地球物理学报  2020, Vol. 63 Issue (4): 1422-1430   PDF    
断裂带同震温度负异常机制分析
杨小秋1,2,3, 林為人4,5, 葉恩肇6, 许鹤华1,2,3, 徐子英7     
1. 中国科学院边缘海与大洋地质重点实验室, 南海海洋研究所, 广州 510301;
2. 中国科学院南海生态环境工程创新研究院, 广州 510301;
3. 南方海洋科学与工程广东省实验室(广州), 广州 511458;
4. Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan;
5. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Kochi 783-8502, Japan;
6. 台湾师范大学地球科学系, 台北 11677;
7. 自然资源部海底矿产资源重点实验室, 广州海洋地质调查局, 广州 510075
摘要:断裂带同震温度响应,可在震后钻孔测温中获得并识别,为发震断层摩擦特性与发震机制等基础研究提供了非常独特的思路和有效手段.集集、汶川及日本东北大地震后,实施了台湾车笼埔断层钻探项目(TCDP)、汶川地震断裂带科学钻探工程(WFSD)和日本海沟快速钻探计划(JFAST).钻孔测温结果表明:滑移面上下5~20 m范围内存在温度正异常,这是同震摩擦生热所致,该机制已被广泛认识和接受;同时,距滑移面20~60 m范围内也存在明显的温度负异常,但其成因机制几乎还未被真正关注和认识.虽然温度负异常峰值只有正异常峰值的1/4~1/3,但温度负异常分布范围却是正异常分布范围的3~4倍,即正、负温度异常区对应的总能量基本相当.因此,断裂带震后钻孔测温中的负异常及其成因不容忽视.在详细分析几种可能的同震温度负异常机制后(如岩层热物性分布差异、流体运移、表面自由能增大及同震应力释放),发现能在理论、实验及野外观测上都得到支撑的普适性机制只有同震应力释放.这可能是断裂带震后温度负异常的主要原因.
关键词: 同震温度响应机制      应力释放      表面自由能      摩擦生热      集集地震      汶川地震      日本东北地震     
Analysis on the mechanisms of coseismic temperature negative anomaly in fault zones
YANG XiaoQiu1,2,3, LIN Weiren4,5, YEH En-Chao6, XU HeHua1,2,3, XU ZiYing7     
1. Chinese Academy of Sciences Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Guangzhou 510301, China;
2. Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China;
3. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
4. Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan;
5. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Kochi 783-8502, Japan;
6. Department of Earth Sciences, National Taiwan Normal University, Taibei 11677, China;
7. Key Laboratory of Marine Mineral Resources, Ministry of Nature Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China
Abstract: The coseismic temperature responses can be recognized in the borehole temperature measurements in fault zones after earthquakes. It provides a unique idea and an effective mean for basic research about the friction features and seismogenic mechanisms of fault zones. Borehole temperature measurement results show that there were both positive and negative temperature anomalies that followed the 1999 Chi-Chi, 2008 Wenchuan and 2011 Tohoku earthquakes. The positive temperature anomaly (within 5~20 m away from fault slip surfaces) has been well known because of the frictional heating that occurred during coseismic faulting. However, the negative temperature anomaly (range of 20~60 m from fault slip surfaces) still has not been noted and expressly addressed. The amplitude of the negative temperature anomaly is 1/4~1/3 of that of the positive temperature anomaly; but the range of the negative temperature anomaly are 3~4 times of that of positive anomaly. In that case, the total of energy in the negative and positive areas is basically the same. Therefore, the negative anomalies in borehole temperature measurement and their causes can no longer be ignored. After a detailed analysis of several possible mechanisms of coseismic temperature negative anomalies (i.e., differences in distribution of thermal properties, fluid migration and increase of surface free energy), it is found that only coseismic stress release is a universal mechanism that can be supported in theory, experiment and field observation. This may be the main reason for the negative temperature anomaly in fault zones after earthquakes.
Keywords: The mechanisms of coseismic temperature responses    Coseismic stress release    Surface free energy    Frictional heating    Chi-Chi earthquake    Wenchuan earthquake    Tohoku earthquake    
0 引言

一直以来,灾难性大地震时有发生,给全人类造成了巨大的生命和财产损失.为深入研究发震机制,科学家们尝试在发震断裂带实施科学钻探并开展综合研究,其中一项主要工作就是基于震后钻孔测温探究断裂带摩擦特性与发震机制.例如1999年集集(9.21, MW7.6)、2008年汶川(5.12, MW7.9)及2011年日本东北(3.11, MW9.0)大地震后,分别实施了台湾车笼埔断层钻探项目(TCDP)(Ma et al., 2006)、汶川地震断裂带科学钻探工程(WFSD)(Li et al., 2013)和日本海沟快速钻探计划(JFAST)(Chester et al., 2012),并开展了钻孔测温(图 1).基于震后各发震断层滑移面附近的温度异常分布估算摩擦热(ΔQF),再根据ΔQF=μ·σn·d(其中μσnd,分别为动摩擦系数、有效正应力、滑移量)(Fulton et al., 2013),估算动摩擦系数等基础参数,进而开展各发震断层摩擦特性和发震机制研究(Kano et al., 2006; Tanaka et al., 2006, 2007; Li et al., 2013, 2015; Fulton et al., 2013).

图 1 震后断层滑移面上下60~80 m范围内的钻孔温度异常剖面 钻孔测温曲线已扣除背景地温梯度;粉红色区域为温度正异常;浅蓝色区域为温度负异常;红、蓝色数值为温度正、负异常峰值及比例;t为震后的测温时间. Fig. 1 Temperature anomaly profiles in boreholes within 60~80 m above/below the fault slip surface after the Chi-Chi (a1, a2), the Wenchuan (b1, b2) and the Tohoku (c1, c2) earthquakes The borehole temperature measurement profiles have been deducted the background geothermal gradient; The pink and light blue areas are the positive and negative temperature anomalies, respectively; The red and blue values are the positive and negative temperature anomaly peaks and proportions; t is the temperature measurement time after earthquake.

仔细分析上述震后钻孔测温结果(图 1)可发现:1)在台湾TCDP钻孔中,距滑移面20~60 m范围内出现的温度负异常峰值约20 mK,为滑移面处的温度正异常峰值(~60 mK)的1/3(Kano et al., 2006)(图 1a2);2)在汶川WFSD-1钻孔中,距滑移面5~30 m范围内出现的温度负异常峰值约10 mK,为滑移面处的温度正异常峰值(~38 mK)的1/3.8 (Li et al., 2013, 2015)(图 1b2);3)而在日本JFAST钻孔中,距滑移面15~30 m范围内出现的温度负异常峰值约75 mK,为滑移面处的温度正异常峰值(~310 mK)的1/4(JFAST钻孔只钻到俯冲板块交界面,因此,只有断层滑移面之上的测温数据)(Fulton et al., 2013)(图 1c2).即震后不仅滑移面上下5~20 m范围内存在温度正异常;同时,距滑移面20~60 m范围内也存在明显的温度负异常.该温度负异常峰值幅度虽然只有正异常的1/4~1/3,但其分布范围却是正异常的3~4倍(图 1),从而可积分估算出正、负异常区对应的总能量.他们的量级基本一致.这是巧合,还是受某种内在机制主控的表征呢?

虽然震后滑移面上下5~20 m范围内的温度正异常基于摩擦生热这一机制可很好地解释,并已得到广泛认识和接受(Kano et al., 2006; Tanaka et al., 2006, 2007; Li et al., 2013, 2015; Fulton et al., 2013),但震后距滑移面20~60 m范围内的温度负异常的成因机制,几乎还未被真正关注和认识.下面我们将详细论述几种可能的温度负异常机制.

1 岩层热导率分布差异或断裂带内流体运移?

目前,岩层热导率分布差异或断裂带内流体(包括孔隙流体和钻探冷却循环流体)运移被认为是导致断裂带震后温度负异常的原因之一(Fulton et al., 2010, 2013; Kano et al., 2006).图 1中集集和日本东北大地震后钻孔温度异常,不仅扣除了背景地温梯度,而且消除了地层热导率分布差异和钻探过程中冷却循环流体等对温度剖面的影响.同时根据测井数据、渗透率分布及孔隙水地球化学特征等进行综合分析,但并未发现断层带内孔隙流体运移证据(Kano et al., 2006; Fulton et al., 2013).最后,通过计算还表明:1)若断裂带内长期存在孔隙流体运移,则其对应的温度异常峰值会偏离断层滑移面(Kano et al., 2006);2)若存在瞬间流体运移,则断裂带的渗透率要高达10-14 m2以上,才能产生明显的影响(Fulton et al., 2010).而台湾TCDP钻孔和日本JFAST钻孔温度异常峰值与断层滑移面对应非常好,同时深部钻探和地震参数反演结果表明脆性地壳渗透率通常在10-17~10-16 m2(Townend and Zoback, 2000),且TCDP和JFAST钻孔取样后也未发现断裂带渗透率高达10-14 m2的情况(Yeh et al., 2007; Chester et al., 2012).

实际上,在不同的发震断层中,很难确保岩层热导率分布差异模式和地震扰动导致的流体运移模式都一致,都只使得距滑移面20~60 m范围内出现温度降低;难道内部流体在地震扰动下,就不会随机运移,从而造成滑移面及其上下较大范围内出现各种无规则的温度异常吗?

由此看来,岩层热导率分布差异或断裂带内流体运移,可能不是断裂带震后温度负异常的主要原因.

2 同震破裂过程中,表面自由能增大是否会引起温度变化?

刘培洵等(2004)研究人员曾开展花岗闪长岩简支梁横弯实验.其实验结果显示:拉张区在破裂时的温度升高,并被解释为摩擦生热(图 2).然而,拉张区破裂前和破裂时,破裂面上是否存在有效正应力?若不存在有效正应力,应该就不是摩擦生热导致.这是否预示着:可能存在另外一种未被大家认知的升温机制呢?比如破裂时表面自由能(surface free energy)的增大,也会导致温度升高吗?

图 2 花岗闪长岩简支梁横弯破裂升温实验(刘培洵等, 2004) (a)可见光影像,破裂后开灯拍照; (b)热红外影像,破裂时拍摄,红斑区比外围高~2 ℃. Fig. 2 Transverse bending fracture experiment of simple support beam of granodiorite (Liu et al., 2004) (a) The visible image after fracture; (b) The thermal infrared image during fracturing. The temperature in the erythema is higher ~2 ℃ than that surrounding area.

破裂前,“破裂面处”的分子(为了便于描述这个区间而定义一个“破裂面处”),和其他内部分子一样,都处于分子间引力平衡(图 3a).破裂形成新的表面时,破裂面内的分子失去引力平衡,来自内部分子的引力致使破裂面内的分子存在向内部运动的趋势,导致破裂面处的分子势能瞬间增大,对应的表面自由能增大(图 3b) (傅献彩等, 1990).这种情况下那破裂面处按理应该出现温度降低,因为产生的新表面需要消耗一部分能量.这与刘培洵等的实验观测相反.因此,这可能预示存在另外一种未知的微观机制,导致破裂时破裂面温度升高.

图 3 固-气界面内部和表面分子受力示意图 (改自傅献彩等(1990)) Fig. 3 Schematic diagram of molecular forces on the interior and surface of solid-gas interface (modified from Fu et al (1990))

由此可知,目前对破裂面处表面自由能增大是否会引起温度升高这一问题的本质,还不完全清晰和统一,有待进一步深入研究和探讨.

3 同震应力释放导致的温度降低效应?

关于同震应力释放导致温度降低这一机制,目前在理论、实验及原位观测中已有初步认识.下面将详细论述.

3.1 岩石绝热减压温度响应理论、实验及原位观测

据固体力学中的绝热加压(或减压)原理,介质在绝热加压(或减压)过程中,其内部温度变化与应力变化之间存在如下关系:

(1)

其中,Δσ和ΔT分别为介质内部体应力和温度变化,T0为初始温度,αvρcp分别为介质体积热膨胀系数、密度及定压比热容(Boley and Weiner, 1960; 谢锐生, 1980; 尹祥础, 1985; Wong et al., 1987, 1988; 刘培洵等, 2004).而绝大多数断层发震时,其内部构造应力都是在数秒至数十秒内瞬间释放,可视为绝热减压的过程,势必导致发震断层及周围岩层内能减小、温度降低.

近年来,已有研究人员在开放体系下进行岩石应力卸载过程中观测到温度降低现象(刘培洵等, 2004; 陈顺云等, 2009; 马瑾等, 2012; Chen et al., 2015, 2018a).但实验室常规岩石应力加、卸载过程中难以实现“绝热”条件,从而阻碍了岩石绝热应力-温度响应的定量研究.为了进一步实现绝热条件下岩石应力-温度响应测试,我们于2014年10月前往龙门山断裂带开展野外地质考察与采样(图 4);随后基于自主研发的高稳定性、高分辨率(1.0 mK)测温技术(Qin et al., 2013),采用液压瞬间加、卸载技术,设计并组建了岩石应力快速加、卸载温度响应测试系统(图 5ab).该系统包括两个灌满硅油的耐压罐A和B,耐压灌A连接加压泵,耐压灌B内安置被橡胶套密封后的岩石样品组件,岩样表面和中心分别设置了微型Pt1000铂电阻温度传感器.实验过程中,首先利用加压泵将耐压罐A内的围压升至预定压力(比如130 MPa),待整个系统温度达到平衡后(至少4 h),手动快速打开耐压罐A和B之间的阀门V02,使得耐压灌A内的围压瞬间降低,而耐压灌B内的围压瞬间升高(1 s内);待整个系统温度再次达到平衡后(至少4 h)再手动快速打开耐压罐B的阀门V03,耐压灌B内的围压瞬间降低(1 s内).耐压灌B内围压每次瞬间升高(或降低)后的10~20 s内,耐压灌内硅油的温度变化还未影响到岩石样品中心,从而真正实现了岩石样品的绝热增压(或减压)(Yang et al., 2017; Yang et al., 2018).通过实时监测耐压灌B内围压和岩样中心温度变化,即可获得岩石绝热应力变化的温度响应系数(β=(∂T/∂P)s),例如图 5c图 5d展示了龙门山断裂带须家河组砂岩(L28)应力瞬间加卸、载过程中的温度响应特征.基于该系统,我们对采自龙门山断裂带和台湾车笼埔断裂带等代表性岩样(15块),系统地开展了干燥岩石绝热应力变化温度响应定量测试.结果表明:1)绝热条件下,岩石应力瞬间降低(或增大)时,其内能瞬间减小(或增大),从而使得其温度降低(或升高).证实了绝热应力释放导致温度降低这一机制;2)地壳常见岩石在干燥条件下,火成岩和变质岩的绝热应力-温度响应系β(2.5~3.2 mK/MPa)明显低于沉积岩(3.5~6.2 mK/MPa)(Yang et al., 2017).

图 4 龙门山地区地质构造与2014年10月野外采样(其中a—c改自Wang等(2014)Yang等(2017)) Fig. 4 Geological structures of the Longmenshan area and field geological sampling locations (a—c are modified from Wang et al (2014) and Yang et al (2017))
图 5 岩石应力瞬间变化温度响应测试系统示意图(a)与实物工作照(b)及龙门山断裂带须家河组砂岩应力瞬间加载(c)、卸载(d)温度响应实验结果(改自Yang等(2017)) Fig. 5 Schematic diagram (a) and work photo (b) of the test system for rock temperature response during rapid stress change, and the experimental results of a sandstone sampled in the Xujiahe formation in the Longmenshan Fault Zone during rapid loading (c) and unloading (d) processes (modified from Yang et al (2017))

同时,陈顺云、刘培洵等(陈顺云等, 2013; Chen et al., 2016, 2018b)在我国地震多发带川西高原鲜水河断裂带布设了地温长期观测台网,用于监测并捕获地震前后基岩温度变化,以期获得地震过程中构造应力演化信息.基于该观测台网,他们在2013年4月20日芦山地震(MS7.0)和2014年11月22日康定地震(MS6.3)前后,观测地温变化,并与台站周围小震活动存在较好的对应关系.依据岩石绝热应力-温度响应关系,他们认为基岩地温变化,其实是巴颜喀拉地块内部及边界构造应力在芦山地震和康定地震过程中调整引起,也即很可能与芦山地震和康定地震有关.

3.2 同震平均主应力降(Δσm)与温度降(ΔT)估算

不少学者通过震后车笼埔断裂带TCDP和日本海沟俯冲带JFAST钻孔应力测量,发现最大主应力都由近水平方向转换成近竖直方向,其构造挤压应力几乎全部释放完了(Lin et al., 2007a, 2007b, 2013; Hasegawa et al., 2011; Yoshida et al., 2012).同时,根据GPS资料获取同震位移分布、震源机制解及地震波波形等数据分析,发现1999年集集地震和2011年日本Tohoku大地震震后,其剪切应力降(Δτ)分别达到3.5~11.0 MPa (Ma et al., 2000; Kanamori and Brodsky, 2004)和20.0 MPa(Hasegawa et al., 2012; Iinuma et al., 2011; Kanamori and Brodsky, 2004; Yoshida et al., 2012).而1999年集集地震和2011年Tohuko-Oki地震的发震断层倾角(θ)分别为~30°和~10°(Yeh et al., 2007; Chester et al., 2012).针对逆冲型地震,平均主应力降(Δσm)与剪切应力降(Δτ)和发震断层倾角(θ)之间的关系(Scholz, 2002; Kanamori and Brodsky, 2004; Chen et al., 2016)如下:

(2)

据此,可估算出这两个大地震的平均主应力降(Δσm)分别达到3.0~9.0 MPa、~39.0 MPa.根据我们最新实验结果,地壳常见岩石绝热应力-温度响应系数(β=(∂T/∂P)s)达到1.5~6.2 mK/MPa(Yang et al., 2017),车笼埔断裂带TCDP钻孔中砂岩β系数在4.25~4.89 mK/MPa;由于暂时还未申请到日本海沟俯冲带JFAST钻孔岩芯样品,从而没有该断裂带岩样的实测β数据,其对应的β暂且取值为1.5~4.0 mK/MPa.则根据上述温度降(ΔT)与应力降(Δσ)关系式(1),可大致估算出1999年集集地震和2011年日本东北地震过程中,车笼埔断裂带和日本海沟俯冲带的温度降分别达到13~44 mK、59~150 mK,这与TCDP钻孔中距滑移面20~60 m范围内出现的~20 mK的温度负异常(Kano et al., 2006)和JFAST钻孔中距滑移面15~30 m范围内出现的~75 mK的温度负异常(Fulton et al., 2013)在量级上基本吻合(Yang et al., 2017).这很可能预示:同震应力释放,可能是断裂带震后温度负异常的主要原因.

由此看来,不管是固体绝热减压理论、实验室岩石样品应力加、卸载与温度响应实验,还是断裂带震后钻孔测温及基岩原位温度监测,都有迹象表明断层发震时,不仅会因同震摩擦而引起滑移面附近温度升高,同时也会因同震应力释放而导致温度降低,而且其范围比摩擦生热引起的温度升高范围要宽很多.因此,虽然摩擦生热能量密度达到10~30 MJ·m-2,但其只分布在极薄(通常仅1~10 mm厚)的断层滑移层内(Sibson, 2003; Song et al., 2007; Kuo et al., 2009, 2011; Chester et al., 2012, 2013; Fulton et al., 2013; Li et al., 2013),随后逐渐向两侧扩散;而同震应力释放导致的温度降低虽然只有0.020~0.100℃(即20~100 mK),但对应的区域可能是断层滑移面上下几十米至百米,则其等效到单位面积内的能量密度还是非常可观且不可忽略.比如当岩石的体积比热容取均值(ρc)=2.5 J·m-3·K-1,应力释放导致的温度降低范围取均值2D=100 m,则温度负异常ΔTS=0.020~0.100 ℃时,其等效到单位面积内的能量密度就达到5~25 MJ·m-2,与摩擦生热的能量密度10~30 MJ·m-2在同一数量级;这与基于钻孔温度异常积分估算结果基本一致,也即震后断裂带正、负异常区对应的总能量之量级基本一致.

因此,震后断裂带温度负异常及其成因机制不容忽视,否则势必会低估发震断层摩擦系数,进而不利于全面认识断裂带摩擦特性及发震机制.

4 小结与展望

综上所述,就目前已有的理论、实验及野外原位观测结果来看,同震应力释放可能是断裂带震后温度负异常的主要原因.断裂带同震温度异常可能同时受控于多种机制,例如同震摩擦、破裂面表面自由增大导致温度变化、及同震应力释放导致温度降等.但同一地震中,这些机制,会同时存在吗?各自影响的范围及大小如何?又是如何共存和相互影响呢?而且实际地表浅部地层,通常都含孔隙水,而地震过程中地层骨架应力会发生变化,地层中孔隙水压也会发生变化.因此,实际地层含水后,其绝热应力-温度响应特征很大程度上会受到孔隙水的影响.但孔隙水到底如何影响地层绝热应力-温度响应特征呢?

但要有效地解答上述基础问题,并具体用于解释上述三个断裂带震后温度异常,后续工作中,还需聚焦于:1)饱和水岩样绝热应力-温度响应实验;2)岩石拉伸破裂和挤压破裂过程中的温度响应实验,深入研究发震断裂带同震温度响应机制;3)再基于实验结果获得的新认识,开展断裂带同震热-固耦合的动力学模拟,力求准确区分各种机制导致的温度异常,确定各自的影响范围和大小,以便从震后各钻孔测温结果中准确提取摩擦热导致的温度正异常信息,重新估算各断裂带发震时的摩擦热和摩擦系数.这将为进一步了解这些活动断裂带的摩擦特性、发震机制及地震能量分配提供理论依据,对今后防震减灾工作具有实际指导意义.

致谢  感谢陈顺云、刘培洵、施小斌、李海兵等诸位学者关于同震温度响应机制的有益讨论!龙门山断裂带野外地质考察与采样过程中,曾信和于传海全程参与,并得到李海兵、郑勇、王焕的大力支持,在此一并感谢!感谢两位匿名审稿专家的中肯意见和建议.
References
Boley B A, Weiner J H. 1960. Theory of Thermal Stresses. New York: John Wiley and Sons.
Chen S Y, Liu L Q, Liu P X, et al. 2009. Theoretical and experimental study on relationship between stress-strain and temperature variation. Science in China Series D:Earth Sciences, 52(11): 1825-1834.
Chen S Y, Liu P X, Liu L Q, et al. 2013. A phenomenon of ground temperature change prior to Lushan Earthquake observed in Kangding. Seismology and Geology (in Chinese), 35(3): 634-640.
Chen S Y, Liu P X, Guo Y S, et al. 2015. An experiment on temperature variations in sandstone during biaxial loading. Physics and Chemistry of the Earth, Parts A/B/C, 85-86: 3-8. DOI:10.1016/j.pce.2014.10.006
Chen S Y, Liu P X, Liu L Q, et al. 2016. Bedrock temperature as a potential method for monitoring change in crustal stress:Theory, in situ measurement, and a case history. Journal of Asian Earth Sciences, 123: 22-33. DOI:10.1016/j.jseaes.2016.03.018
Chen S Y, Guo Y S, Liu P X, et al. 2018a. Theoretical and experimental investigations on temperature variations in granodiorite with a hole during biaxial loading and its potential implications for monitoring changes in the crustal stress. Geophysical Journal International, 215(2): 996-1002. DOI:10.1093/gji/ggy322
Chen S Y, Liu P X, Guo Y S, et al. 2018b. Co-seismic response of bedrock temperature to the MS6. 3 Kangding earthquake on 22 November 2014 in Sichuan, China. Pure and Applied Geophysics, 176(1): 97-117. DOI:10.1007/s00024-018-1933-7
Chester F M, Mori J J, Toczko S, et al. 2012. Integrated ocean drilling program expedition 343/343T preliminary report. Japan Trench Fast Drilling Project (JFAST), 1 April-24 May 2012 and 5-19 July 2012, Integrated Ocean Drilling Project Preliminary Report, 343.
Chester F M, Rowe C, Ujiie K, et al. 2013. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342(6163): 1208-1211. DOI:10.1126/science.1243719
Fu X C, Shen W X, Yao T Y, et al. 1990. Physical Chemistry (in Chinese). Beijing: Higher Education Press.
Fulton P M, Harris R N, Saffer D M, et al. 2010. Does hydrologic circulation mask frictional heat on faults after large earthquakes?. Journal of Geophysical Research:Solid Earth, 115(B9): B09402. DOI:10.1029/2009JB007103
Fulton P M, Brodsky E E, Kano Y, et al. 2013. Low coseismic friction on the tohoku-oki fault determined from temperature measurements. Science, 342(6163): 1214-1217. DOI:10.1126/science.1243641
Hasegawa A, Yoshida K, Okada T. 2011. Nearly complete stress drop in the 2011 MW9. 0 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 703-707. DOI:10.5047/eps.2011.06.007
Hasegawa A, Yoshida K, Asano Y, et al. 2012. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth and Planetary Science Letters, 355-356: 231-243. DOI:10.1016/j.epsl.2012.08.042
Iinuma T, Ohzono M, Ohta Y, et al. 2011. Coseismic slip distribution of the 2011 off the pacific coast of Tohoku earthquake (M9. 0) estimated based on GPS data-Was the asperity in Miyagi-oki ruptured?. Earth, Planets and Space, 63(7): 643-648. DOI:10.5047/eps.2011.06.013
Kanamori H, Brodsky E E. 2004. The physics of earthquakes. Reports on Progress in Physics, 67(8): 1429-1496. DOI:10.1088/0034-4885/67/8/R03
Kano Y, Mori J, Fujio R, et al. 2006. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophysical Research Letters, 33(14): L14306. DOI:10.1029/2006GL026733
Kuo L W, Song S R, Yeh E C, et al. 2009. Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18): L18306. DOI:10.1029/2009GL039269
Kuo L W, Song S R, Huang L, et al. 2011. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics, 502(3-4): 315-327. DOI:10.1016/j.tecto.2011.02.001
Li H B, Wang H, Xu Z Q, et al. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan earthquake fault scientific drilling project Hole-1 (WFSD-1). Tectonophysics, 584: 23-42. DOI:10.1016/j.tecto.2012.08.021
Li H B, Xue L, Brodsky E E, et al. 2015. Long-term temperature records following the MW7. 9 Wenchuan (China) earthquake are consistent with low friction. Geology, 43(2): 163-166. DOI:10.1130/g35515.1
Lin W, Yeh E C, Ito H, et al. 2007a. Preliminary results of stress measurement using drill cores of TCDP Hole-A:an application of anelastic strain recovery method to three-dimensional in-situ stress determination. Terrestrial Atmospheric and Oceanic Sciences, 18(2): 379. DOI:10.3319/TAO.2007.18.2.379(TCDP)
Lin W, Yeh E C, Ito H, et al. 2007b. Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake. Geophysical Research Letters, 34(16): L16307. DOI:10.1029/2007GL030515
Lin W, Conin M, Moore J C, et al. 2013. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science, 339(6120): 687-690. DOI:10.1126/science.1229379
Liu P X, Liu L Q, Chen S Y, et al. 2004. An experiment on the infrared radiation of surficial rocks during deformation. Seismology and Geology (in Chinese), 26(3): 502-511.
Ma J, Sherman S I, Guo Y S. 2012. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault. Science China Earth Sciences, 55(6): 869-881. DOI:10.1007/s11430-012-4423-2
Ma K F, Song T R A, Lee S J, et al. 2000. Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (MW7. 6)-inverted from teleseismic data. Geophysical Research Letters, 27(20): 3417-3420. DOI:10.1029/2000GL011393
Ma K F, Tanaka H, Song S R, et al. 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118): 473-476. DOI:10.1038/nature05253
Qin Y Y, Yang X Q, Wu B Z, et al. 2013. High resolution temperature measurement technique for measuring marine heat flow. Science China Technological Sciences, 56(7): 1773-1778. DOI:10.1007/s11431-013-5239-9
Scholz C H. 2002. The Mechanics of Earthquakes and Faulting. 2nd ed. New York: Cambridge University Press.
Sibson R H. 2003. Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3): 1169-1178. DOI:10.1785/0120020061
Song S R, Wang C Y, Hung J H, et al. 2007. Preface to the special issue on Taiwan Chelungpu-fault Drilling Project (TCDP):Site characteristics and on-site measurements. Terrestrial Atmospheric and Oceanic Sciences, 18(2): 1-6. DOI:10.3319/TAO.2007.18.2.1(TCDP)
Tanaka H, Chen W M, Wang C Y, et al. 2006. Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake. Geophysical Research Letters, 33(16): L16316. DOI:10.1029/2006GL026673
Tanaka H, Chen W M, Kawabata K, et al. 2007. Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones:Are these residuals of heat from faulting?. Geophysical Research Letters, 34(1): L01309. DOI:10.1029/2006GL028153
Townend J, Zoback M D. 2000. How faulting keeps the crust strong. Geology, 28(5): 399-402. DOI:10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
Wang H, Li H B, Si J L, et al. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101-114. DOI:10.1016/j.tecto.2013.08.029
Wong A K, Jones R, Sparrow J G. 1987. Thermoelastic constant or thermoelastic parameter?. Journal of Physics and Chemistry of Solids, 48(8): 749-753.
Wong A K, Sparrow J G, Dunn S A. 1988. On the revised theory of the thermoelastic effect. Journal of Physics and Chemistry of Solids, 49(4): 395-400. DOI:10.1016/0022-3697(88)90099-6
Xie R S. 1980. Principles of Thermodynamics (in Chinese). Guan D X Trans. Beijing: Peaple's Education Press, 139.
Yang X Q, Lin W, Tadai O, et al. 2017. Experimental andnumerical investigation of the temperature response to stress changes of rocks. Journal of Geophysical Research:Solid Earth, 122(7): 5101-5117. DOI:10.1002/2016JB013645
Yang X Q, Lin W, Tadai O, et al. 2018-02-08. System for determining the adiabatic stress derivative of temperature for rock. US2018/0038812 A1.
Yeh E C, Sone H, Nakaya T, et al. 2007. Core description and characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project, Terrestrial. Atmospheric and Oceanic Sciences, 18(2): 327-357. DOI:10.3319/TAO.2007.18.2.327(TCDP)
Yin X C. 1985. Solid Mechanics (in Chinese). Beijing: Seismological Press.
Yoshida K, Hasegawa A, Okada T, et al. 2012. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophysical Research Letters, 39(3): L03302. DOI:10.1029/2011GL049729
陈顺云, 刘力强, 刘培洵, 等. 2009. 应力应变与温度响应关系的理论与实验研究. 中国科学D辑:地球科学, 39(10): 1446-1455.
陈顺云, 刘培洵, 刘力强, 等. 2013. 芦山地震前康定地温变化现象. 地震地质, 35(3): 634-640.
傅献彩, 沈文霞, 姚天扬, 等. 1990. 物理化学. 北京: 高等教育出版杜.
刘培洵, 刘力强, 陈顺云, 等. 2004. 地表岩石变形引起热红外辐射的实验研究. 地震地质, 26(3): 502-511.
马瑾, Sherman S I, 郭彦双. 2012. 地震前亚失稳应力状态的识别——以5°拐折断层变形温度场演化的实验为例. 中国科学:地球科学, 42(5): 633-645.
谢锐生. 1980.热力学原理.关德相译.北京: 人民教育出版杜, 139.
尹祥础. 1985. 固体力学. 北京: 地震出版杜.