 等. 2013. 青藏高原东北缘上地幔地震各向异性: 来自SKS、PKS和SKKS震相分裂的证据. 地球物理学报, 56(3): 892-905. DOI:10.6038/cjg20130318
吴萍萍, 王椿镛, 丁志峰, 等. 2012. 大别-苏鲁及邻区上地幔的各向异性. 地球物理学报, 55(8): 2539-2550. DOI:10.6038/j.issn.0001-5733.2012.08.006
熊熊, 许厚泽, 滕吉文, 等. 2003. 青藏高原及邻区地幔对流应力场及地球动力学含义. 武汉大学学报·信息科学版, 28(6): 692-696.
熊熊, 单斌, 王继业, 等. 2010. 蒙古-贝加尔地区上地幔小尺度对流及地球动力学意义. 地球物理学报, 53(7): 1594-1604. DOI:10.3969/j.issn.0001-5733.2010.07.010
张国民, 马宏生, 王辉, 等. 2005. 中国大陆活动地块边界与强震活动. 地球物理学报, 48(3): 602-610. DOI:10.3321/j.issn:0001-5733.2005.03.018
张洪双, 滕吉文, 田小波, 等. 2013. 青藏高原东北缘岩石圈厚度与上地幔各向异性. 地球物理学报, 56(2): 459-471. DOI:10.6038/cjg20130210
张丽芬, 姚运生, 廖武林, 等. 2011. 湖北地区上地幔各向异性及其动力学意义. 地球物理学报, 54(1): 35-43. DOI:10.3969/j.issn.0001-5733.2011.01.005
郑斯华, 高原. 1994. 中国大陆岩石层的方位各向异性. 地震学报, 16(2): 131-140.
祝爱玉, 张东宁, 朱涛, 等. 2019. 地幔对流拖曳力影响青藏高原东北缘地壳运动格局的数值模拟研究. 中国科学: 地球科学, 49(2): 353-367.
朱涛. 2011. 横向黏度变化的全地幔对流应力场初步研究. 地震学报, 33(5): 582-594. DOI:10.3969/j.issn.0253-3782.2011.05.003
朱涛. 2018. 基于地幔动力学模拟推断云南地区剪切波各向异性源的深度. 地球物理学报, 61(3): 948-962. DOI:10.6038/cjg2018L0137
朱岳清, 强祖基, 马丽. 1984. 小尺度地幔对流、壳下应力场与华北地震. 地震地质, 6(3): 29-37.