地球物理学报  2020, Vol. 63 Issue (4): 1370-1385   PDF    
青藏高原东缘峨眉山新生代加速抬升剥蚀作用
周政1, 吴娟1, 王国芝1, 邓江红1, 邓斌1, 罗强1, 姜磊1, 刘树根1, 邓宾1,2     
1. 成都理工大学“油气藏地质及开发工程”国家重点实验室, 成都 610059;
2. 图宾根大学地球科学系, 图宾根 72074
摘要:本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30 Ma和16~118 Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10 Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8 km,渐新世以来抬升剥蚀速率达0.2~0.4 mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关.
关键词: 低温热年代学      抬升剥蚀      峨眉山      青藏高原东缘     
Cenozoic accelerated erosion of the Emeishan, eastern margin of Tibetan Plateau
ZHOU Zheng1, WU Juan1, WANG GuoZhi1, DENG JiangHong1, DENG Bin1, LUO Qiang1, JIANG Lei1, LIU ShuGen1, DENG Bin1,2     
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation/Chengdu University of Technology, Chengdu 610059, China;
2. Institute für Geowissenschaften, Universität Tübingen, Tübingen 72074, Germany
Abstract: Based on low-temperature thermochronology data, e.g., AFT, ZHe and ZFT, it suggests a coupling correlation between the deformation and cooling processes and thermochronology data at the Emeishan area, eastern margin of Tibetan Plateau. AFT and ZHe ages range from 4 Ma to 30 Ma, and from 16 Ma to 118 Ma, respectively. In particular, there is a distinct relationship between ZHe ages and their elevation, indicating of zircon paleo-PRZ here. Furthermore, the AFT ages at hanging wall of the Wanniansi fault are younger than 10 Ma, in contrast to ages larger than 10 Ma at the footwall, indicating of foreward thrusting and erosion process occurred at the Emeishan area. The thermal histories modeled with AFT, ZHe and ZFT data suggest accelerated erosion occurred after Late Cretaceous in the Emeishan, with rate of 0.2~0.4 mm·a-1 after Oligocene, and there is a total magnitude of rock uplift with 7~8 km at the basement-involved deformation zone. We thus argued that the mount-building processes and their uplift dynamics in the Emeishan should be attributed to the northeastward continental subduction of the Lhasa and Qiangtang blocks and initial extrusion of the eastern Asian block since the mid-Eocene across the eastern Tibetan Plateau.
Keywords: Low-temperature thermochronology    Exhumation and erosion    Emeishan    SE Tibetan Plateau    
0 引言

板块碰撞过程的陆内构造响应受控于大陆动力学复杂性而备受关注(Molnar, 1988; 张国伟等,2013),如:先存结构多期活化(DeCelles et al., 2009)、复合板内应力叠加构造变形(张国伟等,2013)和岩石圈属性与应力传递效应(Aitken, 2011)等.新生代持续印-亚大陆碰撞在青藏高原周缘产生了显著高原物质扩展生长及其陆内构造变形响应(Tapponnier et al., 2001; Royden et al, 2008),该过程不仅形成了全球最大的弥散型陆内构造变形域及其相关盆-山体系(贾承造等, 2013),如:四川盆地、鄂尔多斯和塔里木盆地等,也产生了多种端元模式来诠释青藏高原建造过程,如:下地壳流动模式(Clark and Royden, 2000)和走滑挤出机制(England and Molnar, 1990)等.

青藏高原东缘现今地表GPS数据和古地磁等揭示大量物质顺时针旋转变形过程(Zhang et al., 2004a; Li et al., 2013),由于区域新生代地层残缺导致难以有效揭示青藏高原东缘新生代建造过程,因而被认为是下地壳通道流成因模式的典型代表(Clark and Royden, 2000).但新近的地质构造等证据则揭示出新生代大量的构造缩短变形过程,对不同高原形成机制提出了质疑或反驳,如:前新生代地壳增厚(Liu et al., 2013b)、晚中生代强右旋逆冲构造活动方式(Hubbard and Shaw, 2009)等.需要指出的是,青藏高原周缘发育大量的基底卷入构造,如:吉尔吉斯天山山脉、西隆高原、峨眉山构造带等,它们以(1)高角度边界断层和(2)蕴含早期差异性热属性等特征,区别于青藏高原周缘典型的褶皱冲断带-前陆盆地体系(Lacombe and Bellahsen, 2016).受控于周缘板块碰撞过程的影响,陆内基底卷入构造通常发生先存结构再活化与无序冲断扩展等多期构造变形过程,因而其构造抬升变形与剥蚀过程能够为区域结构动力学背景提供有效的诠释.

青藏高原东缘峨眉山是华南陆块内部、四川盆地西南侧出露的典型基底卷入构造之一(图 1),位于青藏高原东向物质扩展变形前缘与四川克拉通盆地交接转换地区,因而备受国内外关注(Burchfiel et al., 1995; Deng et al., 2015; Meng et al., 2016).本文拟通过对峨眉山基底卷入构造带开展磷灰石和锆石裂变径迹(AFT和ZFT)和锆石(U-Th)/He(ZHe)热年代学定年及其热史模拟,结合典型构造剖面与热结构特征解释峨眉山地区新生代构造变形与抬升剥蚀过程,进一步揭示其隆升建造与热机制,为青藏高原东南缘地区盆-山系统建造过程研究提供佐证.

图 1 青藏高原东缘峨眉山地质简图及其年代学样品特征 Fig. 1 Geological map of the Emeishan and sampling location of low-temperature thermochronometer
1 区域地质背景

峨眉山地处青藏高原东缘北东走向的龙门山—锦屏山褶皱冲断带、川滇南北向构造带交接转换部位,它是华南陆块内部、四川盆地西南侧出露的典型基底卷入构造带,地表出露前寒武纪花岗岩和变质岩基底-中生代碎屑岩层系,其南东侧和北东侧分别被高角度逆断层——龙池—高桥逆断层(即峨眉山断层)和万年寺逆断层所围限、形成典型的楔入构造与四川盆地衔接(图 1).古生代受控于加里东运动及其大量剥蚀,峨眉山地区二叠系直接与下古生界层系不整合接触,尤其发育大量的上二叠统峨眉山组玄武岩而闻名;晚-中三叠世以来,受控于龙门山—锦屏山褶皱冲断带建造过程,区域沉积了巨厚的陆相碎屑岩层系,但新生代地层普遍遭受剥蚀、仅部分残存(Jia et al., 2006; Liu et al., 2012a;Deng et al., 2015).总体上峨眉山地区地层普遍低角度展布、形成典型的断块山和单斜山地貌,其下盘古近系名山组被卷入褶皱变形揭示出新生代重要的构造缩短过程.区域上峨眉山至四川盆地西南缘广泛发育的NE走向断裂系统被晚期E-W走向、NW走向断裂系统切割,如:沙湾镇地区、柳江镇地区等(图 1),揭示出晚期峨眉山构造带NE向挤压楔入四川盆地西南侧.

新生代青藏高原大规模地壳物质沿东构造结和刚性扬子克拉通基底间的“川滇通道”发生东向物质扩展生长过程(Tapponnier et al., 2001; Royden et al., 2008).受此过程影响,四川盆地西南缘,如:龙门山冲断带、锦屏山冲断带等,晚三叠-侏罗纪先存结构受新生代叠加变形改造、构造再活化(Burchfiel et al., 1995; Jia et al., 2006).尤其是沿鲜水河—安宁河—小江左旋弧形走滑断裂体系,大凉山构造带晚新生代(约12~10 Ma)强烈左旋逆冲走滑(Roger et al., 1995; Xu and Kamp, 2000; 邓宾等, 2013Deng et al., 2015)和川滇地块构造挤出过程对峨眉山地区产生了广泛的影响,导致区域发生快速隆升、剥露与盆山地貌建造(Clark et al., 2005; Ouimet et al., 2010; Xu and Kamp, 2000; Deng et al., 2018; Meng et al., 2016).区域上,大量低温热年代学数据揭示出青藏高原东缘地区新生代隆升剥露具有明显的两阶段性,即(1)早新生代 < 0.1 mm·a-1的缓慢隆升剥露和(2)约10 Ma以来的晚新生代约0.5~3 mm·a-1快速隆升剥露过程(Xu and Kamp, 2000; Deng et al., 2015),但新近的热年代学高程剖面揭示出龙门山地区新生代早期快速抬升剥蚀作用(Wang et al., 2012a).需要指出的是,四川克拉通盆地沿NE向SW也具有明显的低温热年代学年龄逐渐减小的趋势(邓宾等,2009; Li et al., 2012),其新生代平均隆升剥露速率从0.05~0.2 mm·a-1逐渐增大~0.6 mm·a-1 (Deng et al., 2013).

2 峨眉山低温热年代学特征 2.1 样品采集与测试方法

为了解峨眉山构造带构造隆升剥露过程,我们首先沿其NE-SW剖面(图 1表 1),以兼顾断层上下盘地层原则、系统采集古近系名山组-下三叠统东川组红色中-细粒(岩屑)砂岩;同时在关键背斜(即牛背山背斜)为识别断层变形对热结构-年代学体系的影响,我们沿断层下盘不同间距采集连续地层样品,即下三叠统东川组-飞仙关组中-细粒(岩屑)砂岩样品.在万年寺断层上盘,我们以采集海拔高程剖面样品为主,其剖面海拔高程跨度为800~3000 m,分别采集上二叠统峨眉山玄武岩-前寒武纪花岗岩样品.为对比峨眉山构造带不同断层系统抬升剥蚀差异性(即NW走向万年寺断层系统和NE走向龙池-高桥断层系统),我们在其峨眉山东南地区采集前寒武纪花岗岩和龙池-高桥断层系统两件样品进行对比(图 1表 1).所有样品采集都基于实测构造剖面和1:5万地质图校对,以便获得其剖面热结构和年代学特征,进一步结合构造剖面特征解释峨眉山构造抬升剥蚀过程及其动力学机制(见后详述).

表 1 峨眉山热年代学样品及其年代测试表 Table 1 Low-temperature thermochronometer data of the Emeishan

所有岩石样品进行无污染碎样后,多批次将样品放置于球磨机将各样品精磨至小于200~300目以保证样品单矿物颗粒形态完整性,随后依次振动床淘洗、三溴甲烷重液(室温比重范围为2.8~2.9)、磁选和双目镜鉴定等标准重矿物分选流程获取大于1000~2000粒单矿物颗粒,需要指出的是,在部分古生界层系样品中未能够获得足够有效的磷灰石颗粒进行(U-Th)/He和裂变径迹年代学测试分析.磷灰石裂变径迹(apatite fission-track, AFT)测试定年采用外探测器法标准流程进行,在中国地震局年代学实验室完成样品测试定年.首先在标准定型模具中使用环氧树脂将磷灰石单矿物颗粒固定,通过多步骤研磨和抛光制片(即环氧树脂片);随后磷灰石单矿物自发径迹蚀刻过程采用5N的HNO3溶液、在25℃室温条件情况下浸泡蚀刻40 s,进一步将环氧树脂片与低铀白云母片贴片制组辐照;最后样品(即样品对应的白云母片)诱发径迹蚀刻过程采用40% HF溶、在25 ℃室温条件情况下浸泡蚀刻20 min(邓宾等, 2013).完成上述辐照-蚀刻后,各样品分别选取大于20~30个有效的、单矿物颗粒,通过Zeiss双目显微镜统计其单矿物裂变径迹Dpar值、(自发与诱发)裂变径迹密度和长度参数(表 1).

锆石样品制样过程首先基于双目镜挑选形态完整、大小相似的3~5单矿物颗粒,随后分别把单矿物放入铌管完成制样.锆石(U-Th)/He测试过程中单颗粒矿物He惰性气体脱气与含量测试在德国图宾根大学地质热年代学实验室采用标准流程完成(Patterson 960 nm激光脱气装置、20 Amps流量激光加热10 min),为保证其单颗粒中He的完全脱气(即剩余He气体含量小于1%)、通常对单颗粒样品采用(3~5次)重复脱气方法.锆石单矿物U和Th放射性成分含量测试在美国亚利桑那大学使用ICP-MS装置完成,其标准分析流程误差值小于2%.最后基于单颗粒几何学(即长度与宽度值)及其a校正常量(Farley et al., 1996)分别计算锆石(U-Th)/He年龄(ZHe)等(表 1).

磷灰石裂变径迹系统封闭温度为100~120 ℃,其相应部分退火带(PAZ)为60~120 ℃(Gallagher et al., 1998; Ketcham et al., 1999).锆石(U-Th)/He系统封闭温度约170~190 ℃,相应部分滞留带(HePRZ)约110~180 ℃(Wolf et al., 1998; Reiners and Brandon, 2006).因此,上述磷灰石和锆石裂变径迹和(U-Th)/He热年代学对比常用来揭示浅表构造抬升剥蚀等过程.

2.2 样品年龄综合特征

本文共测试11件磷灰石裂变径迹样品,4件锆石(U-Th)/He样品.其中磷灰石裂变径迹年龄(AFT年龄)普遍小于30 Ma,径迹长度约12~14 μm;ZHe年龄变化范围较大,为16~118 Ma;仅一个前寒武纪花岗岩样品完成锆石裂变径迹测试,其ZFT年龄为75 Ma(表 1).磷灰石单颗粒年龄雷达图统计中(图 2),所有样品单颗粒AFT年龄具有单峰值分布特征、且单颗粒年龄都远小于其采样地层沉积年龄;同时各样品相关Chi-sq检验概率普遍大于50%、Dpar值普遍为1.4~1.8 μm(标准偏差值为0.2~0.3),揭示出各样品单颗粒年龄属于同组年龄特征、未受到磷灰石颗粒矿物成份差异影响(具有相似的抬升冷却退火动力学特征),各样品单颗粒年龄和径迹特征具有相同或/和相似的抬升冷却退火过程.需要指出的是,古近系名山组样品(DB80806)单颗粒AFT年龄虽然呈单峰值分布特征,但其部分单颗粒年龄与采样地层最大沉积年龄近似(图 2),这可能是其Chi-sq检验概率值偏小的原因之一,反映出该样品可能大致位于磷灰石裂变径迹部分退火带附近,从而导致少量单颗粒年龄未完全退火.

图 2 峨眉山磷灰石裂变径迹样品单颗粒年龄雷达图特征 Fig. 2 Radial plots of samples′ apatite fission track in the Emeishan

峨眉山地区所有样品磷灰石裂变径迹年龄与海拔高程相关性不明显,总体上处于分散性分布状态(图 3a),不具有(由于垂向空间上样品依次抬升冷却通过其封闭温度等温面)线性关系特征.样品AFT年龄与径迹长度不具有相关性,其径迹长度总体上为13~14 μm间(图 3b).总体上磷灰石AFT年龄可以大致分为两类:即大于10 Ma和小于10 Ma年龄值,它们与样品构造部位具有明显的相关性(图 1).AFT年龄小于10 Ma的样品普遍位于万年寺断层上盘(与龙池-高桥断层夹持的楔入构造带内),而AFT年龄大于10 Ma的样品普遍位于万年寺断层下盘;同时牛背山背斜地区,样品AFT年龄伴随距离牛背山断层距离减小、具有明显的年龄减小特征,即从13.6 Ma(样品DB080809)减小到9.5 Ma(样品DB080803),反映出中新世晚期(即约9.5 Ma)以来断层构造活动特征.

图 3 峨眉山热年代学特征与海拔高程综合关系图 (a)低温热年代学年龄-海拔高程关系图;(b)磷灰石裂变径迹年龄与径迹长度关系图;(c)低温热年代学年龄-垂直(伪)高程(pseudo-elevation)剖面关系图. Fig. 3 Relationships among the AFT age, length and elevation across the Emeishan (a) The relationship between AFT age and elevation; (b) The relationship between AFT age and mean length; (c) The relationship between all of ages and pseudo-elevation.

锆石ZHe年龄与样品海拔高程线性关系明显,具有典型的线性关系“拐点”(始新世晚期约35~30 Ma),即海拔低于2500 m的ZHe年龄值与其海拔高程具有明显线性关系,而样品S17030304的ZHe年龄明显增大,导致它们线性插值规律发生转折变化(图 3ac),因此它反映出垂直海拔高程上顶部样品早期位于锆石(U-Th)/He系统部分滞留带(PRZ带)(即抬升剥蚀残存的古部分滞留带),伴随后期抬升冷却过程其底部样品逐渐抬升冷却通过其封闭温度等温面的特征.

磷灰石裂变径迹和锆石(U-Th)/He系统封闭温度存在典型的差异,因此我们基于样品的封闭温度差异性(AFT与ZHe系统封闭温度差异性约70℃)结合样品的海拔高程(本文以最低样品采样高程为基准面),进一步结合区域地温梯度(地温梯度25~35 ℃/km)构建低温热年代学系统年龄-垂直(伪)海拔高程的关系图(图 3c).锆石(U-Th)/He年龄反映出约35~30 Ma以来的快速抬升,其抬升冷却速率约0.16±0.11 mm·a-1,导致样品逐次抬升冷却通过其封闭温度等温面,该过程可能持续至新生代晚期(约10 Ma),伴随进一步构造变形抬升冷却导致样品逐渐抬升通过磷灰石裂变径迹等温面、就位于地表浅部(即部分退火带内)或地表.

2.3 典型样品热史过程

基于上述样品磷灰石裂变径迹和锆石(U-Th)/He年代学特征,我们分别选取万年寺逆冲断层上下盘典型样品进行多封闭系统低温热年代学T-t热史模拟(图 4).样品T-t热史模拟分别采用Ketcham等(1999)磷灰石动力学退火模型和Reiners等(2004)锆石动力学退火模型,基于HeFTy beta 6.0进行.对样品实测径迹长度、年龄值和模拟结果采用GOF检验标准和Kolmogorov-Smirnov检验验证模型结果,有且仅当GOF值和K-S值都大于0.05或0.5时、模拟获得的热演化史是可接受的或极佳.样品DB80503多封闭系统年龄(即ZFT、ZHe和AFT年龄值)及其封闭温度范围作为重要热史限定条件,地表温度限定值为15±5 ℃,同时ZHe年龄与海拔高程关系特征作为重要的参考指标(图 3),来对比T-t热史模拟结果的一致性.样品DB80807热史模拟过程中进一步使用样品沉积地层年龄和地表温度作为初始限定条件,同时峨眉山南部沐川背斜带已有的ZHe年龄特征所揭示的中生代地层普遍未发生(埋深增温导致的)沉积岩锆石(U-Th)/He年代学退火重置(Deng et al., 2015, 2018),因此以锆石部分滞留带(PRZ)作为本样品热史模拟的最大埋深温度限定条件,从而获得有效T-t热演化史.

图 4 峨眉山典型低温热年代学样品热史模拟特征图 Fig. 4 Modeled T-t history of the Emeishan based on multisystem low-temperature thermochronological data

根据模拟热演化历史,峨眉山基底卷入构造带(万年寺断裂上盘地层)样品DB80503晚白垩世以来逐渐发生阶段性加速抬升冷却过程,约80 Ma样品抬升冷却通过锆石裂变径迹部分退火带(ZPAZ)进入锆石(U-Th)/He部分滞留带(HePRZ)、其抬升冷却速率约1.6 ℃/Ma;渐新世-中新世中期25~10 Ma间样品在HePRZ带发生抬升冷却过程,其抬升冷却速率约5 ℃/Ma;中新世晚期约10 Ma以来样品快速抬升冷却通过磷灰石部分退火带(ZPAZ)至浅表,其抬升冷却速率约12 ℃/Ma.基于现今川西南地区地温场特征研究表明,晚三叠世至今区域热流值缓慢降低或相对平稳(朱传庆等,2010),因此用现今区域地温梯度(25~35 ℃/km)进行相关抬升冷却速率计算,得到晚白垩世以来三阶段性抬升冷却速率大致分别为~0.05 mm·a-1、~0.17 mm·a-1和~0.4 mm·a-1,中新世早-中期抬升冷却速率与前述基于年代学年龄-海拔高程关系得出的冷却速率大致相当.样品DB80807伴随早期沉积埋深,始新世中晚期达到最大埋藏深度(HePRZ带)、发生完全退火,随后样品发生阶段性抬升冷却过程.始新世-中新世早期约40~20 Ma间样品逐渐发生抬升冷却过程,其抬升速率较低、约2.5 ℃/Ma;中新世早-中期20~10 Ma间样品抬升冷却通过磷灰石部分退火带(APAZ),其抬升速率明显增大、约6 ℃/Ma;随后晚中新世约10 Ma以来其抬升速率约4 ℃/Ma、抬升剥露至地表.因此,样品新生代抬升冷却速率可大致分为两阶段性、其速率分别为~0.08 mm·a-1和~0.17 mm·a-1.

3 讨论 3.1 晚中-新生代峨眉山构造变形与隆升剥蚀作用

峨眉山基底构造带与扩展变形带具有明显的差异性抬升剥蚀冷却作用过程,晚白垩世以来基底构造带发生抬升冷却剥蚀作用,而其前缘扩展变形带晚白垩世主要发生沉积埋深相关的增温作用,新生代后期二者逐渐发生相似的具两阶段性、加速抬升剥蚀过程.它不仅体现出峨眉山边界断裂—万年寺断层至少在晚白垩世就已经发生构造冲断活动、从而导致峨眉山地区构造抬升与沉积埋深分异性,同时也体现出峨眉山构造带受控于盆缘冲断扩展变形作用具有明显的前陆向扩展生长过程.尤其是,峨眉山构造带低温热年代学年龄及其热史特征与构造分带性具有明显的相关性,以万年寺逆断层为界体现出明显的差异性.因此,基于构造实测剖面和1:5万地质图我们系统绘制峨眉山NE-SW向构造剖面与低温热年代学综合对比图(图 5),并结合不同热年代学封闭温度与现今地温场特征解释恢复出其热结构图,以揭示其晚白垩世以来构造抬升与冷却剥蚀过程.峨眉山构造带古生界层系-前寒武纪变质岩和花岗岩基底(即基底构造带/厚皮构造带)沿万年寺断层NE向逆冲于四川盆地西南缘形成典型的扩展变形带(即薄皮构造带),其古生界-中生界层系普遍发生冲断相关褶皱变形等,如:牛背山断层、牛背山背斜和川主寺向斜等,尤其是扩展变形带古近系名山组晚期缩短变形形成川主寺向斜,揭示出伏虎寺断层新生代晚期扩展构造变形过程.

图 5 峨眉山构造剖面与低温热年代学综合对比图 Fig. 5 NE-SW structural section of the Emeishan with thermochronological ages related to isotherms of closure-temperature

基底卷入构造带(或厚皮构造带)AFT年龄普遍小于10 Ma,明显区别于扩展变形带AFT年龄普遍大于10 Ma特征;同时低温热年代学热史模拟揭示出基底卷入构造带晚白垩世以来三阶段性加速剥蚀过程,也明显区别于扩展变形带始新世以来的两阶段性抬升剥蚀过程.低温热年代学特征揭示出峨眉山构造带典型的前展式(或盆地向)扩展冲断变形过程,低温热年代学热史模拟表明峨眉山基底卷入带晚白垩世逐渐发生缓慢抬升冷却作用(速率约0.05 mm·a-1),这与基底构造带二叠系中残存的锆石(U-Th)/He部分滞留带(Paleo-ZPRZ)特征一致,因此,峨眉山NE缘地区万年寺断层该时期已经发生一定程度的逆冲缩短变形活动,且该过程可能持续至新生代早期.渐新世-中新世中期万年寺断层发生较强烈逆冲缩短变形,导致其上盘古生界-前寒武纪基底发生较快速抬升与冷却剥蚀作用(其速率约0.2 mm·a-1),由于基底卷入带的盆地向扩展冲断变形过程导致其前缘扩展变形带沿伏虎寺逆冲断层发生褶皱冲断作用,古近系名山组卷入构造变形、形成川主寺向斜,且扩展变形带构造抬升与冷却剥蚀作用明显弱于基底卷入带,其抬升冷却剥蚀速率约为0.08 mm·a-1.古近系名山组沉积后由于其发生持续埋深增温过程较短,因而地层中磷灰石未能够发生完全退火作用,一定程度上保留下了磷灰石部分退火带(Paleo-APAZ).

中新世晚期峨眉山地区发生进一步强烈冲断缩短变形与抬升剥蚀作用,基底卷入带地层快速抬升冷却通过磷灰石部分退火带,导致其AFT年龄明显小于10 Ma,抬升冷却速率较早期显著增大、约0.4 mm·a-1.扩展变形带构造抬升作用相对基底卷入带较弱,因此其AFT年龄普遍大于10 Ma,抬升冷却速率约0.2 mm·a-1.由于基底卷入带强烈冲断扩展,导致其下盘地层牛背山背斜核部发生冲断变形形成倒转背斜,因而AFT年龄受控于牛背山断层冲断过程,距离其越近、AFT年龄越小;由于伏虎寺后缘断层带AFT年龄为10.4 Ma(晚三叠世须家河组样品DB80805),明显具有向SW方向减小、且趋于和牛背山断层下盘年龄一致,它体现出伏虎寺断层带向SW向扩展活动序列,基于此我们推测牛背山断层向深部应与伏虎寺断裂归并,它们都受控于峨眉山地区基底构造带沿万年寺断层冲断扩展作用.

新生代冲断缩短变形及其相关抬升冷却剥蚀作用必然导致浅表等温面发生典型的弯曲扰动作用(Stuwe et al., 1994; 邓宾等,2013),而明显区别于盆地内部平坦的等温面特征(图 5).受断层变形强度及其滑脱深度、断坡角度和抬升冷却速率等因素影响,峨眉山地区不同热年代学系统(即FT和(U-Th)/He系统)封闭温度等温面由扩展变形带向SW至基底卷入构造带扰动强度应明显增强.同时峨眉山基底构造带SE缘(即龙池-高桥断层带上盘)地貌坡度和起伏度明显增强,也进一步增大该地区封闭温度等温面扰动程度,可能是导致该地区前寒武纪花岗岩AFT年龄明显较大的原因之一.同时基于锆石(U-Th)/He部分滞留带(平均海拔约1.5~2.5 km)与现今盆地ZHe封闭温度等温面(平均海拔约-4.5~-5.5 km)揭示出峨眉山基底卷入构造带(相对于现今大地水准面)岩石隆升幅度大约达到7~8 km,它与现今四川盆地新生代以来普遍具有3~5 km地表岩石剥蚀特征相一致(Richardson et al., 2008; Li et al., 2012; Deng et al., 2013).

3.2 晚中-新生代峨眉山构造隆升动力学机制

峨眉山位于青藏高原东向物质扩展变形前缘与四川克拉通盆地交接转换地区,其构造变形、抬升冷却剥蚀和板内-板缘碰撞造山等具有明显的响应过程.峨眉山楔入构造带NE-SW向结构-热年代学剖面揭示出其冲断变形与热年代学特征的密切联系性,即受控于新生代前展式冲断缩短变形和抬升冷却剥蚀作用,峨眉山地区低温年代学年龄和热史具有明显的分带性.需要指出的是,青藏高原东南缘有以下几个特点:(1)红河剪切带大规模出露的中始新世(40~30 Ma)高钾质火山岩所揭示的北东向大陆俯冲动力学特征(Chung et al., 1998, 2005; Tapponnier et al., 2001);(2)三江构造带广泛分布大量中始新世-渐新世Cu, Mo, Au和MVT Pb-Zn矿床,如:哀牢山和兰坪—思茅盆地,它们也揭示出同时期的北东向大陆俯冲碰撞动力学特征(Deng et al., 2014);(3)班公—怒江缝合带和金沙江缝合带大量构造变形年代学、火山岩浆事件和抬升剥蚀冷却事件开始于中始新世(Li et al., 2000; Leloup et al., 2001; Liu et al., 2013a, 2015);(4)青藏高原东南缘始新世伊始发生大规模顺时针旋转及走滑变形(Tapponnier et al., 2001; Royden et al., 2008),导致红河断裂带和鲜水河—小江断裂带古近纪位移量约100~300 km(Leloup et al., 1995, 2001),楚雄盆地和四川盆地晚白垩世后期发生30°~10°顺时针旋转分量(Sato et al., 2001);(6)新生代龙门山—大凉山地区普遍发生15%~20%构造缩短变形(Hubbard and Shaw, 2009; Deng et al., 2018),它们共同说明峨眉山楔入构造带构造隆升动力学过程可能与青藏高原多板块间(尤其是拉萨板块—羌塘板块)碰撞过程及其始新世伊始的大规模物质东向扩展过程密切相关(图 6).

图 6 新生代峨眉山楔入作用及其快速抬升剥蚀年代学特征模式图 (a)青藏高原东构造结—四川盆地地貌及其年代学特征综合图,灰色、黄色、蓝色、紫色和红色长方形与椭圆形示不同封闭温度年代学年龄特征,其相关数字代表不同地区参考文献: 1华蓥山(Deng et al., 2013), 2大娄山(邓宾等, 2013), 3威远(刘树根等, 2008), 4龙泉山(Richardson et al., 2008), 5五指山(An et al., 2008), 6龙门山中段(Kirby et al., 2002; Godard et al., 2009; Wang et al., 2012a; Li et al., 2012), 7龙门山南段(Xu and Kamp, 2000; Clark et al., 2005; Ouimet et al., 2010; Tian et al., 2013a; Tan et al., 2014), 8道孚(Xu and Kamp, 2000; Lai et al., 2007; Wilson and Fowler, 2011), 9贡嘎山(Xu and Kamp, 2000; Lai et al., 2007; Ouimet et al., 2010; Wilson and Fowler, 2011), 10雅砻(Clark et al., 2005; Lai et al., 2007; Wang et al., 2012b), 11稻城(Xu and Kamp, 2000; Lai et al., 2007; Wilson and Fowler, 2011; Tian et al., 2013b; Clark et al., 2005), 12攀枝花(Wilson and Fowler, 2011), 13楚雄盆地(金维浚等, 2012), 14巴塘(Ouimet et al., 2010; Wilson and Fowler, 2011), 15甘孜(Xu and Kamp, 2000; Wilson and Fowler, 2011), 16独龙江(雷永良等, 2008); 17兰坪(Li et al., 2000), 18临沧(施小斌等, 2006), 19高黎贡山(Eroǧlu et al., 2013; 王刚等, 2006), 20察隅(Lin et al., 2009), 21嘉黎(Xiang S Y et al., 2007), 22, 23 Namche Barwa (Stewart et al., 2008; Seward and Burg, 2008); 24 Namche Barwa (Ding et al., 2001), 25波密(Stewart et al., 2008; Lin et al., 2009), 26沙马(Lee et al., 2003; Lin et al., 2009), 27贡山(Lin et al., 2009), 28沧山(Zhang et al., 2013), 29, 30腾冲(Eroǧlu et al., 2013; Lin et al., 2009), 31哀牢山(Liu et al., 2013a, 2015), 32, 33点苍山(Leloup et al., 2001; Liu et al., 2013a, 2015), 34贡嘎山(Roger et al., 2004; Zhang et al., 2004b). (b)青藏高原东构造结—四川盆地地貌高程廊带剖面图. (c)区域不同封闭温度系统年代学年龄廊带剖面图. (d)青藏高原东构造结—四川盆地构造特征及其动力学模式图,其中深部结构图据Replumaz等(2010) and Huang等(2015)等修改. Fig. 6 Geodynamics of the Emeishan, at the eastern margin of the Tibetan Plateau (a) General structural features in the eastern Himalayan syntaxis, southeastern Tibetan Plateau to the Sichuan Basin. The grey, yellow, blue, pink and red etc. rectangles and ellipses along boundary faults represent the correlation between cooling age measured in the Xichang Basin and cooling ages across the continental collision zone in eastern Tibet. Numbers represent data sources and include: 1 Huayinshan (Deng et al., 2013), 2 Daloushan (Deng et al., 2013), 3 Weiyuan anticline (Liu et al., 2008), 4 Longqanshan (Richardson et al., 2008), 5 Wuzhishan (An et al., 2008), 6 Central Longmenshan (Kirby et al., 2002; Godard et al., 2009; Wang et al., 2012a; Li et al., 2012), 7 Southern Longmenshan (Xu and Kamp, 2000; Clark et al., 2005; Ouimet et al., 2010; Tian et al., 2013a; Tan et al., 2014), 8 Daofu (Xu and Kamp, 2000; Lai et al., 2007; Wilson and Fowler, 2011), 9 Gonggashan (Xu and Kamp, 2000; Lai et al., 2007; Ouimet et al., 2010; Wilson and Fowler, 2011), 10 Yalong area (Clark et al., 2005; Lai et al., 2007; Wang et al., 2012b), 11 Daocheng (Xu and Kamp, 2000; Lai et al., 2007; Wilson and Fowler, 2011; Tian et al., 2013b; Clark et al., 2005), 12 Panzhihua (Wilson and Fowler, 2011), 13 Chuxiong (Jing et al., 2012), 14 Batang (Ouimet et al., 2010; Wilson and Fowler, 2011), 15 Ganzhi (Xu and Kamp, 2000; Wilson and Fowler, 2011), 16 Dulongjiang (Lei et al., 2008); 17 Lanping (Li et al., 2000), 18 Lincang (Shi et al., 2006), 19 Gaoligong (Eroǧlu et al., 2013; Wang G et al., 2006), 20 Chayu (Lin et al., 2009), 21 Jiali (Xiang et al., 2007), 22, 23 Namche Barwa (Stewart et al., 2008; Seward and Burg, 2008); Geochronology data references as follow: 24 Namche Barwa (Ding et al., 2001), 25 Bomi (Stewart et al., 2008; Lin et al., 2009), 26 Shama (Lee et al., 2003; Lin et al., 2009), 27 Gongshan (Lin et al., 2009), 28 Chongshan (Zhang B et al., 2013), 29, 30 Tengchong (Eroǧlu et al., 2013; Lin et al., 2009), 31 Ailaoshan (Liu et al., 2013, 2015), 32, 33 Diancangshan (Leloup et al., 2001; Liu et al., 2013, 2015), 34 Gonggashan (Roger et al., 2005; Zhang et al., 2004b). (b) Swath profile across eastern Tibet to the Sichuan Basin. (c) Geo- and thermo-chronology data profiles show a close relationship between cooling and exhumation ages across the eastern Tibetan Plateau. (d) Regional interpretive geologic transect from the eastern Himalayan syntaxis to the Sichuan Basin. The deep structure is modified from Replumaz et al. (2010) and Huang et al. (2015).

新生代印—亚大陆持续碰撞导致青藏高原大规模物质东向扩展及其晚新生代加速抬升与剥蚀冷却作用广泛发生(Xu and Kamp, 2000; Clark et al., 2005; Ouimet et al., 2010; Deng et al., 2018),青藏高原东构造结至四川盆地间大量热年代学年龄值小于10 Ma代表着晚期区域快速构造抬升与剥蚀冷却作用(图 6c).同时,深部地球物质资料也揭示出印度大陆NE向长距离俯冲过程控制着青藏高原东南缘岩石圈结构变形特征(图 6d)(Li et al., 2008; Huang et al., 2015).基于峨眉山基底构造带向四川盆地西南缘盆地向扩展变形作用及其新生代两阶段性、加速抬升剥蚀冷却特征,表明新生代晚期盆地周缘冲断带冲断扩展变形作用逐渐控制(克拉通盆地)浅表构造变形与抬升冷却剥蚀过程.

4 结论

本文基于峨眉山楔入构造带低温热年代学(磷灰石裂变径迹(AFT)、锆石(U-Th)/He(ZHe)和锆石裂变径迹(ZFT))定年、热史模拟等,揭示出青藏高原东缘峨眉山晚中-新生代构造变形与隆升剥蚀特征,主要获得了如下结论:

(1) 峨眉山低温热年代学磷灰石裂变径迹(AFT)和锆石(U-Th)/He (ZHe)年龄值分别为4~30 Ma和16~118 Ma, 尤其是ZHe年代学年龄与海拔高程关系揭示出残存的锆石(U-Th)/He系统部分滞留带,及其相关的渐新世以来的加速抬升冷却剥蚀特征.

(2) 低温热年代学年龄与峨眉山构造分带性具有明显相关性特征,万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10 Ma,区别于万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma特征;且AFT年龄伴随距离牛背山断层距离减小、具有明显的年龄减小特征,揭示扩展变形带中新世晚期以来断层冲断缩短构造活动.

(3) 低温热年代学热史模拟揭示出峨眉山楔入构造带渐新世以来的加速抬升冷却过程,基底卷入构造带(相对于现今大地水准面)岩石隆升幅度大约达到7~8 km,其晚白垩世-渐新世抬升冷却速率为0.1 mm·a-1、渐新世-中新世速率为0.2 mm·a-1和中新世晚期以来抬升速率0.4 mm·a-1;扩展变形带始新世以来的两阶段性抬升冷却剥蚀过程,始新世-早中新世抬升冷却速率约0.1 mm·a-1,中新世以来速率约为0.2 mm·a-1.

致谢  感谢匿名审稿专家对论文进行评审并提供宝贵修改意见和建议.
References
Aitken A R A. 2011. Did the growth of Tibetan topography control the locus and evolution of Tien Shan mountain building?. Geology, 39(5): 459-462. DOI:10.1130/G31712.1
An Y F, Han Z J, Wan J L. 2008. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China. Science in China Series D:Earth Sciences, 51(9): 1238-1247. DOI:10.1007/s11430-008-0105-5
Burchfiel B C, Chen Z L, Liu Y, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 661-735. DOI:10.1080/00206819509465424
Chung S L, Lo C H, Lee T Y, et al. 1998. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 394(6695): 769-773. DOI:10.1038/29511
Chung S L, Chu M F, Zhang Y Q, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196. DOI:10.1016/j.earscirev.2004.05.001
Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. DOI:10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525-528. DOI:10.1130/G21265.1
DeCelles P G, Nucea M N, Kapp P, et al. 2009. Cyclicity in cordilleran orogenic systems. Nature Geoscience, 2(4): 251-257. DOI:10.1038/ngeo469
Deng B, Liu S G, Li Z W, et al. 2009. Uplifting characteristics in eastern margin area of Tibetan Plateau:Evidence from low-temperature thermochronology. Quaternary Sciences (in Chinese), 29(3): 574-585.
Deng B, Liu S G, Li Z W, et al. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98-115. DOI:10.1016/j.tecto.2012.11.012
Deng B, Liu S G, Wang G Z, et al. 2013. Cenozoic uplift and exhumation in southern Sichuan Basin-Evidence from low-temperature thermochronology. Chinese Journal of Geophysics (in Chinese), 56(6): 1958-1973. DOI:10.6038/cjg20130618
Deng B, Liu S G, Enkelmann E, et al. 2015. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau. International Journal of Earth Sciences, 104(4): 1061-1081. DOI:10.1007/s00531-014-1129-z
Deng B, Liu S G, Jiang L, et al. 2018. Tectonic uplift of the Xichang Basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data. Basin Research, 30(1): 75-96. DOI:10.1111/bre.12243
Deng J, Wang Q F, Li G J, et al. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299. DOI:10.1016/j.earscirev.2014.05.015
Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438. DOI:10.1016/S0012-821X(01)00463-0
England P, Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344(8): 140-142. DOI:10.1038/344140a0
Eroǧlu S, Siebel W, Danišik M, et al. 2013. Multi-system geochronological and isotopic constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. Journal of Asian Earth Sciences, 73: 218-239. DOI:10.1016/j.jseaes.2013.03.031
Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. DOI:10.1016/S0016-7037(96)00193-7
Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth & Planetary Sciences, 26(1): 519-572. DOI:10.1146/annurev.earth.26.1.519
Godard V, Pik R, Lavé J, et al. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet:Insight from (U-Th)/He thermochronometry. Tectonics, 28(5): TC5009. DOI:10.1029/2008TC002407
Huang Z C, Wang P, Xu M J, et al. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth and Planetary Science Letters, 411: 100-111. DOI:10.1016/j.epsl.2014.11.040
Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 458(12): 194-197. DOI:10.1038/nature07837
Jia C Z, Li B L, Lei Y L, et al. 2013. The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces. Science China Earth Sciences, 56(11): 1853-1863. DOI:10.1007/s11430-013-4649-7
Jia D, Wei G Q, Chen Z X, et al. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration. AAPG Bulletin, 90(9): 1425-1447. DOI:10.1306/03230605076
Jin W J, He D F, Lei Z Y, et al. 2012. Uplift of southeastern Tibet and Sanjiang area during Cenozoic era-Thermal inversion analysis from fission track data. Chinese Journal of Geology (in Chinese), 47(3): 714-729.
Ketcham R A, Donelick R A, Carlson W D. 1999. Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist, 84(9): 1235-1255. DOI:10.2138/am-1999-0903
Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 21(1): 1001. DOI:10.1029/2000TC001246
Lacombe O, Bellahsen N. 2016. Thick-skinned tectonics and basement-involved fold-thrust belts:insights from selected Cenozoic orogens. Geological Magazine, 153(5-6): 763-810. DOI:10.1017/S0016756816000078
Lai Q Z, Ding L, Wang H W, et al. 2007. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology. Science in China Series D:Earth Sciences, 50(2): 172-183. DOI:10.1007/s11430-007-2048-7
Lee H Y, Chung S L, Wang J R, et al. 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205(3-4): 185-194. DOI:10.1016/S0012-821X(02)01040-3
Lei Y L, Gong D H, Wang X M, et al. 2008. Discussion about using different modes of apatite fission track thermochronology to constrain cooling histories of rocks:an example from the batholith in Dulong river region, west Yunnan. Progress in Geophysics (in Chinese), 23(2): 422-432.
Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3-10, 13-84. DOI:10.1016/0040-1951(95)00070-4
Leloup P H, Arnaud N, Lacassin R, et al. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4): 6683-6732. DOI:10.1029/2000JB900322
Li C, Van Der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157-168. DOI:10.1016/j.epsl.2008.07.016
Li S H, Deng C L, Yao H T, et al. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 118(3): 791-807. DOI:10.1002/jgrb.50129
Li Z W, Liu S G, Chen H D, et al. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin:Constraints from fission track thermochronology. Journal of Asian Earth Sciences, 47: 185-203. DOI:10.1016/j.jseaes.2011.10.016
Lin T H, Lo C H, Chung S L, et al. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones:Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34(5): 674-685. DOI:10.1016/j.jseaes.2008.10.009
Liu F L, Wang F, Liu P H, et al. 2013a. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429-450. DOI:10.1016/j.gr.2012.10.016
Liu F L, Wang F, Liu P H, et al. 2015. Multiple partial melting events in the Ailao Shan-Red River and Gaoligong shan complex belts, SE Tibetan Plateau:Zircon U-Pb dating of granitic leucosomes within migmatites. Journal of Asian Earth Sciences, 110: 151-169. DOI:10.1016/j.jseaes.2014.06.025
Liu S G, Ma Y S, Sun W, et al. 2008. Studying on the differences of Sinian natural gas pools between Weiyuan gas field and Ziyang gas-brone area, Sichuan basin. Acta Geologica Sinica (in Chinese), 82(3): 328-337.
Liu S G, Deng B, Li Z W, et al. 2012. Architecture of basin-mountain systems and their influences on gas distribution:a case study from the Sichuan Basin, South China. Journal of Asian Earth Sciences, 47: 204-215. DOI:10.1016/j.jseaes.2011.10.012
Liu S G, Deng B, Jansa L, et al. 2013b. Late Triassic thickening of the Songpan-Garzê Triassic flysch at the edge of the northeastern Tibetan Plateau. International Geology Review, 55(16): 2008-2015. DOI:10.1080/00206814.2013.812705
Meng K, Wang E, Wang G. 2016. Uplift of the Emei Shan, western Sichuan Basin:implication for eastward propagation of the Tibetan Plateau in Early Miocene. Journal of Asian Earth Sciences, 115: 29-39. DOI:10.1016/j.jseaes.2015.09.020
Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335(6186): 131-137. DOI:10.1038/335131a0
Ouimet W, Whipple K, Royden L H, et al. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2(1): 50-63. DOI:10.1130/L57.1
Reiners P W, Spell T L, Nicolescu S, et al. 2004. Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. DOI:10.1016/j.gca.2003.10.021
Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. DOI:10.1146/annurev.earth.34.031405.125202
Replumaz A, Negredo A M, Guillot S, et al. 2010. Multiple episodes of continental subduction during India/Asia convergence:Insight from seismic tomography and tectonic reconstruction. Tectonophysics, 483(1-2): 125-134. DOI:10.1016/j.tecto.2009.10.007
Richardson N J, Densmore A L, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 113(B4). DOI:10.1029/2006JB004739
Roger F, Calassou S, Lancelot J, et al. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China):Geodynamic implications. Earth and Planetary Science Letters, 130(1-4): 201-216. DOI:10.1016/0012-821X(94)00252-T
Roger F, Malavieille J, Leloup Ph H, et al. 2004. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5): 465-481. DOI:10.1016/S1367-9120(03)00089-0
Royden L H, Burchfiel B C, Van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(1054): 1054-1058.
Sato K, Liu Y Y, Zhu Z C, et al. 2001. Tertiary paleomagnetic data from northwestern Yunnan, China:further evidence for large clockwise rotation of the Indochina block and its tectonic implications. Earth and Planetary Science Letters, 185(1-2): 185-198. DOI:10.1016/S0012-821X(00)00377-0
Seward D, Burg J P. 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data. Tectonophysics, 451(1-4): 282-289. DOI:10.1016/j.tecto.2007.11.057
Shi X B, Qiu X L, Liu H L, et al. 2006. Cenozoic cooling history of Lincang granitoid batholith, western Yunnan:Evidence from fission track data. Chinese Journal of Geophysics (in Chinese), 49(1): 135-142.
Stewart R J, Hallet B, Zeitler P K, et al. 2008. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9): 711-714. DOI:10.1130/G24890A.1
Stuwe K, White L, Brown R. 1994. The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters, 124(1-4): 63-74.
Tan X B, Lee Y H, Chen W Y, et al. 2014. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet. Journal of Asian Earth Sciences, 81: 91-104. DOI:10.1016/j.jseaes.2013.12.002
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978
Tian Y T, Kohn B P, Gleadow A J W, et al. 2013a. Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology. Tectonics, 32(3): 576-592. DOI:10.1002/tect.20043
Tian Y T, Kohn B P, Gleadow A J W, et al. 2013b. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 119(1): 676-698. DOI:10.1002/2013JB010429
Wang E, Kirby E, Furlong K P, et al. 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. DOI:10.1038/ngeo1538
Wang G, Wan J L, Wang E Q. 2006. Extensional collapse of the southern part of the Gaoligong range in the western Yunnan, China and its tectonic origin. Acta Geologica Sinica (in Chinese), 80(9): 1262-1273.
Wang S F, Jiang G G, Xu T D, et al. 2012b. The Jinhe-Qinghe fault-an inactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93-102. DOI:10.1016/j.tecto.2012.04.004
Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet:Evidence from apatite fission-track thermochronology. GSA Bulletin, 123(9-10): 1966-1987. DOI:10.1130/B30331.1
Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1-2): 105-114. DOI:10.1016/S0009-2541(98)00024-2
Xiang S Y, Ma X M, Zhaixi Z R, et al. 2007. Record of apatite fission track of the different uplift in both sides of Jiali fault belt since late Cenozoic. Earth Science, 32: 615-621.
Xu G Q, Kamp P J J. 2000. Tectonics and denudation adjacent to the Xianshuihe fault, eastern Tibetan Plateau:Constraints from fission track thermochronology. Journal of Geophysical Research:Solid Earth, 105(B8): 19231-19251. DOI:10.1029/2000JB900159
Zhang B, Zhang J J, Zhong D L. 2013. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4): 445-463.
Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11): 1804-1828. DOI:10.1007/s11430-013-4679-1
Zhang P Z, Shen Z K, Wang M, et al. 2004a. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812. DOI:10.1130/G20554.1
Zhang Y Q, Chen W, Yang N. 2004b. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance. Science in China Ser. D Earth Sciences, 47(9): 794-803.
Zhu C Q, Xu M, Yuan Y S, et al. 2010. Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin. Chinese Science Bulletin, 55(10): 949-956. DOI:10.1007/s11434-009-0490-y
邓宾, 刘树根, 李智武, 等. 2009. 青藏高原东缘地区隆升作用特征-低温年代学证据. 第四纪研究, 29(3): 574-585. DOI:10.3969/j.issn.1001-7410.2009.03.018
邓宾, 刘树根, 王国芝, 等. 2013. 四川盆地南部地区新生代隆升剥露研究——低温热年代学证据. 地球物理学报, 56(6): 1958-1973. DOI:10.6038/cjg20130618
贾承造, 李本亮, 雷永良, 等. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学:地球科学, 43(10): 1621-1631.
金维浚, 何登发, 雷振宇, 等. 2012. 青藏高原东南部及三江地区新生代构造隆升-来自裂变径迹热史反演分析. 地质科学, 47(3): 714-729. DOI:10.3969/j.issn.0563-5020.2012.03.011
雷永良, 龚道好, 王先美, 等. 2008. 应用裂变径迹不同模式约束岩体冷却史的初步探讨-以滇西独龙江岩体为例. 地球物理学进展, 23(2): 422-432.
刘树根, 马永生, 孙玮, 等. 2008. 四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究. 地质学报, 82(3): 328-337. DOI:10.3321/j.issn:0001-5717.2008.03.006
施小斌, 丘学林, 刘海龄, 等. 2006. 滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据. 地球物理学报, 49(1): 135-142. DOI:10.3321/j.issn:0001-5733.2006.01.019
王刚, 万景林, 王二七. 2006. 高黎贡山脉南部的晚新生代构造-重力垮塌及其成因. 地质学报, 80(9): 1262-1273. DOI:10.3321/j.issn:0001-5717.2006.09.004
张国伟, 郭安林, 王岳军, 等. 2013. 中国华南大陆构造与问题. 中国科学:地球科学, 43(10): 1553-1582.
朱传庆, 徐明, 袁玉松, 等. 2010. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474-482.
李小明, 谭凯旋, 龚革联, 等. 2000. 裂变径迹法对兰坪盆地构造热演化与成矿作用的初步研究. 矿物岩石, 20(2): 40-42. DOI:10.3969/j.issn.1001-6872.2000.02.009