地球物理学报  2021, Vol. 64 Issue (3): 735-751   PDF    
大气边界层研究进展
车军辉1,2,3, 赵平1,2, 史茜4, 杨秋彦3     
1. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081;
2. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044;
3. 山东省气象服务中心, 济南 250031;
4. 山东省气象台, 济南 250031
摘要:大气边界层对云和对流的发展、演变有重要作用.本文回顾了在大气边界层高度计算方法,边界层的时空分布特征、结构和发展机理,以及边界层参数化方案等方面的主要研究进展.大气边界层高度计算方法主要分为基于大气廓线观测数据计算和基于模式参数化方案计算两大类;大气边界层高度频率分布形态具有明显的日变化特征,并且稳定、中性和对流边界层高度的频率分布呈现出不同的Gamma分布特征;地面湿度状况对边界层发展影响明显,对于不同的下垫面热力性质和地形状况,大气边界层高度呈现出明显的空间差异,青藏高原边界层高度明显高于一般平原地区;在强烈的地面加热驱动下,对流边界层与残余层通过正反馈机制循环增长可以形成4000 m以上的超高大气边界层;研制大气边界层、浅对流以及云物理方案的统一参数化框架是未来数值预报模式的发展趋势.
关键词: 大气边界层高度      超高对流边界层      边界层参数化方案     
Research progress in atmospheric boundary layer
CHE JunHui1,2,3, ZHAO Ping1,2, SHI Qian4, YANG QiuYan3     
1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3. Shandong Meteorological Service Center, Jinan 250031, China;
4. Shandong Meteorological Observatory, Jinan 250031, China
Abstract: The atmospheric boundary layer (ABL) plays an important role in the evolutions of cloud and convection. This article reviews research advances in the methodology of calculating the ABL height, the ABL spatial and temporal variations and structures, the physical mechanisms responsible for the ABL development and parameterizations. The calculation methods of the ABL height include two categories. One is based on observed atmospheric vertical profiles and another is based on parameterization schemes in numerical models. The frequency distribution of the ABL height shows a remarkable diurnal variation, and there are different Gamma distributions for the frequency of stable, neutral, and convective boundary layers. The moisture content at land surface exerts remarkable effects on the development of ABL. Corresponding to the different surface thermodynamic and terrain features, the ABL height shows the substantial horizontal heterogeneity. The ABL height is significantly higher over the Tibetan Plateau than over the plains. Under the influence of intense surface heating, the convective boundary layer and the residual layer may produce a super deep ABL above 4000 m through a positive feedback mechanism. The unified parameterization framework including atmospheric boundary layer, shallow convection, and cloud physical processes is the development trend of numerical forecast models in the future.
Keywords: Atmospheric boundary layer height    Super deep convective boundary layer    Boundary-layer parameterization schemes    
0 引言

大气边界层通常指大气底部直接受地球表面影响的一层,其高度约为1~1.5 km,响应时间尺度小于1小时(Stull,1988),是地球各个圈层相互作用的关键区域.受地面热力与动力影响,该层大气运动具有明显的湍流性质,并且湍流过程对热量、动量和水汽的垂直输送导致气象要素呈现显著的日变化,因此多尺度大气边界层过程在中尺度气象模式、大气环流模式、天气预报模式、气候预测模式以及大气环境质量预报模式中都具有十分重要的作用(刘树华等,2013).大气边界层高度也是判断湍流混合、垂直扰动、对流传输、云带、大气污染物扩散以及分析大气环境容量的主要特征量(Therry and Lacarrère,1983Holtslag and Boville, 1993Hong and Pan, 1996Beyrich,1997Collier et al., 2005刘树华等,2013),对云、对流以及大气污染的发展、演变有重要影响,因此数值预报模式对边界层高度的精细参数化不够已经成为制约天气、气候数值预报模式和环境质量预报模式发展的瓶颈之一(Yanai and Li, 1994Garratt,1994Baklanov et al., 2011刘树华等,2013Miao et al., 2015).同时,由于大气边界层是人类活动空间区域所在地,发生在大气边界层内的相关环境问题直接关系人类的健康与生存,因此大气边界层的研究长期受到国际科学界的高度重视.

较早的边界层研究主要集中在近地层(图 1),其中湍流理论和大气探测技术的发展推动了大气边界层研究(Monin and Obukhov, 1954).从20世纪70年代开始,飞机、雷达、系留气球、卫星遥感等大气探测技术的发展以及数值模拟技术的出现,促使大气边界层研究逐渐从近地层扩展至整个边界层.大气边界层一般可分为对流、稳定和中性三类,它们的物理性质有着明显的差异.Clarke等(1971)Kaimal等(1976)分别给出了稳定和对流边界层气象要素的垂直分布结构;Deardorff(1972)首次开展了对中性和对流边界层的大涡数值模拟.这些研究极大地加深了对大气边界层特征的认识,特别是关于大气边界层的区域性特征.青藏高原作为全球最大的复杂地形,其边界层过程的独特性吸引着国内外学者的广泛关注(如,叶笃正等,1958Tao and Ding, 1981Xu et al., 2002左洪超等,2004Li and Gao, 2007Sun et al., 2007吕雅琼等,2008陈学龙等,2010李茂善等,2011赵平等,2018Zhao et al., 2019).

图 1 大气边界层研究进展的示意图 Fig. 1 Schematic diagram of the research progress in atmospheric boundary layer (ABL)

当前非均匀或复杂下垫面、特殊地区和气象条件下的大气边界层特征已经成为国际边界层气象学研究的重点,而外场观测和数值模拟已经成为研究大气边界层特征和形成发展机制的重要方法(张强和胡隐樵,2001胡非等,2003).刘辉志等(2013, 2018)从理论研究、观测试验和数值模拟等方面总结了大气边界层物理和大气化学国家重点实验室在2009—2017年期间关于“边界层湍流结构和物质、能量交换规律”的研究成果.近年来,通过采用更精细的探空数据以及新的再分析数据,边界层气象学在研究大尺度空间范围大气边界层高度的气候学统计特征方面取得新进展,特别是在超过4000 m的超高大气边界层高度的特征及其发展机理方面突破了传统认识,为大气边界层参数化发展奠定了基础.下面我们围绕“大气边界层高度及其发展机理”,就大气边界层高度的分析方法、时空特征,极端气候区的特殊边界层结构和发展机理,边界层参数化方案等方面的主要研究进展,以及有待深入研究的问题作简要评述.

1 大气边界层过程机理

由大气边界层气象学(Stull,1988)得知,无论在陆地或海洋之上,大气边界层高度的共同特征是高气压区的边界层高度比低气压区的低,海洋上空的边界层高度时空变化比陆地的小.大气边界层的结构及其演变具有显著的日变化特征.日出后(图 2),太阳辐射对地面加热,近地层产生的热通量增加使湍流混合加强,大气边界层高度升高,边界层内的热力和动力混合均匀,风速、温度和比湿随高度变化较小,此时称为混合层(即对流边界层).日落后,地面长波辐射冷却,湍流输送减弱,近地层形成稳定边界层,其上层混合层从地面向上抬升,大气湍流特性显著减弱,但仍保持白天混合层气象要素分布特征,与上层自由大气明显不同,被称为剩余层.由于大气边界层顶常有逆温层存在,它抑制湍流混合向上发展,从而形成大气边界层与自由大气的界线.

图 2 陆地上高压区的大气边界层结构(对“ http://www.zhihu.com/question/21763748/answer/31231125”图进行了修改) Fig. 2 The structure of the atmospheric boundary layer in a high pressure region over land (a modification of http://www.zhihu.com/question/21763748/answer/31231125)

地球表面通过混合层与自由大气层进行热量、动量和水汽交换,混合层过程是大气边界层的主要过程(图 2).在此过程中,首先,地面层和大气边界层之间的交换在混合层中达到充分混合;其次,充分混合的边界层空气穿越逆温层,进入自由大气层,实现大气边界层内大气要素与自由大气之间的交换.此外,由于混合层顶常有强逆温层和下沉夹卷运动,进入逆温层的湍涡往往会下沉返回混合层,实现逆温层和混合层的交换.

2 大气边界层高度的计算方法

影响大气边界层高度的主要因素有:地表太阳辐射热力扰动过程、地形动力扰动过程、大气边界层顶夹卷热力动力过程以及水平和垂直扩散过程等.因此,大气边界层高度的时空变化是非定常的,无法通过常规气象观测直接获取.大气边界层高度总体上可以通过大气要素廓线观测数据和参数化或模式计算得到(Seibert et al., 2000).依据观测方式的不同,大气要素廓线观测数据方法又分为直接观测(包括无线电探空、系留气球、边界层铁塔和飞机观测等)和遥感观测(包括声雷达、激光雷达、多普勒天气雷达、边界层风廓线雷达、微波辐射计等,可通过地基、机载和星载等多种方式)两种;各种观测平台的数据具有各自的优势与不足(表 1).大气边界层高度参数化计算方法主要有:Deardorff (1972)方法,Pielke和Mahrer(1975)方法等;大气边界层高度模式计算方法主要有:MYJ(Mellor Yamada Janjic)和YSU(Yonsei University)参数化方案.

表 1 计算大气边界层高度的观测平台及性能(Seibert et al., 2000) Table 1 Measuring platforms and their performances for the ABL height determination (Seibert et al., 2000)
2.1 无线电探空

无线电探空是计算边界层高度最为常用的数据源,其原理为识别探空观测要素或相关物理量自大气边界层转变为自由大气层所具有的特征高度(Seibert et al., 2000Seidel et al., 2010),通常由诊断探空观测的温度、湿度和风速廓线得到(表 2),其中基于位温或虚位温廓线判断边界层高度最为常用.如,用位温梯度明显不连续的高度(即位温梯度法)(Liu and Liang, 2010Zhang et al., 2017)、白天对流发展时的混合层顶高度(即气块法)(Holzworth,1964)以及高抬的逆温层顶高度(Seidel et al., 2010)均可定义对流边界层高度;Bradley等(1993)以近地面逆温层顶作为稳定边界层高度;Liu和Liang(2010)通过近地层位温层结状态将边界层细分为稳定、中性和不稳定三类.此外,Richardson数(Ri)算法也常常被用来估算边界层高度(Troen and Mahrt, 1986Vogelezang and Holtslag, 1996),这种方法是将Ri达到指定阈值所对应的最低高度定义为边界层顶,适用于稳定和对流边界层,该算法对探空观测数据的垂直分辨率要求不高,适合于大量数据统计(Seidel et al., 2012Guo et al., 2016).采用无线电探空数据计算边界层高度方法的优点是垂直分辨率较高,可以识别边界层的精细结构和类型,其不足是数据的水平和时间分辨率较低.

表 2 基于廓线数据的大气边界层高度计算方法(Seidel et al., 2010) Table 2 Calculation methods of the ABL height with vertical profile data (Seidel et al., 2010)
2.2 激光雷达

激光雷达通过观测气溶胶或痕量气体也能够诊断大气边界层高度,其原理是基于大气边界层内气溶胶粒子的输送特征,气溶胶粒子浓度的垂直突变可以识别边界层高度(Torres et al., 2013Huang et al., 2014).与其他遥感观测相比,激光雷达数据反映了暖气泡自地面产生、上升至破灭的过程,可以识别大气边界层的对流特征,能够更好地测量大气边界层高度(Coulter,1979Seibert et al., 2000),是探测和研究边界层高度的一种重要手段.基于激光雷达,邱金恒等(2003)开展了对流层高度的观测试验,王珍珠等(2008)对北京城区大气边界层结构也进行了研究.

2.3 卫星遥感

通过识别卫星信号在大气边界层顶的突变可以确定大气边界层高度.例如,利用CALIPSO卫星传感器接受的激光雷达后向散射信息,诊断气溶胶浓度的垂直分布,从而识别大气边界层的垂直结构(Jordan et al., 2010McGrath-Spangler and Denning, 2012Korhonen et al., 2014Zhang et al., 2016).此外,利用卫星反演的大气垂直廓线数据也可以计算边界层高度(Fetzer and Eric, 2004Wood and Bretherton, 2004Martins et al., 2010Karlsson et al., 2010Guo et al., 2011周文等,2018),例如近年来随着GPS掩星对低层大气探测准确度的明显提高,Ao等(2012)利用梯度法和GPS掩星资料分析了全球大气边界层的时空分布.与无线电探空相比,卫星遥感能够获取同时刻大尺度空间范围的大气边界层信息,尤其对一些无线电探空观测缺少的复杂地形地区(Jordan et al., 2010Zhang et al., 2016).但是,由于卫星遥感资料在边界层内垂直分辨率较低,因而卫星遥感资料无法应用于研究边界层的细微结构.

2.4 模式参数化

应用模式参数化方法可计算大气边界层高度.典型的有MYJ(Mellor Yamada Janjic)和YSU(Yonsei University)参数化方案.在MYJ方案中,大气边界层高度定义为湍流动能小于临界值0.1 m2·s-2的最低高度;在YSU方案中,定义整体Ri数小于临界值的高度,在张碧辉等(2012)Miao等(2017)的研究中,整体Ri的临界值取为0.25.在不同数值模式中计算大气边界层高度的方法差异较大(Seibert et al., 2000).Delage(1974)Wyngaard(1975)Estournel和Guedalia(1990)采用湍流能量法计算稳定大气边界层高度,Tennekes(1970)基于相似理论计算对流边界层高度.这些方法的优点是可以分析更大范围的边界层物理特征,但是其缺点是不能排除模式带来的误差.

3 大气边界层高度的时空分布特征 3.1 大气边界层日变化特征

各类大气边界层的发生频率具有明显的日变化特征.Seidel等(2010)指出,就全球而言,近地逆温层(稳定边界层)在夜间出现频率高,热带地区为50%,高纬度极区为80%左右;与夜间相比,稳定边界层白天发生的频率显著偏低,在中、低纬地区为15%,极地为50%左右.美国的稳定边界层夜间出现频率超过70%,而白天(09∶00—18∶00 LST)低于5%;与之相反,对流和中性边界层白天峰值时刻(15∶00 LST)的发生频率高达90%,夜间则低于30%(Liu and Liang, 2010).对中国而言,14∶00 BJT对流、中性和稳定边界层出现频率分别为70%、26%和4%(Zhang et al., 2017).很显然,东亚的对流边界层在白天占据主导地位,这与美国的相似.

大气边界层高度的频率分布也表现出明显的日变化特征.图 3a给出了中国夏季一个日循环内不同时刻大气边界层高度的频率分布形态(Guo et al., 2016),可以看到:中午时刻(14∶00 BJT)边界层充分发展,边界层高度最高;日落后(20∶00 BJT和02∶00 BJT)边界层由白天的对流型向夜间稳定型过渡,并伴随着边界层高度降低;日出后(08∶00 BJT),边界层则由夜间稳定型向白天对流型转换,边界层高度开始升高.此外,不同类型的大气边界层高度频率分布形态也不相同,以美国为例(Liu and Liang, 2010),稳定、中性和对流边界层高度出现频率服从三种不同形态的Gamma分布(图 3b):稳定边界层表现为狭窄的Gamma分布,边界层高度分布区间窄,峰值频率(300 m)为16%;对流边界层呈现宽广的Gamma分布,高度分布区间宽,峰值频率(900 m)仅为4%;中性边界层则介于两者之间.

图 3 (a) 中国2011年1月—2015年7月夏季02时(BJT;黑线)、08时(红线)、14时(蓝线)和20时(绿线)大气边界层高度的发生频率以及每个时刻的探空样本数(N)和边界层高度平均值(Guo et al., 2016);(b) 美国稳定(stable)、中性(neutral)和不稳定(unstable)三类边界层高度的发生频率,括号内数字为各类边界层观测的样本数,平滑曲线为拟合的各类边界层高度频率Gamma分布曲线,(ks)表示Gamma分布参数值(Liu and Liang, 2010) Fig. 3 (a) Frequency distribution of the ABL height at 02∶00 BJT (black), 08∶00 BJT (red), 14∶00 BJT (blue), and 20:00 BJT (green) during the summertime from January 2011 to July 2015 in China, in which the number of soundings (N) and the mean value at each observed time are given (Guo et al., 2016); and (b) frequency distribution of the stable boundary layer (stable), neutral boundary layer (neutral), and unstable boundary layer (unstable) heights in United States, in which the sample number is listed in the legend in parentheses, and a smooth curve is drawn for the fitting Gamma distribution with the specified values of parameters (k, s) (Liu and Liang, 2010)
3.2 大气边界层高度空间分布特征

由于地形和下垫面热力性质的差异,大气边界层高度呈现明显的空间变化特征.在印度西南季风爆发前,新德里地区对流边界层高度可以达到4700 m,而在西南季风发生地的班加罗尔地区,对流边界层高度仅900 m左右(Raman et al., 1990),这说明在不同天气条件下大气边界层高度有明显差异.Zhang等(2017)的研究指出,虽然中国塔克拉玛干沙漠和珠江三角洲具有相似的边界层发生频率,但是塔克拉玛干沙漠的平均大气边界层高度明显偏高.青藏高原地区边界层高度通常在2000~3000 m(叶笃正和高由禧,1979Xu et al., 2002周明煜等,2002Zhang et al., 2003),高于平原地区的1000~1500 m(赵鸣和苗曼倩,1992).宋正山等(1984)用第一次青藏高原科学试验资料得到高原西部改则边界层高度可以达到3000 m以上;李家伦等(2000)刘红燕和苗曼倩(2001)吕雅琼等(2008)计算的边界层高度则较低,当雄地区为1400~1800 m,纳木错湖区的对流边界层高度最高在1750 m左右.青藏高原地区边界层高度在干季和雨季有明显差异(左洪超等,2004),那曲边界层高度在干季为2211~4430 m,在雨季为1006~2212 m(李茂善等,2011),冬季改则地区有超过5000 m的超高边界层(Chen et al., 2013, 2016).因此,在不同地点及天气背景下,边界层高度差异较大,反映了青藏高原复杂地形和下垫面状况对边界层结构的影响.

Seidel等(2012)指出日落时刻美国区域大气边界层高度存在较大空间尺度的东西向高度梯度(图 4a),这与太阳高度角的纬向差异有关,在昼夜过渡时段,东部地区较西部更早进入夜间而转为稳定边界层.在中国区域,大气边界层高度存在三种较大尺度的空间分布型(图 4bcd),即在日出时刻的西低-东高分布,日落时刻的东低-西高分布,以及中午时刻的南低-北高分布,其中:前两种特征与美国地区的相似(这与太阳高度角纬向差异有关),而第三种则可能与局地的地表和水文过程有关(Guo et al., 2016Zhang et al., 2017).由于土壤水分影响着地面感热通量强度,因而边界层的发展对地面湿度很敏感(McCumber and Pielke, 1981Sanchez-Mejia and Papuga, 2014Rihani et al., 2015).中国华南地区土壤湿度高,近地面感热较低,不利于大气边界层发展,而中国西北地区土壤水分偏低,感热偏大,有利于大气边界层发展(Liu et al., 2004Zhang et al., 2013Dirmeyer et al., 2014).

图 4 (a) 夏季平均的美国地区00时(UTC)(Seidel et al., 2012)和中国地区(b)08时、(c)14时、(d)20时(BJT)(Guo et al., 2016)ERA-Interim再分析(彩色阴影)和实测(彩色圆点)边界层高度的空间分布, 对图(b)—(d)进行了修改 Fig. 4 Spatial distributions of summer mean ABL heights from the ERA-Interim reanalysis (color shaded) and sounding observation (color dots) at (a) 00∶00 UTC in United States (Seidel et al., 2012), and at (b) 08∶00 BJT, (c) 14∶00 BJT, and (d) 20∶00 BJT in China (Guo et al., 2016), a modification of figure (b)—(d)
4 超高对流边界层特征及其成因分析 4.1 超高对流边界层特征

一般认为对流边界层高度应该低于3000 m(Garratt,1992),但是近年来随着各类野外观测试验的开展,在一些特殊的地理环境地区(如印度新德里、非洲撒哈拉沙漠、中国西北荒漠和青藏高原等地区)(表 3)均发现有超过4000 m的特殊边界层(称为超高对流边界层)存在,其中撒哈拉沙漠和青藏高原地区超高对流边界层高度可以发展到5000 m以上.研究指出(张强等,2004Marsham et al., 2008张强和王胜,2008Messager et al., 2010Chen et al., 2013杨洋等,2016),超高对流边界层往往出现在连续多日的烈日晴天,出现前一日的边界层高度超过3000 m,当日早晨近地层有逆温层,其上存在高层的近中性残余层(高度超过2000 m),当日白天对流发展突破逆温层进入残余层后对流大气边界层高度呈现跳跃式发展,当日午后以干对流运动为主的混合运动使得边界层内位温均匀分布,边界层高度超过4000 m(图 5).

表 3 基于探空数据计算的超高对流边界层高度 Table 3 Radiosonde-retrieved heights of super deep convective boundary layer
图 5 青藏高原改则站2008年2月25日不同时刻(a)温度、(b)位温、(c)风速、(d)比湿廓线,廓线采样时间分别为01时(BJT;黑线)、07时(红线)、13时(蓝线)和19时(紫线),各颜色水平虚线表示相应时刻的对流边界层顶,各颜色水平实线表示相应时刻的对流层顶,SL、RL、ML分别表示稳定层、残余层和混合层(Chen et al., 2013) Fig. 5 Profiles of (a) temperature, (b) potential temperature, (c) wind speed, (d) water vapor content at Gaize station of the Tibetan Plateau on 25 Feb 2008. Profiles were recorded at 01∶00 BJT (dark line), 07∶00 BJT (red line), 13∶00 BJT (blue line), and 19∶00 BJT (magenta line). The horizontal dashed lines are for the tops of the convective boundary layer and horizontal solid lines are for the positions of the tropopause. The stable layer (SL), residual layer (RL), and mixed layer (ML) are also marked (Chen et al., 2013)
4.2 超高对流边界层发展成因

地表感热加热是影响超高对流边界层发展的重要因子(张强和王胜,2008Zhang et al., 2011).在中国西北干旱区,超高对流边界层高度与地面同时次感热通量的相关系数为0.03,而与地面累积感热通量的相关系数高达0.78(图 6),这表明超高对流边界层的发展主要受白天感热通量的累积效应影响(张强等,2019).但是,一些学者研究指出在日际时间尺度上日累积地表感热通量与对流边界层日极大高度的相关系数则没有想象的那样高(Cuesta et al., 2008张强等,2019).杨洋等(2016)认为地面感热通量能解释30%左右的超高对流边界层发展的总能量;张强等(2019)的计算表明,感热通量能量占西北干旱区(最高大气边界层高度为4170 m)发展所需总能量的40.0%.因此,在超高对流边界层发展过程中地表感热加热并非唯一能量来源.

图 6 对流边界层厚度与实时感热通量(a)和累积感热通量(b)的关系(张强等,2019) Fig. 6 Relationship between the convective boundary layer thickness and the real-time (a) and cumulative sensible heat fluxes (b)(Zhang et al., 2019)

残余层能量的夹卷效应是影响超高对流边界层发展的另一个重要因子.研究指出,对流边界层上方覆盖大气的层结状况会影响边界层顶附近湍流夹卷速度,进而影响边界层高度的发展(Freire and Dias, 2013Blay-Carreras et al., 2014Reen et al., 2014).使用边界层单柱发展模式的边界层模拟结果显示,边界层上空大气层结状态对超高对流边界层发展影响最大(Chen et al., 2016).在超高对流边界层出现之前,当地中低层大气存在近中性的残余层,边界层与残余层耦合会呈现跳跃式发展,而在没有近中性残余层出现时,即便地表感热通量较大,当天最大对流边界层高度也偏低(Parker et al., 2005Zhang et al., 2011Han et al., 2012赵采玲等,2016).张强等(2019)进一步给出了残余层夹卷能量的定量计算(图 7),如图所示,残余层的存在使得残余层的近中性位温廓线代替了无残余层时的理想逆位温廓线(AB线段),残余层夹卷的总能量等于两条位温廓线间的斜线区面积.因此,在超高对流边界层发展的能量机制中必须考虑残余层的夹卷能量效应.

图 7 残余层夹卷能量计算方法的示意图,线段AB表示无残余层时的理想逆位温廓线(张强等,2019) Fig. 7 Schematic diagram of calculation method for entrainment energy in residual layer. The AB line represents the ideal inverted potential temperature profile without residual layer (Zhang et al., 2019)

通过热力学数值模型可以揭示地表感热加热和浮力夹卷等热力过程在超高对流边界层发展中的作用.赵建华等(2011)针对西北干旱区一次夏季超高对流边界层发展的研究表明,感热对超高对流边界层高度极大值的贡献率为63.4%,而浮力夹卷为18.1%,两者累积贡献超过80%(图 8),是驱动西北干旱区超高对流边界层发展的主要因子.张强等(2019)概括了西北干旱区对流边界层与残余层之间的正反馈循环增长形成超高对流边界层的物理过程.在超高对流边界层形成的持续晴空期内,残余层储存前一天对流边界层能量,成为当天对流边界层发展的重要能量来源,因而残余层的厚度由前一天对流边界层厚度所决定,并且还影响着当日对流边界层高度的增长,边界层与残余层间通过正反馈机制而循环增长,最终形成超高边界层;强烈的地表感热加热作用则是对流边界层与残余层之间正反馈循环增长机制的关键因素.

图 8 2006年6月28日西北干旱区(a)感热、潜热日变化,(b)浮力夹卷热通量日变化,(c)热力数值模型模拟的对流边界层高度日变化,(d)浮力夹卷引入后热力数值模型模拟的对流边界层高度日变化(赵建华等,2011) Fig. 8 Diurnal variations of (a) sensible and latent heat fluxes, (b) buoyancy entrainment, and convective boundary layer height simulated by the thermal numerical model (c) without and (d) with the buoyancy entrainment in the drought region of northwestern China on 28 June 2006 (Zhao et al., 2011)
5 大气边界层参数化方案

鉴于大气边界层在天气和气候系统中的重要作用,一个成熟的数值模式必须考虑合理的边界层过程描述方案.通常数值模式通过雷诺平均的方法刻画边界层过程,而湍流通量项的出现造成预报方程组无法闭合,因此对于湍流通量项的有效闭合成为边界层参数化方案需要解决的首要问题.此外,由于大气边界层发展受下垫面湍流输送、边界层顶夹卷以及层积云长波辐射冷却等物理过程影响,因而这些物理过程的描述是边界层参数化方案需要解决的另一关键问题.

为了解决垂直湍流通量项的闭合问题,一阶闭合方案基于K理论将湍流通量表达为湍流输送系数与网格物理量梯度的乘积.早期K方案的湍流输送系数K与湍流混合长有关(Louis,1979),之后的K方案预先给定湍流输送系数K的垂直廓线形式(Troen and Mahrt, 1986Holtslag and Boville, 1993).为了便于在中尺度数值模式的边界层方案中刻画湍流通量和其他高阶矩量,高阶湍流闭合技术得以发展,如Rotta(1951)提出了2阶闭合方案,Yamada和Mellor(1975)通过将湍流动能引入湍流输送系数计算,建立了1.5阶K闭合方案,该方案在闭合方程不太复杂的条件下兼顾了对高阶矩的要求,应用比较广泛.然而,由于对流边界层内的湍流输送具有很强的非局地性特征,大尺度湍涡可以引起非局地输送,在对流边界层的中上部会出现逆梯度输送的情况.K方案是局地闭合理论,湍流输送仅与局地垂直梯度有关,未能考虑对大气边界层发展有重要影响的逆梯度输送以及边界层顶夹卷等过程(Wyngaard and Brost, 1984Holtslag and Moeng, 1991),使得计算的边界层高度系统性偏低和水汽在低层堆积,从而造成模式模拟大气边界层低层比实况的湿冷(图 9ab).

图 9 模拟的波多黎各圣胡安(San Juan, Puerto Rico;18.3°N, 66°W)7月平均(a)温度、(b)比湿、(c)湍流输送系数、(d)比湿通量和(e)比湿倾向廓线.虚线表示局地边界层方案(Local)模拟结果,实线为非局地边界层方案(Nonlocal) 模拟结果.(a)和(b)给出了探空观测结果(带点水平杆)(Holtslag and Boville, 1993) Fig. 9 The simulated profiles of July mean temperature (a), specific humidity (b), turbulence transfer coefficient (c), specific humidity flux (d), and specific humidity tendency (e) in a grid point near San Juan, Puerto Rico (18.3°N, 66°W). Solid lines are for the local diffusion scheme, and dashed lines are for the nonlocal diffusion scheme. In (a) and (b) radiosonde observational results are also given (dots with horizontal bars) (Holtslag and Boville, 1993)

为了弥补K方案对负梯度输送等过程的缺陷,Deardorff(1972b)Holtslag和Boville(1993)发展了非局地模型,其做法是通过在K理论公式中加入逆梯度项的方式增强湍流垂直输送(图 9cde).Pleim(2007)采用直接混合的方法来描述对流边界层的非局地特性;Siebesma等(2007)借鉴浅对流方案中的质量通量方案(Siebesma and Cuijpers, 1995),将局地的K理论与非局地的质量通量结合起来.此外,针对对流边界层顶的夹卷过程,更多的大气边界层方案将夹卷通量转化为对应的湍流输送系数,或者在计算湍流通量时直接显式地引入夹卷通量(Noh et al., 2003Hong et al., 2006).

然而,非局地大气边界层方案未能考虑层积云顶辐射冷却过程的影响,使非局地模式在有云覆盖情况下湍流垂直输送偏弱,容易产生虚假边界层低云现象.为了解决上述问题,边界层方案可以通过两种方式增加层积云覆盖边界层的云顶辐射冷却过程:一种是在1阶闭合框架下采用双K廓线法,即在原有给定的K廓线外,增加由云顶辐射冷却作为湍流动力来源的湍流混合廓线(Lock et al., 2000Sun et al., 2016);另一种则是在2阶和更高阶的闭合框架下,将云顶辐射冷却产生的浮力项通过隐式表达的方式写入湍流动能收支方程(Bretherton et al., 2009Konor et al., 2009).Sun等(2005)将Mellor/Yamada的湍流2阶闭合方案与中尺度模式MM5(The fifth-generation mesoscale model)耦合,模拟了华南地区的一次暴雨过程.他们指出:与MM5中原有的1.5阶边界层方案相比,2阶闭合方案能够比较好地再现大气边界层中较短时间尺度的风速脉动,从而更好地模拟低涡、低空急流特征及降水分布.

大气边界层参数化方案与其他物理过程参数化方案的耦合对数值预报模式性能有重要影响.如Betts等(1996, 1998)发现在NCEP(National Centers for Environmental Prediction)再分析模式中陆面蒸发与边界层过程和浅对流过程之间的过耦合可能造成虚假降水偏多现象;在ECMWF(European Centre for Medium-Range Weather Forecasts)再分析模式中,夜间陆面与稳定边界层间的不恰当耦合可能造成地面最低气温偏低,以及比湿的日循环在早晨出现虚假峰值.因此,在数值预报模式的发展中,有必要考虑边界层方案同对流和云物理等其他参数化方案之间的统一参数化框架.如EDMF(Eddy-Diffusivity Mass-Flux)方案(Sušlj et al., 2012, 2013)和CLUBB(Cloud Layer Unified by Binormals)方案(Guo et al., 2010Bogenschutz et al., 2013)为实现边界层、浅对流以及云物理方案的统一提供了很好的基础.

6 结语

影响大气边界层高度的物理过程十分复杂,是大气边界层研究的重要内容之一.本文回顾了大气边界层高度的计算方法、大气边界层的时空分布特征、大气边界层发展成因以及大气边界层参数化方案和大气边界层模式等方面的主要研究进展,从多角度给出了大气边界层高度的诊断识别方法,揭示了混合对流、中性和稳定大气边界层形成机理及结构特征,下垫面状况引起的大气边界层高度的空间差异性,特别是解释了地面感热和混合层顶夹卷对超高大气边界层形成的机理,分析了大气边界层参数化方案关于湍流输送、夹卷和层积云辐射冷却等重要过程的描述缺陷以及对模式预报结果造成的影响.

大气边界层观测的尺度在数百米到几千米之间,这是与数值模式模拟的空间尺度不相匹配的,这种不一致性已经成为目前大气边界层研究的难点,今后的大气边界层研究要关注非均匀下垫面以及类似于青藏高原复杂地形下的大气边界层特征和结构,关注在天气和气候模式中大气边界层参数化方案的改进,特别是研发能够统一大气边界层、浅对流以及云-降水物理过程的参数化框架(张强和胡隐樵,2001胡非等,2003Sušlj et al., 2012, 2013刘辉志等,2013),为大气边界层模式、大气污染输送模式、天气预报模式和气候预测模式提供大气边界层参数化的精细方案.该文对认识大气边界层过程在中尺度气象模式、大气环流模式、天气预报模式、气候预测模式和大气环境质量预报模式中的作用以及模式中大气边界层参数化方案的改进具有重要参考价值.

References
Ao C O, Waliser D E, Chan S K, et al. 2012. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. Journal of Geophysical Research: Atmospheres, 117(D16): D16117. DOI:10.1029/2012JD017598
Baklanov A A, Grisogono B, Bornstein R, et al. 2011. The nature, theory, and modeling of atmospheric planetary boundary layers. Bulletin of the American Meteorological Society, 92(2): 123-128. DOI:10.1175/2010BAMS2797.1
Betts A K, Ball J H, Beljaars A C M, et al. 1996. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research: Atmospheres, 101(D3): 7209-7225. DOI:10.1029/95jd02135
Betts A K, Viterbo P, Beljaars A, et al. 1998. Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS). Journal of Geophysical Research: Atmospheres, 103(D18): 23079-23085. DOI:10.1029/98jd02023
Beyrich F. 1997. Mixing height estimation from sodar data-a critical discussion. Atmospheric Environment, 31(23): 3941-3953. DOI:10.1016/s1352-2310(97)00231-8
Blay-Carreras E, Pino D, De Arellano J V, et al. 2014. Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmospheric Chemistry and Physics, 14(9): 4515-4530. DOI:10.5194/acp-14-4515-2014
Bogenschutz P A, Gettelman A, Morrison H, et al. 2013. Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. Journal of Climate, 26(23): 9655-9676. DOI:10.1175/jcli-d-13-00075.1
Bradley R S, Keimig F T, Diaz H F. 1993. Recent changes in the North American Arctic boundary layer in winter. Journal of Geophysical Research: Atmospheres, 98(D5): 8851-8858. DOI:10.1029/93JD00311
Bretherton C S, Park S. 2009. A new moist turbulence parameterization in the community atmosphere model. Journal of Climate, 22(12): 3422-3448. DOI:10.1175/2008JCLI2556.1
Chen X L, Ma Y M, Hu Z Y, et al. 2010. Analysis of atmospheric structure in Gaize Region of western Tibetan Plateau during pre-onset and onset of monsoon. Chinese Journal of Atmospheric Sciences (in Chinese), 34(1): 83-94. DOI:10.3878/j.issn.1006-9895.2010.01.08
Chen X L, Añel J A, Su Z B, et al. 2013. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS One, 8(2): e56909. DOI:10.1371/journal.pone.0056909
Chen X L, Škerlak B, Rotach M W, et al. 2016. Reasons for the extremely high-ranging planetary boundary layer over the Western Tibetan Plateau in winter. Journal of the Atmospheric Sciences, 73(5): 2021-2038. DOI:10.1175/jas-d-15-0148.1
Clarke R H, Dyer A J, Brook R R, et al. 1971. The Wangara experiment: Boundary-layer data, Technical paper No. 19. Division of Meteorological Physics. Australia: CSIRO.
Collier C G, Davies F, Bozier K E, et al. 2005. Dual-Doppler lidar measurements for improving dispersion models. Bulletin of the American Meteorological Society, 86(6): 825-838. DOI:10.1175/BAMS-86-6-825
Coulter R L. 1979. A comparison of three methods for measuring mixing-layer height. Journal of Applied Meteorology, 18(11): 1495-1499. DOI:10.1175/1520-0450(1979)018〈1495:ACOTMF〉2.0.CO;2
Cuesta J, Edouart D, Mimouni M, et al. 2008. Multi-platform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. Journal of Geophysical Research: Atmospheres, 113(D23): D00C07. DOI:10.1029/2007jd009417
Deardorff J W. 1972. Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29(1): 91-115. DOI:10.1175/1520-0469(1972)029〈0091:NIONAU〉2.0.CO;2
Deardorff J W. 1972b. Theoretical expression for the countergradient vertical heat flux. Journal of Geophysical Research, 77(30): 5900-5904. DOI:10.1029/jc077i030p05900
Delage Y. 1974. A numerical study of the nocturnal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 100(425): 351-364. DOI:10.1002/qj.49710042507
Dirmeyer P A, Wang Z Y, Mbuh M J, et al. 2014. Intensified land surface control on boundary layer growth in a changing climate. Geophysical Research Letters, 41(4): 1290-1294. DOI:10.1002/2013GL058826
Estournel C, Guedalia D. 1990. Improving the diagnostic relation for the nocturnal boundary layer height. Boundary-Layer Meteorology, 53(1-2): 191-198. DOI:10.1007/BF00122471
Fetzer E J, Teixeira J, Olsen E T, et al. 2004. Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophysical Research Letters, 31(17): L17102. DOI:10.1029/2004gl020174
Freire L S, Dias N L. 2013. Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data. Journal of Geophysical Research: Atmospheres, 118(23): 12869-12878. DOI:10.1002/jgrd.50796
Gamo M. 1996. Thickness of the dry convection and large-scale subsidence above deserts. Boundary-Layer Meteorology, 79(3): 265-278. DOI:10.1007/bf00119441
Garratt J R. 1992. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press: 316.
Garratt J R. 1994. Review: the atmospheric boundary layer. Earth-Science Reviews, 37(1-2): 89-134. DOI:10.1016/0012-8252(94)90026-4
Guo H, Golaz J C, Donner L J, et al. 2010. Multi-variate probability density functions with dynamics for cloud droplet activation in large-scale models: single column tests. Geoscientific Model Development, 3(2): 475-486. DOI:10.5194/gmd-3-475-2010
Guo J P, Zhang X Y, Wu Y R, et al. 2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008. Atmospheric Environment, 45(37): 6802-6811. DOI:10.1016/j.atmosenv.2011.03.068
Guo J P, Miao Y C, Zhang Y, et al. 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16(20): 13309-13319. DOI:10.5194/acp-16-13309-2016
Han B, Lü S H, Ao Y H. 2012. Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Advances in Atmospheric Sciences, 29(1): 177-192. DOI:10.1007/s00376-011-0207-4
Holtslag A A M, Moeng C H. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. Journal of the Atmospheric Sciences, 48(14): 1690-1698. DOI:10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2
Holtslag A A M, Boville B A. 1993. Local versus nonlocal boundary-layer diffusion in a global climate model. Journal of Climate, 6(10): 1825-1842. DOI:10.1175/1520-0442(1993)006〈1825:LVNBLD〉2.0.CO;2
Holzworth C G. 1964. Estimates of mean maximum mixing depths in the contiguous United States. Monthly Weather Review, 92(5): 235-242. DOI:10.1175/1520-0493(1964)092〈0235:EOMMMD〉2.3.CO;2
Hong S Y, Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10): 2322-2339. DOI:10.1175/1520-0493(1996)124〈2322:NBLVDI〉2.0.CO;2
Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318-2341. DOI:10.1175/MWR3199.1
Hu F, Hong Z X, Lei X E. 2003. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 712-728. DOI:10.3878/j.issn.1006-9895.2003.04.18
Huang J P, Wang T H, Wang W C, et al. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19): 11398-11416. DOI:10.1002/2014JD021796
Jordan N S, Hoff R M, Bacmeister J T. 2010. Validation of goddard earth observing system-version 5 MERRA planetary boundary layer heights using CALIPSO. Journal of Geophysical Research: Atmospheres, 115(D24): D24218. DOI:10.1029/2009jd013777
Kaimal J C, Wyngaard J C, Haugen D A, et al. 1976. Turbulence structure in the convective boundary layer. Journal of the Atmospheric Sciences, 33(11): 2152-2169. DOI:10.1175/1520-0469(1976)033〈2152:TSITCB〉2.0.CO;2
Karlsson J, Svensson G, Cardoso S, et al. 2010. Subtropical cloud-regime transitions: boundary layer depth and cloud-top height evolution in models and observations. Journal of Applied Meteorology and Climatology, 49(9): 1845-1858. DOI:10.1175/2010jamc2338.1
Konor C S, Boezio G C, Mechoso C R, et al. 2009. Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment. Monthly Weather Review, 137(3): 1061-1082. DOI:10.1175/2008mwr2464.1
Korhonen K, Giannakaki E, Mielonen T, et al. 2014. Atmospheric boundary layer top height in south Africa: measurements with lidar and radiosonde compared to three atmospheric models. Atmospheric Chemistry and Physics, 14(8): 4263-4278. DOI:10.5194/acp-14-4263-2014
Lü Y Q, Ma Y M, Li M S, et al. 2008. Study on characteristic of atmospheric boundary layer over lake namco region, Tibetan Plateau. Plateau Meteorology (in Chinese), 27(6): 1205-1210.
Li J L, Hong Z X, Sun S F. 2000. An observational experiment on the atmospheric boundary layer in Gerze Area of the Tibetan Plateau. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 301-312. DOI:10.3878/j.issn.1006-9895.2000.03.02
Li M S, Ma Y M, Ma W Q, et al. 2011. Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau. Journal of Glaciology and Geocryology (in Chinese), 33(1): 72-79. DOI:10.3969/j.issn.1000-6826.2014.06.03
Li Y Q, Gao W L. 2007. Atmospheric boundary layer circulation on the eastern edge of the Tibetan Plateau, China, in summer. Arctic, Antarctic, and Alpine Research, 39(4): 708-713. DOI:10.1657/1523-0430(07-504)[li]2.0.co;2
Liu H Y, Miao M Q. 2001. Preliminary analysis on characteristics of boundary layer in Qinghai-Tibet Plateau. Journal of Nanjing University (Natural Sciences) (in Chinese), 37(3): 348-357. DOI:10.3321/j.issn:0469-5097.2001.03.013
Liu H Z, Feng J W, Wang L, et al. 2013. Overview of recent studies on atmospheric boundary layer physics and atmospheric environment at LAPC. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 467-476. DOI:10.3878/j.issn.1006-9895.2012.12315
Liu H Z, Wang L, Du Q. 2018. An overview of recent studies on atmospheric boundary layer physics (2012-2017). Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 823-832. DOI:10.3878/j.issn.1006-9895.1802.17274
Liu S H, Xu Y, Hu F, et al. 2004. Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulate the interaction between land surface processes and atmospheric boundary layer in semi-arid regions. Advances in Atmospheric Sciences, 21(2): 245-259. DOI:10.1007/bf02915711
Liu S H, Liu Z X, Zheng H, et al. 2013. Multi-scale atmospheric boundary-layer and land surface physics process models. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 43(10): 1332-1355. DOI:10.1360/132013-247
Liu S Y, Liang X Z. 2010. Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21): 5790-5809. DOI:10.1175/2010JCLI3552.1
Lock A P, Brown A R, Bush M R, et al. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128(9): 3187-3199. DOI:10.1175/1520-0493(2000)128〈3187:ANBLMS〉2.0.CO;2
Louis J F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17(2): 187-202. DOI:10.1007/bf00117978
Marsham J H, Parker D J, Grams C M, et al. 2008. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmospheric Chemistry and Physics, 8(23): 6679-6993. DOI:10.5194/acp-8-6979-2008
Martins J P A, Teixeira J, Soares P M M, et al. 2010. Infrared sounding of the trade-wind boundary layer: AIRS and the RICO experiment. Geophysical Research Letters, 37(24): L24806. DOI:10.1029/2010GL045902
McCumber M C, Pielke R A. 1981. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. Journal of Geophysical Research: Oceans, 86(C10): 9929-9938. DOI:10.1029/JC086iC10p09929
McGrath-Spangler E L, Denning A S. 2012. Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar. Journal of Geophysical Research: Atmospheres, 117(D15): D15101. DOI:10.1029/2012JD017615
Messager C, Parker D J, Reitebuch O, et al. 2010. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: observations and analyses from the research flights of 14 and 17 July 2006. Quarterly Journal of the Royal Meteorological Society, 136(S1): 107-124. DOI:10.1002/qj.469
Miao Y C, Hu X M, Liu S H, et al. 2015. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 7(4): 1602-1626. DOI:10.1002/2015MS000522
Miao Y C, Guo J P, Liu S H, et al. 2017. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmospheric Chemistry and Physics, 17(4): 3097-3110. DOI:10.5194/acp-17-3097-2017
Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geofiz Inst, 24(151): 163-187.
Noh Y, Cheon W G, Hong S Y, et al. 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorology, 107(2): 401-427. DOI:10.1023/a:1022146015946
Parker D J, Thorncroft C D, Burton R R, et al. 2005. Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quarterly Journal of the Royal Meteorological Society, 131(608): 1461-1482. DOI:10.1256/qj.03.189
Pielke R A, Mahrer Y. 1975. Representation of the heated planetary boundary layer in mesoscale models with coarse vertical resolution. Journal of the Atmospheric Sciences, 32(12): 2288-2308. DOI:10.1175/1520-0469(1975)032〈2288:ROTHPB〉2.0.CO;2
Pleim J E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology, 46(9): 1383-1395. DOI:10.1175/JAM2539.1
Qiu J H, Zheng S P, Huang Q R, et al. 2003. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing. Chinese Journal of Atmospheric Sciences (in Chinese), 27(1): 1-7. DOI:10.3878/j.issn.1006-9895.2003.01.01
Raman S, Templeman B, Templeman S, et al. 1990. Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation. Atmospheric Environment. Part A. General Topics, 24(4): 723-734. DOI:10.1016/0960-1686(90)90273-p
Reen B P, Stauffer D R, Davis K J. 2014. Land-surface heterogeneity effects in the planetary boundary layer. Boundary-Layer Meteorology, 150(1): 1-31. DOI:10.1007/s10546-013-9860-8
Rihani J F, Chow F K, Maxwell R M. 2015. Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks. Journal of Advances in Modeling Earth Systems, 7(2): 915-937. DOI:10.1002/2014MS000371
Rotta J. 1951. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik, 131(1): 51-77. DOI:10.1007/BF01329645
Sanchez-Mejia Z M, Papuga S A. 2014. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resources Research, 50(1): 306-317. DOI:10.1002/2013WR014135
Seibert P, Beyrich F, Gryning S E, et al. 2000. Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7): 1001-1027. DOI:10.1016/s1352-2310(99)00349-0
Seidel D J, Ao C O, Li K. 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16): D16113. DOI:10.1029/2009JD013680
Seidel D J, Zhang Y H, Beljaars A, et al. 2012. Climatology of the planetary boundary layer over the continental United States and Europe. Journal of Geophysical Research: Atmospheres, 117(D17): D17106. DOI:10.1029/2012jd018143
Siebesma A P, Cuijpers J W M. 1995. Evaluation of parametric assumptions for shallow cumulus convection. Journal of the Atmospheric Sciences, 52(6): 650-666. DOI:10.1175/1520-0469(1995)052〈0650:eopafs〉2.0.co;2
Siebesma A P, Soares P M M, Teixeira J. 2007. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64(4): 1230-1248. DOI:10.1175/JAS3888.1
Song Z S, Zhu B Z, Sun G W. 1984. A preliminary study on the thermal mixing layer in the western Tibetan Plateau. //The Collected Works of the Tibetan Plateau Meteorological Scientific Experiment (Series 2) (in Chinese). Beijing: Science Press.
Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Netherlands: Springer: 666.
Sun F L, Ma Y M, Li M S, et al. 2007. Boundary layer effects above a Himalayan valley near Mount Everest. Geophysical Research Letters, 34(8): L08808. DOI:10.1029/2007gl029484
Sun J, Zhou X J, Zhao P. 2005. A new Planetary Boundary Layer model and its application to heavy rain modeling. Chinese Science Bulletin, 50(16): 1756-1766. DOI:10.1360/03wd0600
Sun W Q, Li L J, Wang B. 2016. Reducing the biases in shortwave cloud radiative forcing in tropical and subtropical regions from the perspective of boundary layer processes. Science China Earth Sciences, 59(7): 1427-1439. DOI:10.1007/s11430-016-5290-z
Sušelj K, Teixeira J, Matheou G. 2012. Eddy diffusivity/mass flux and shallow cumulus boundary layer: an updraft PDF multiple mass flux scheme. Journal of the Atmospheric Sciences, 69(5): 1513-1533. DOI:10.1175/JAS-D-11-090.1
Sušelj K, Teixeira J, Chung D. 2013. A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. Journal of the Atmospheric Sciences, 70(7): 1929-1953. DOI:10.1175/JAS-D-12-0106.1
Takemi T, Satomura T. 2000. Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments. Journal of the Atmospheric Sciences, 57(11): 1718-1740. DOI:10.1175/1520-0469(2000)057〈1718:neotmf〉2.0.co;2
Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bulletin of the American Meteorological Society, 62(1): 23-30. DOI:10.1175/1520-0477(1981)062〈0023:OEOTIO〉2.0.CO;2
Tennekes H. 1970. Free convection in the turbulent Ekman layer of the atmosphere. Journal of the Atmospheric Sciences, 27(7): 1027-1034. DOI:10.1175/1520-0469(1970)027<1027:FCITTE>2.0.CO;2
Therry G, Lacarrère P. 1983. Improving the eddy kinetic energy model for planetary boundary layer description. Boundary-Layer Meteorology, 25(1): 63-88. DOI:10.1007/bf00122098
Torres O, Ahn C, Chen Z. 2013. Improvements to the OMI near-UV Aerosol Algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11): 3257-3270. DOI:10.5194/amt-6-3257-2013
Troen I B, Mahrt L. 1986. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2): 129-148. DOI:10.1007/bf00122760
Vogelezang D H P, Holtslag A A M. 1996. Evaluation and model impacts of alternative boundary-layer height formulation. Boundary-Layer Meteorology, 81(3-4): 245-269. DOI:10.1007/bf02430331
Wang Z Z, Li J, Zhong Z Q, et al. 2008. LIDAR exploration of atmospheric boundary layer over downtown of Beijing in summer. Journal of Applied Optics (in Chinese), 29(1): 96-100. DOI:10.3969/j.issn.1002-2082.2008.01.023
Wood R, Bretherton C S. 2004. Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. Journal of Climate, 17(18): 3576-3588. DOI:10.1175/1520-0442(2004)017〈3576:bldead〉2.0.co;2
Wyngaard J C. 1975. Modeling the planetary boundary layer-extension to the stable case. Boundary-Layer Meteorology, 9(4): 441-460. DOI:10.1007/BF00223393
Wyngaard J C, Brost R A. 1984. Top-down and bottom-up diffusion of a scalar in the convective boundary layer. Journal of the Atmospheric Sciences, 41(1): 102-112. DOI:10.1175/1520-0469(1984)041〈0102:TDABUD〉2.0.CO;2
Xu X D, Zhou M Y, Chen J Y, et al. 2002. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Science in China Series D: Earth Sciences, 45(7): 577-594. DOI:10.1360/02yd9060
Yamada T, Mellor G. 1975. A simulation of the wangara atmospheric boundary layer data. Journal of the Atmospheric Sciences, 32(12): 2309-2329. DOI:10.1175/1520-0469(1975)032〈2309:ASOTWA〉2.0.CO;2
Yanai M, Li C F. 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau. Monthly Weather Review, 122(2): 305-323. DOI:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2
Yang Y, Liu X Y, Lu Z H, et al. 2016. Study on depth of atmospheric boundary layer in gobi desert regions of the Bosten lake basin. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 52(5): 829-836. DOI:10.13209/j.0479-8023.2015.145
Ye D Z, Tao S Y, Li M C. 1958. The abrupt change of circulation over northern hemisphere during June and October. Acta Meteorologica Sinica (in Chinese), 29(4): 249-263.
Ye D Z, Gao Y X. 1979. Tibetan Plateau Meteorology (in Chinese). Beijing: Science Press.
Zhang B H, Liu S H, Liu H P, et al. 2012. The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF. Chinese Journal of Geophysics (in Chinese), 55(7): 2239-2248. DOI:10.6038/j.issn.0001-5733.2012.07.010
Zhang G Z, Xu X D, Wang J Z. 2003. A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data. Advances in Atmospheric Sciences, 20(3): 349-356. DOI:10.1007/bf02690793
Zhang Q, Hu Y Q. 2001. Scientific problems and advance of atmospheric boundary layer physics. Advance in Earth Sciences (in Chinese), 16(4): 526-532. DOI:10.3321/j.issn:1001-8166.2001.04.013
Zhang Q, Wei G A, Hou P. 2004. Observation studies of atmosphere boundary layer characteristic over Dunhuang Gobi in early summer. Tibetan Plateau. Plateau Meteorology (in Chinese), 23(5): 587-597. DOI:10.3321/j.issn:1000-0534.2004.05.003
Zhang Q, Wang S. 2008. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China. Acta Meteorologica Sinica (in Chinese), 66(4): 599-608. DOI:10.11676/qxxb2008.057
Zhang Q, Zhang J, Qiao J, et al. 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China. Science China Earth Sciences, 54(10): 1586-1594. DOI:10.1007/s11430-011-4207-0
Zhang Q, Qiao L, Yue P, et al. 2019. The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area. Chinese Science Bulletin (in Chinese), 64(15): 1637-1650. DOI:10.1360/N972018-01014
Zhang W C, Guo J P, Miao Y C, et al. 2016. Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmospheric Chemistry and Physics, 16(15): 9951-9963. DOI:10.5194/acp-16-9951-2016
Zhang W C, Guo J P, Miao Y C, et al. 2017. On the summertime planetary boundary layer with different thermodynamic stability in China: a radiosonde perspective. Journal of Climate, 31(4): 1451-1465. DOI:10.1175/jcli-d-17-0231.1
Zhang Y H, Seidel D J, Zhang S D. 2013. Trends in planetary boundary layer height over Europe. Journal of Climate, 26(24): 10071-10076. DOI:10.1175/JCLI-D-13-00108.1
Zhao C L, Lü S H, Han B, et al. 2016. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer. Plateau Meteorology (in Chinese), 35(4): 1004-1014. DOI:10.7522/j.issn.1000-0534.2015.00080
Zhao J H, Zhang Q, Wang S. 2011. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China. Acta Meteorologica Sinica (in Chinese), 69(6): 1029-1037. DOI:10.11676/qxxb2011.090
Zhao M, Miao M Q. 1992. The Atmospheric Boundary Layer (in Chinese). Beijing: Science Press.
Zhao P, Li Y Q, Guo X L, et al. 2018. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan plateau atmospheric scientific experiment. Acta Meteorologica Sinica (in Chinese), 76(6): 833-860. DOI:10.11676/qxxb2018.060
Zhao P, Zhou X J, Chen J M, et al. 2019. Global climate effects of summer Tibetan Plateau. Science Bulletin, 64(1): 1-3. DOI:10.1016/i.scib.2018.11.019
Zhou M Y, Qian F L, Chen Z, et al. 2002. The characteristics of the profiles for wind, temperature and humidity in the baroclinic convective boundary layer on Xizang Plateau. Chinese Journal of Geophysics (in Chinese), 45(6): 773-783.
Zhou W, Yang S P, Jiang X, et al. 2018. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data. Acta Meteorologica Sinica (in Chinese), 76(1): 117-133. DOI:10.11676/qxxb2017.079
Zuo H C, Hu Y Q, L S H, et al. 2004. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau. Progress in Natural Science (in Chinese), 14(5): 535-540. DOI:10.3321/j.issn:1002-008X.2004.05.009
陈学龙, 马耀明, 胡泽勇, 等. 2010. 季风爆发前后青藏高原西部改则地区大气结构的初步分析. 大气科学, 34(1): 83-94. DOI:10.3878/j.issn.1006-9895.2010.01.08
胡非, 洪钟祥, 雷孝恩. 2003. 大气边界层和大气环境研究进展. 大气科学, 27(4): 712-728. DOI:10.3878/j.issn.1006-9895.2003.04.18
李家伦, 洪钟祥, 孙菽芬. 2000. 青藏高原西部改则地区大气边界层特征. 大气科学, 24(3): 301-312. DOI:10.3878/j.issn.1006-9895.2000.03.02
李茂善, 马耀明, 马伟强, 等. 2011. 藏北高原地区干、雨季大气边界层结构的不同特征. 冰川冻土, 33(1): 72-79. DOI:10.3969/j.issn.1000-6826.2014.06.03
刘红燕, 苗曼倩. 2001. 青藏高原大气边界层特征初步分析. 南京大学学报(自然科学版), 37(3): 348-357. DOI:10.3321/j.issn:0469-5097.2001.03.013
刘辉志, 冯健武, 王雷, 等. 2013. 大气边界层物理研究进展. 大气科学, 37(2): 467-476. DOI:10.3878/j.issn.1006-9895.2012.12315
刘辉志, 王雷, 杜群. 2018. 大气边界层物理研究进展(2012-2017年). 大气科学, 42(4): 823-832. DOI:10.3878/j.issn.1006-9895.1802.17274
刘树华, 刘振鑫, 郑辉, 等. 2013. 多尺度大气边界层与陆面物理过程模式的研究进展. 中国科学: 物理学力学天文学, 43(10): 1332-1355. DOI:10.1360/132013-247
吕雅琼, 马耀明, 李茂善, 等. 2008. 青藏高原纳木错湖区大气边界层结构分析. 高原气象, 27(6): 1205-1210.
邱金桓, 郑斯平, 黄其荣, 等. 2003. 北京地区对流层中上部云和气溶胶的激光雷达探测. 大气科学, 27(1): 1-7. DOI:10.3878/j.issn.1006-9895.2003.01.01
宋正山, 朱抱真, 孙国武. 1984. 青藏高原西部地区热力混合层的初步研究. //青藏高原气象科学实验文集(二). 北京: 科学出版社.
王珍珠, 李炬, 钟志庆, 等. 2008. 激光雷达探测北京城区夏季大气边界层. 应用光学, 29(1): 103-107. DOI:10.3969/j.issn.1002-2082.2008.01.023
杨洋, 刘晓阳, 陆征辉, 等. 2016. 博斯腾湖流域戈壁地区大气边界层高度特征研究. 北京大学学报(自然科学版), 52(5): 829-836. DOI:10.13209/j.0479-8023.2015.145
叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象. 气象学报, 29(4): 249-263.
叶笃正, 高由禧. 1979. 青藏高原气象学. 北京: 科学出版社.
张碧辉, 刘树华, Liu H P, 等. 2012. MYJ和YSU方案对WRF边界层气象要素模拟的影响. 地物理学报, 55(7): 2239-2248. DOI:10.6038/j.issn.0001-5733.2012.07.010
张强, 胡隐樵. 2001. 大气边界层物理学的研究进展和面临的科学问题. 地球科学进展, 16(4): 526-532. DOI:10.3321/j.issn:1001-8166.2001.04.013
张强, 卫国安, 侯平. 2004. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究. 高原气象, 23(5): 587-597. DOI:10.3321/j.issn:1000-0534.2004.05.003
张强, 王胜. 2008. 西北干旱区夏季大气边界层结构及其陆面过程特征. 气象学报, 66(4): 599-608. DOI:10.11676/qxxb2008.057
张强, 乔梁, 岳平, 等. 2019. 干旱区夏季晴空期超厚对流边界层发展的能量机制. 科学通报, 64(15): 1637-1650. DOI:10.1360/N972018-01014
赵采玲, 吕世华, 韩博, 等. 2016. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究. 高原气象, 35(4): 1004-1014. DOI:10.7522/j.issn.1000-0534.2015.00080
赵建华, 张强, 王胜. 2011. 西北干旱区对流边界层发展的热力机制模拟研究. 气象学报, 69(6): 1029-1037. DOI:10.11676/qxxb2011.090
赵鸣, 苗曼倩. 1992. 大气边界层. 北京: 气象出版社.
赵平, 李跃清, 郭学良, 等. 2018. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验. 气象学报, 76(6): 833-860. DOI:10.11676/qxxb2018.060
周明煜, 钱粉兰, 陈陟, 等. 2002. 西藏高原斜压对流边界层风、温、湿廓线特征. 地球物理学报, 45(6): 773-783. DOI:10.3321/j.issn:0001-5733.2002.06.004
周文, 杨胜朋, 蒋熹, 等. 2018. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度. 气象学报, 76(1): 117-133. DOI:10.11676/qxxb2017.079
左洪超, 胡隐樵, 吕世华, 等. 2004. 青藏高原安多地区干、湿季的转换及其边界层特征. 自然科学进展, 14(5): 535-540. DOI:10.3321/j.issn:1002-008X.2004.05.009