地球物理学报  2019, Vol. 62 Issue (8): 3067-3077   PDF    
西北太平洋采薇海山表层沉积的岩石磁学特征及其对深海环境过程的指示
林震1,2, 易亮3, 王海峰4, 邓希光4, 杨继超5, 付腾飞6, 于洪军5, 谢强1, 邓成龙2,7,8     
1. 中国科学院深海科学与工程研究所, 海南三亚 572000;
2. 中国科学院大学, 北京 100049;
3. 同济大学海洋与地球科学学院, 海洋地质国家重点实验室, 上海 200092;
4. 广州海洋地质调查局, 自然资源部海底矿产资源重点实验室, 广州 510075;
5. 国家深海基地管理中心, 山东青岛 266237;
6. 自然资源部第一海洋研究所, 自然资源部海洋沉积与环境地质重点实验室, 山东青岛 266061;
7. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
8. 中国科学院地球科学研究院, 北京 100029
摘要:采薇海山位于西北太平洋麦哲伦海山区,是由中国发现、命名并负责资源勘探的重点调查区之一.本文利用大洋27航次在采薇海山北坡MABC-05站获得的箱式沉积物样品,开展了详细的岩石磁学研究.结果显示表层沉积物中的磁性矿物以颗粒较细的、矫顽力较低的磁铁矿为主;利用对数正态分布函数可以区分三个具有不同矫顽力值的磁性颗粒组分,并发现磁性颗粒的矫顽力值变化可以有效指示沉积物埋藏后的早期成岩特征.在参考现代物理海洋过程的基础上,我们推测南极底层水团的演化和太阳辐射的变化可能共同影响了采薇海山区海洋底层环境过程.这一结果为探讨南极气候状况对北太平洋的可能影响,评估海洋上层与底层的相互作用等重要科学问题提供了新途径.
关键词: 西北太平洋      采薇海山      岩石磁学      早期成岩作用      深海环境过程     
Rock magnetism of deep-sea sediments at Caiwei Guyot, Magellan seamounts of Northwest Pacific and its significance to abyssal environmental changes
LIN Zhen1,2, YI Liang3, WANG HaiFeng4, DENG XiGuang4, YANG JiChao5, FU TengFei6, YU HongJun5, XIE Qiang1, DENG ChengLong2,7,8     
1. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya Hainan 572000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;
4. MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510640, China;
5. National Deep Sea Center of China, Qingdao Shandong 266061, China;
6. MNR Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao Shandong 266061, China;
7. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
8. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Abstract: Seamounts constitute some of the most direct evidence about intraplate volcanism, and can profoundly affect physical and biological processes, mesoscale circulation and primary production. Caiwei Guyot locates within the Magellan Seamounts of the Northwest Pacific Ocean, where is one of the key investigation areas discovered, named and responsible for resource exploration by China. In this study, we carried out detailed rock magnetic investigations on a sedimentary sequence obtained from the Caiwei Guyot. The methods include hysteresis loops, isothermal remanent acquisition curves, and first-order reversal curves. It is found that the magnetic minerals in the surface sediments of the Caiwei Guyot are mainly fine-grained magnetite with low coercivity; and three magnetic sub-groups with different coercivity values can be mathematically distinguished by a log-normal distribution function, inferring that the change of the coercivity of the magnetic particles can effectively indicate the intensity of the early diagenesis of the sediments. Referring to the physical ocean process, we speculate that the production changes of the Antarctic bottom water and solar insolation may affect the environmental evolution of ocean bottom. Therefore, we suggest that this result provides new perspective to explore the possible impacts of the Antarctic climate on the North Pacific, and to assess the interactions between the upper and lower parts of the oceans, which both may have directly contributed to global changes.
Keywords: Northwest Pacific    Caiwei Guyot    Rock magnetism    Early diagenesis    Deep-sea environmental changes    
0 引言

太平洋内海底分布的海山群(seamounts),与洋岛玄武岩成因类似(Wessel, 1997),其演化过程与地幔动力学直接相关(Wessel, 1997; Wessel and Lyons, 1997).另一方面,海山(群)的出现,显著改变了洋底地形,进而影响洋流通道乃至全球海洋环境的变化(如, Bograd et al., 1997; Cenedese, 2002; Herbette et al., 2003, 2005).此外,海山(群)往往伴生多金属结核/结壳等为代表的金属矿产资源,具有重要的经济价值(如, Hein et al., 2013, 2015; Halbach et al., 2017).

太平洋目前已发现约50000个海山,高度大于1000 m的海山约8000多个.采薇海山位于麦哲伦海山区(Magellan Seamounts, 图 1),与Vlinder、Loah等海山构成整体呈西北向的链状分布(韦振权, 2015; 韦振权等, 2017).

图 1 研究区概况与研究钻孔区域位置 红色圆点MABC-05为研究站点;灰色菱形为参考站点;两个参考站位的平均沉积速率是2.2±0.5 mm·ka-1(钱前坤, 2016),与本文研究站点具有相近的沉积动力条件(蒋星亮, 2017). Fig. 1 Study area and the studied core Red dot, the studied core in this research (MABC-05); grey diamonds, reference sites (MAMC-06 and MABC-06). The average sedimentation rate of the two reference sites is 2.2±0.5 mm/ka (Qian, 2016), and their sedimentary dynamics are close to the studied site (Jiang, 2017).

根据自然资源部(原国家海洋局)提交的海山命名申请书(State Oceanic Administration, China, 2015),采薇海山群于1997年由“海洋十号”科考船执行航次时发现,2015年完成海山的命名.据该申请书可知,采薇海山群包含两个相对独立的平顶山(图 1),规模较大的主体海山为采薇平顶山(Caiwei Guyot),规模较小的附属海山为采杞平顶山(Caiqi Guyot),两者相距10.2 km.采薇海山山麓水深5500 m,在3000 m以浅发育平顶型海山,其中采薇山顶平台边缘水深1500~1600 m,附属采杞山顶平台边缘水深1850~1900 m.海山坡整体地形陡峭,平均坡度4.3°~10.9°.

采薇海山所在海区内的海山多为板内火山热点产物,时代属于白垩纪(Wessel, 1997).此后因板块运动,由东南太平洋沿西北方向运移至西北太平洋(Wessel and Lyons, 1997; Stepashko, 2006; Hillier, 2007; 韦振权等, 2017).在中国富钴结壳合同区签订前后,中国对采薇海山群及其周边海区进行了多个航次的科学考察,获得了水文、地质、生态等方面的大量宝贵的一手资料(韦振权, 2015; 王彦美等, 2016; 钱前坤, 2016; 韦振权等, 2017; 蒋星亮, 2017; Du et al., 2017).不过采薇海山在沉积过程及其海底环境演化等基础地质积累方面仍然薄弱,进而无法深入发掘海山在全球变化中的可能影响.因此,本文利用中国大洋27航次执行期间(2013年)在采薇海山所获取的箱式插管沉积物(MABC-05, 图 1),开展详细的岩石磁学研究,评估海山表层沉积的早期成岩特征,探讨海底沉积过程与全球变化之间的潜在联系.

1 研究材料与方法 1.1 MABC-05柱状沉积样

MABC-05站(155.40°E, 16.17°N)位于采薇海山北坡(图 1),水深5640 m;2013年“海洋六号”科考船执行大洋27航次时,利用箱式取样器获得后,插管保存.MABC-05站柱状沉积物总长26 cm,为深棕色(10YR 3/3)深海粘土沉积,平均粒径8~12 μm,无明显沉积突变.岩心剖分后,按1 cm间距取样,每份1 g,共获得26份样品,冷冻干燥后制备测试.

1.2 研究方法

岩石磁学测试包括等温剩磁(IRM)获得曲线、磁滞回线和一阶反转曲线(FORC),利用中国科学院地质与地球物理研究所古地磁与年代学实验室的振动样品磁力仪(MicroMag 3900 VSM)进行测试.磁滞回线和等温剩磁的最大外加磁场均为±0.5 T.所有样品的FORC曲线的最大外加场强均为1.0 T,测量步长为3.2 mT,每条FORC由125条子曲线组成;高分辨FORC曲线选择10 cm和20 cm处的两份样品开展测试,最大外加场强为1.0 T,测量步长为0.316 mT,每条FORC由360条子曲线组成.FORC测量的原始数据由FORCinel version 1.17软件(Harrison and Feinberg, 2008)进行计算,平滑因子为3.

2 结果与分析 2.1 岩石磁学结果与磁性矿物组成

FORC常常用来确定磁性矿物颗粒之间磁相互作用,进而帮助区分磁性矿物的种类等性质(Pike et al., 1999; 秦华峰等, 2008; Roberts et al., 2014),因此在大洋沉积物的相关研究中,可以用来辨别不同磁性矿物的贡献(如, Yamazaki, 2009, 2012; Harrison et al., 2018).测试结果显示(图 2),大部分样品的矫顽力主要分布在10~40 mT之间,峰值位于15~20 mT左右.图中纵坐标(Hu)反映了磁性颗粒间相互作用力的大小,横坐标(Hc)反映样品的矫顽力分布.对于无磁相互作用的SD磁性颗粒,因为矫顽力较大,其FORC的等值线水平拉长,垂直分布很小,当颗粒间的相互作用较大时,垂直分布也较大(如, Egli et al., 2010).采薇海山表层沉积样品的FORC等值线在纵轴上存在轻微的展布(如, 图 2b, c, d, g, j),说明所有样品均含有显著的单畴组分,并且磁性颗粒之间存在一定的静磁相互作用,可能指示了较粗的磁性颗粒的影响.

图 2 采薇海山表层沉积物的一阶反转曲线(FORC)测试结果 所有样品均已完成常规FORC测试,因结果类似,此处以3 cm间隔展示. Fig. 2 FORC diagrams of the studied core All sediment samples were performed FORC analysis, and due to similar variation, ten samples with 3-cm interval were displayed.

磁滞回线形态及其相关的磁滞参数可以用来判别沉积物或岩石中磁性矿物颗粒的类型和粒度分布(Roberts et al., 1995; Tauxe, 2018);在各类沉积物的磁性矿物判别方面均有很好的应用(如, 郭雪莲等, 2011; 孙玉芳等, 2011; 梁文天等, 2015; 李波等, 2016).本文对采薇海山表层沉积的所有26份样品均开展了磁滞回线的测试,结果显示,所有样品的回线形态基本一致(图 3a),都表现为正常的回线形态,且在0.2 T以上闭合.结合FORC图特征可推断,采薇海山表层沉积物中的磁性矿物可能以单畴磁铁矿为主.

图 3 采薇海山表层沉积全部样品的磁滞回线(a, 顺磁矫正后)和等温剩磁(c, IRM)获得曲线及其矫顽力谱分析结果(b, d) Fig. 3 Hysteresis loops (a) and IRM acquisition (c) with their coercivity analysis results (b, d)

等温剩磁是常温下将样品置于大磁场下,样品沿磁场方向被磁化所获得的剩磁,其性质对于区分磁性矿物非常有用(Tauxe, 2018).结果显示,所有样品的IRM获得曲线并无显著差异(图 2c),在100 mT以下IRM获得曲线快速上升,达到饱和剩磁的80%以上,在300 mT剩磁已接近饱和.此外,IRM0.1T/IRM0.5T和IRM0.3T/IRM0.5T变化范围分别是0.807~0.835和0.987~0.994.这些特征表明沉积物中的磁性矿物是较为单一的低矫顽力组分(主要是磁铁矿).

基于磁滞回线的进一步分析,可以得到饱和磁化强度(Ms)、饱和剩余磁化强度(Mrs)、矫顽力(Bc)、剩磁矫顽力(Bcr)四个参数,由此获得Mrs/MsBcr/Bc这两组比值及其散点图(Day氏图),进而解析沉积物中磁性矿物的磁畴状态等磁性特征(Dunlop, 2002a, 2002b; Roberts et al., 2018).结果显示(图 3a),采薇海山表层沉积的磁铁矿的投点落于准单畴(PSD)区间的上部,接近单畴(SD)区间,且投点十分集中,离散程度很小.这些特征可能指示了占主导的单畴磁铁矿与少量较粗颗粒的磁铁矿的混合,且其磁性矿物来源无明显变化.

从磁性参数随深度的变化情况来看(图 5),所有参数均表现为一定的旋回性,但参数之间的变化并一致,说明由于磁性矿物的多种来源与混合,不同磁性信号之间的干扰可能造成反映沉积物总体磁性特征的代用指标缺乏统一的表征,因而需要更为细致的分析,以期区分不同磁性矿物的贡献.此外,虽然目前缺乏采薇海山沉积物源的深入研究,但所有磁性参数在深度上的变化范围均较小,指示沉积物源在钻孔记录的时期未发生显著变化,因此有可能在区分不同磁性贡献的基础上,反演深海沉积记录的古环境过程.

图 5 磁性参数随深度的变化 Ms,饱和磁化强度;Mrs,饱和剩余磁化强度;Bc,矫顽力;Bcr,剩磁矫顽力. Fig. 5 Variations of magnetic characteristics of the studied core Ms, saturation magnetization; Mrs, saturation remanent magnetization; Bc, coercivity; Bcr, coercivity of remanence.
2.2 磁性矿物的矫顽力分析

沉积物中的磁性矿物往往具有多种来源或特征(Roberts, 2015; Heslop, 2015).根据磁性颗粒的贡献可以线性累加这一假设(公式(1)),首先设定磁性物质矫顽力谱的总体分布形态(Robertson and France, 1994);然后通过数学拟合分离磁滞回线或IRM获得曲线包含的矫顽力谱信息(如, Heslop and Roberts, 2012; Heslop, 2015; Paterson et al., 2018),以区分不同来源或特征的磁性颗粒贡献(如, Yamazaki, 2012; Chang et al., 2016; Zhang et al., 2016).

(1)

式中,f为总体矫顽力特征,f1~fn为不同来源或特征的磁性颗粒的矫顽力组分,p1~pn-1为分解后各矫顽力组分的百分比.

预设的矫顽力谱的分布形态可以有多种形式(Heslop, 2015),但应用最广的仍是对数正态分布(Robertson and France, 1994).根据已发表的结果,该统计分布的数学函数可以简单表示为

(2)

式中,x为对数坐标下的自变量;σ为这一数学分布的离散程度,即某一矫顽力组分的标准偏差;μ为数学期望,即该矫顽力组分的均值.

为进一步分析采薇海山表层沉积中磁性矿物颗粒的矫顽力特征,我们对所有沉积样品的IRM获得曲线和磁滞回线数据,以三组分的对数正态分布为目标函数(公式(3)),以外场强度为自变量、剩磁或磁矩的一阶或二阶导数为因变量,利用Matlab 7.1进行磁性颗粒的矫顽力特征的数学分解.

(3)

结果表明,采薇海山表层沉积物的IRM获得曲线和磁滞回线数据均得较好拟合(图 3b, 3d),所有样品的拟合优度(R2)均超过99%;且两套数据的拟合结果十分接近,可以相互对比(图 4b, 4c, 4d).具体来看,三个矫顽力组分的均值分别为7.0±0.3 mT、33.9±1.6 mT、94.5±5.7 mT;对应的相对含量分别为31.8±2.1%、52.3±1.4%、15.9±3.3%.根据已知磁性矿物的矫顽力峰值分布(Tauxe, 2018),结合上述采薇海山表层沉积物的磁性矿物特征,我们猜测第二组分可能表征了较细的磁铁矿颗粒组分(SD或较小的PSD),而其他两个组分的含量较低,来源尚不明确.更进一步的推断,尚需今后的电镜等测试结果予以验证.

图 4 Day氏图(a)及不同方法获得的矫顽力组分的对比(b—d) SD,单畴;PSD,假单畴;MD,多畴. Fig. 4 Day plot of the studied core (a) and coercivity comparisons between LOOP and IRM data (b—d) SD, single domain; PSD, pseudo-single domain; MD, multidomain.
3 讨论 3.1 早期成岩特征

海洋沉积物在堆积埋藏的初级阶段,在物理、化学及生物的独自或共同作用下(如, Jørgensen and Revsbech, 1989; Henrichs, 1992; Parkes et al., 2000; Nielsen et al., 2010),已埋藏的沉积颗粒或矿物与环境介质之间将发生的一系列变化,称为早期成岩作用.磁性矿物对氧化-还原环境的变化十分敏感(Liu et al., 2012; Roberts, 2015),因而是反演海洋沉积的早期成岩特征的重要材料(如, Roberts et al., 1999; 葛淑兰等, 2005; Chang et al., 2016).

以磁性矿物反演沉积物的早期成岩特征存在两种形式(Roberts, 2015),即浸染型(Steady state diagenesis)和脉冲型(Non-steady state diagenesis),前者代表了稳定的沉积后改造,而后者反映了氧化-还原等沉积后的环境过程存在快速、显著变化.本文获得矫顽力谱分析结果显示(图 6),第二组分含量基本不变,第一组分含量变化与第三组分呈现反相关.由于沉积物总体的矫顽力特征变化较小(图 5),我们推测磁性矿物在早期成岩作用影响下,各组分之间可能存在一定的转换,或不同来源的磁性颗粒含量存在消长关系;但三个组分的矫顽力值均表现出较为一致的、准周期的变化特征.我们由此推测采薇海山表层沉积物经受的早期成岩作用可能主要表现为浸染型,且不同的磁性颗粒组分在这一沉积后的海底环境影响下,经历了相似的改造过程.考虑到第二矫顽力组分代表了沉积物中主要的磁性颗粒贡献,且含量变化较小(图 6b),能够较好排除含量等因素变化对矫顽力谱分解造成的干扰,我们以第二组分的矫顽力值为环境代用指标,考察采薇海山表层沉积物的早期成岩的特征演化.

图 6 采薇海山表层沉积物的矫顽力组分(基于IRM数据)随深度的变化特征(a—c)及其与太阳辐射(e, 实线, Jouzel et al., 2007)、南极温度变化(d, 虚线, Berger and Loutre, 1991)对比的一种可能方案 Fig. 6 Coercivity component variations from unmixing IRM data (a—c), and a potential comparison with solar insolation (e, solid line, Jouzel et al., 2007), and Antarctic temperature changes (d, dashed line, Berger and Loutre, 1991)

磁铁矿由于晶格中Fe2+的存在,对沉积环境的氧化条件十分敏感,很容易氧化成Fe3+;受氧化作用影响,磁铁矿颗粒(core)表面将形成磁赤铁矿壳体(shell),从而构成核-膜结构(如, Özdemir and Dunlop, 2010; Ge et al., 2014).对于SD颗粒的磁铁矿,伴随着氧化程度的升高,增厚的磁赤铁矿壳体降低了磁铁矿核心的有效粒径,从而显著降低了磁性颗粒的矫顽力值(Ge et al., 2014).因此,采薇海山表层沉积物中所分离的第二组分SD颗粒的磁铁矿可能指示沉积后磁性颗粒在早期成岩过程中所经受的氧化作用的强弱,进而有可能反演深海的通风程度(ventilation).

3.2 深海沉积过程与全球变化的可能联系

海洋底层(>4000 m)是全球大洋物质、能量循环的重要组成,也是调节全球气候的关键节点(如, Jaccard et al., 2016; Brook and Buizert, 2018);但因观测技术和研究手段有限,大洋底层在全球气候变化中的作用仍然十分模糊.海山通过影响中尺度涡发育及其向海洋深层传播等物理海洋过程,可以显著改变海洋水体的上下层混合,对洋流路径及强度乃至全球变化产生影响(如, Zhang and Boyer, 1991, 1993; Bograd et al., 1997; Chen et al., 2015; Yang et al., 2017).

采薇海山表层沉积物虽然仅有26 cm长度,但磁性颗粒记录的早期成岩作用具有非常明显的周期变化.其中最为显著的即是第二矫顽力组分稳定的5 cm长度的周期成分(图 6b),指示了该区域的底层海水通风过程经历了周期性演化.

虽然目前受年代学进展限制,无法准确确定采薇海山表层沉积物与全球变化之间的对比关系与联系机制;但本文所获得上述结果为了解海洋底层(>4000 m)环境过程与全球变化之间的联系提供了观察窗口.因此,在假定无明显沉积间断的基础上,根据MABC-05站沉积物矫顽力各组分的变化特征,我们将其对比至末次间冰期以来的全球变化(图 6d, 6e),由此考察底层海洋环境过程与海洋上层及大气变化的可能联系.在较高的太阳辐射时期,热带海洋的上层水团和海气相互作用可能更加活跃.活跃的热带海洋在增强季风(Yi et al., 2018)的同时,可能配合海山地形,显著加强海洋不同层次水体之间的交换(Zhang and Boyer, 1991, 1993; Bograd et al., 1997; Chen et al., 2015; Yang et al., 2017),进而改善海洋底层通风状态.另一方面,北太平洋底层通风受到富氧南极底层水团的影响(Kawabe and Fujio, 2010);在冰期-间冰期时间尺度上,暖期内的南极底层水生成率可能较冷期的略高(Jaccard et al., 2016).根据这一机制,我们推测在较为温暖的间冰期(阶),稍强的南极底层水,有利于北太平洋底层通风转好,使得采薇海山沉积物经历的早期成岩程度较高,因而有较低的磁性颗粒的矫顽力值;反之,沉积物磁性矿物的矫顽力值稍高.上述两种机制可能共同作用于沉积物的早期成岩作用,并将海洋上层的气候变化信号传递至地质记录中.

4 认识与展望

采薇海山是国际海底富钴结壳中国调查和勘探区,也是我国在结壳申请区开展环境和生物多样性重点调查的海山之一.本文利用大洋27航次获得箱式沉积物样品,开展了详细的岩石磁学研究,获得如下认识:

采薇海山表层沉积物中的磁性矿物以颗粒较细的、矫顽力较低的磁铁矿为主.通过对数正态分布函数,沉积物中三个矫顽力组分的磁性颗粒得以区分,可能分别对应了不同特征的磁性颗粒的贡献.第二矫顽力组分的磁性颗粒可以有效指示沉积物埋藏后的早期成岩特征.通过与物理海洋过程对比,我们推测南极底层水的强度变化和太阳辐射可能共同影响了这一海洋底层的环境演化.

虽然受年代技术的限制,目前尚无法准确厘定采薇海山沉积物的磁学性质与全球变化之间的关系,不过已获得的结果展现了令人欣喜的研究前景.特别是显著的岁差周期的发现,可能指示了海洋上层与底层相互作用、直接参与全球变化.因此,在今后的工作中应当努力获得更长的沉积柱样,以利于构建更精确的地层年代框架,并综合多学科的研究方法,验证两者之间的可能联系.

References
Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297-317. DOI:10.1016/0277-3791(91)90033-Q
Bograd S J, Rabinovich A B, LeBlond P H, et al. 1997. Observations of seamount-attached eddies in the North Pacific. Journal of Geophysical Research:Oceans, 102(C6): 12441-12456. DOI:10.1029/97JC00585
Brook E J, Buizert C. 2018. Antarctic and global climate history viewed from ice cores. Nature, 558(7709): 200-208. DOI:10.1038/s41586-018-0172-5
Cenedese C. 2002. Laboratory experiments on mesoscale vortices colliding with a seamount. Journal of Geophysical Research:Oceans, 107(C6): 3053. DOI:10.1029/2000JC000599
Chang L, Bolton C T, Dekkers M J, et al. 2016. Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of Japan. Geochemistry, Geophysics, Geosystems, 17(11): 4383-4398. DOI:10.1002/2016GC006344
Chen G X, Wang D X, Dong C M, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5: 17416. DOI:10.1038/srep17416
Du D W, Ren X W, Yan S J, et al. 2017. An integrated method for the quantitative evaluation of mineral resources of cobalt-rich crusts on seamounts. Ore Geology Reviews, 84: 174-184. DOI:10.1016/j.oregeorev.2017.01.011
Dunlop D J. 2002a. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research:Solid Earth, 107(B3): EPM 4-1-EPM 4-22.
Dunlop D J. 2002b. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research:Solid Earth, 107(B3): :EPM 5-1-EPM 5-15.
Egli R, Chen A P, Winklhofer M, et al. 2010. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochemistry, Geophysics, Geosystems, 11(1): Q01Z11. DOI:10.1029/2009GC002916
Ge K P, Williams W, Liu Q S, et al. 2014. Effects of the core-shell structure on the magnetic properties of partially oxidized magnetite grains:Experimental and micromagnetic investigations. Geochemistry, Geophysics, Geosystems, 15(5): 2021-2038. DOI:10.1002/2014GC005265
Ge S L, Shi X F, Wu Y H, et al. 2005. The rock magnetic behavior of gravity core CSH1 from the northern Okinawa Trough and the effect of early diagenesis. Acta Oceanologica Sinica (in Chinese), 27(6): 56-64.
Guo X L, Liu X M, Lv B, et al. 2011. Comparison of topsoil magnetic properties between the loess region in Tianshan Mountains and Loess Plateau, China, and its environmental significance. Chinese Journal of Geophysics (in Chinese), 54(7): 1854-1862. DOI:10.3969/j.issn.0001-5733.2011.07.019
Halbach P E, Jahn A, Cherkashov G. 2017. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources.//Sharma R ed. Deep-Sea Mining. Cham: Springer.
Harrison R J, Feinberg J M. 2008. FORCinel:An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems, 9(5): Q05016. DOI:10.1029/2008gc001987
Harrison R J, Muraszko J, Heslop D, et al. 2018. An improved algorithm for unmixing first-order reversal curve diagrams using principal component analysis. Geochemistry, Geophysics, Geosystems, 19(5): 1595-1610. DOI:10.1029/2018GC007511
Hein J R, Mizell K, Koschinsky A, et al. 2013. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications:Comparison with land-based resources. Ore Geology Reviews, 51: 1-14. DOI:10.1016/j.oregeorev.2012.12.001
Hein J R, Spinardi F, Okamoto N, et al. 2015. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Reviews, 68: 97-116. DOI:10.1016/j.oregeorev.2014.12.011
Henrichs S M. 1992. Early diagenesis of organic matter in marine sediments:progress and perplexity. Marine Chemistry, 39(1-3): 119-149. DOI:10.1016/0304-4203(92)90098-U
Herbette S, Morel Y, Arhan M. 2003. Erosion of a surface vortex by a seamount. Journal of Physical Oceanography, 33(8): 1664-1679. DOI:10.1175/2382.1
Herbette S, Morel Y, Arhan M. 2005. Erosion of a surface vortex by a seamount on the β plane. Journal of Physical Oceanography, 35(11): 2012-2030. DOI:10.1175/JPO2809.1
Heslop D, Roberts A P. 2012. Unmixing magnetic hysteresis loops. Journal of Geophysical Research:Atmospheres, 117(B3): B03103. DOI:10.1029/2011JB008859
Heslop D. 2015. Numerical strategies for magnetic mineral unmixing. Earth-Science Reviews, 150: 256-284. DOI:10.1016/j.earscirev.2015.07.007
Hillier J K. 2007. Pacific seamount volcanism in space and time. Geophysical Journal International, 168(2): 877-889. DOI:10.1111/j.1365-246X.2006.03250.x
Jaccard S L, Galbraith E D, Martínez-García A, et al. 2016. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature, 530(7589): 207-210. DOI:10.1038/nature16514
Jiang X L. 2017. Numerical study of flow passing a deep water seamounts: the Caiwei Seamount in the Northwest Pacific Ocean[Master's thesis](in Chinese). Nanjing: Nanjing University of Information Science & Technology.
Jørgensen B B, Revsbech N P. 1989. Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the Baltic sea-North Sea transition. Ophelia, 31(1): 29-49. DOI:10.1080/00785326.1989.10430849
Jouzel J, Masson-Delmotte V, Cattani O, et al. 2007. Orbital and millennial Antarctic climate variability over the Past 800, 000 Years. Science, 317(5839): 793-796. DOI:10.1126/science.1141038
Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. Journal of Oceanography, 66(3): 389-403. DOI:10.1007/s10872-010-0034-8
Li B, Wang Y, Zhong H X, et al. 2016. Magnetic properties of turbidites in the Huatung Basin and their environmental implications. Chinese Journal of Geophysics (in Chinese), 59(9): 3330-3342. DOI:10.6038/cjg20160917
Liang W T, Jin C S, Nantasin P, et al. 2015. Magnetic mineralogy and the reliability of AMS in the Late Triassic Mishuling pluton, Qinling orogen. Chinese Journal of Geophysics (in Chinese), 58(3): 953-970. DOI:10.6038/cjg20150321
Liu Q S, Roberts A P, Larrasoaña J C, et al. 2012. Environmental magnetism:Principles and applications. Reviews of Geophysics, 50(4): RG4002. DOI:10.1029/2012RG000393
Nielsen L P, Risgaard-Petersen N, Fossing H, et al. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463(7284): 1071-1074. DOI:10.1038/nature08790
Özdemir Ö, Dunlop D J. 2010. Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles. Journal of Geophysical Research:Solid Earth, 115(B2): B02101. DOI:10.1029/2009JB006756
Parkes R J, Cragg B A, Wellsbury P. 2000. Recent studies on bacterial populations and processes in subseafloor sediments:A review. Hydrogeology Journal, 8(1): 11-28. DOI:10.1007/PL00010971
Paterson G A, Zhao X, Jackson M, et al. 2018. Measuring, processing, and analyzing hysteresis data. Geochemistry, Geophysics, Geosystems, 19(7): 1925-1945. DOI:10.1029/2018GC007620
Pike C R, Roberts A P, Verosub K L. 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85(9): 6660-6667. DOI:10.1063/1.370176
Qian Q K. 2016. Sedimentation and bioturbation at Caiwei Guyot in the western North Pacific[Master's thesis] (in Chinese). Xiamen: Xiamen University.
Qin H F, Liu Q S, Pan Y X. 2008. The first-order reversal curve(FORC) diagram:theory and case study. Chinese Journal of Geophysics (in Chinese), 51(3): 743-751.
Roberts A P, Cui Y L, Verosub K L. 1995. Wasp-waisted hysteresis loops:mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research:Solid Earth, 100(B9): 17909-17924. DOI:10.1029/95JB00672
Roberts A P, Stoner J S, Richter C. 1999. Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea. Marine Geology, 153(1-4): 103-116. DOI:10.1016/S0025-3227(98)00087-5
Roberts A P, Heslop D, Zhao X, et al. 2014. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Reviews of Geophysics, 52(4): 557-602. DOI:10.1002/2014RG000462
Roberts A P. 2015. Magnetic mineral diagenesis. Earth-Science Reviews, 151: 1-47. DOI:10.1016/j.earscirev.2015.09.010
Roberts A P, Tauxe L, Heslop D, et al. 2018. A critical appraisal of the "day" diagram. Journal of Geophysical Research:Solid Earth, 123(4): 2618-2644. DOI:10.1002/2017JB015247
Robertson D J, France D E. 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary Interiors, 82(3-4): 223-234. DOI:10.1016/0031-9201(94)90074-4
State Oceanic Administration, China. 2015. Undersea Feature Name Proposal (Cai Wei Guyot). International Hydrographic Organization & Intergovernmental Oceanographic Commission (of UNESCO), https://www.iho.int/mtg_docs/com_wg/SCUFN/SCUFN24/SCUFN_proposals/China/04_Caiwei_Guyot.pdf.
Stepashko A A. 2006. Origin of West Pacific seamounts and features of the cretaceous dynamics of the Pacific plate. Oceanology, 46(3): 411-417. DOI:10.1134/S0001437006030131
Sun Y F, Qiang X K, Xu X W, et al. 2011. Rock magnetism of loess sediments in northwestern margin of Chinese Loess Plateau since the late last glaciation. Chinese Journal of Geophysics (in Chinese), 54(5): 1310-1318. DOI:10.3969/j.issn.0001-5733.2011.05.020
Tauxe L. 2018. Essentials of Paleomagnetism: Fifth Web Edition. La Jolla, USA: Scripps Institution of Oceanography.
Wang Y M, Zhang H D, Liu J H, et al. 2016. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts. Marine Geology & Quaternary Geology (in Chinese), 36(2): 65-74.
Wei Z Q. 2015. Characteristic of substrate rocks of Caiwei Seamounts in the west Pacific Ocean and the significance of Co-rich crusts. Acta Mineralogica Sinica (in Chinese), 35(S1): 792-793.
Wei Z Q, Deng X G, Zhu K C, et al. 2017. Characteristic of substrate rocks of Caiwei Seamounts in the west Pacific Ocean. Marine Geology Frontiers (in Chinese), 33(12): 1-6.
Wessel P. 1997. Sizes and ages of seamounts using remote sensing:implications for intraplate volcanism. Science, 277(5327): 802-805. DOI:10.1126/science.277.5327.802
Wessel P, Lyons S. 1997. Distribution of large Pacific seamounts from Geosat/ERS-1:Implications for the history of intraplate volcanism. Journal of Geophysical Research:Solid Earth, 102(B10): 22459-22475. DOI:10.1029/97JB01588
Yamazaki T. 2009. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau:Temporal variations of detrital and biogenic components. Geochemistry, Geophysics, Geosystems, 10(7): Q07Z04. DOI:10.1029/2009GC002413
Yamazaki T. 2012. Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology, 40(2): 151-154. DOI:10.1130/G32646.1
Yang S M, Xing J X, Chen D Y, et al. 2017. A modelling study of eddy-splitting by an island/seamount. Ocean Science, 13(5): 837-849. DOI:10.5194/os-13-837-2017
Yi L, Shi Z G, Tan L C, et al. 2018. Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary. Climate Dynamics, 50(5-6): 2183-2197. DOI:10.1007/s00382-017-3743-5
Zhang R, Necula C, Heslop D, et al. 2016. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence. Scientific Reports, 6: 29515. DOI:10.1038/srep29515
Zhang X Z, Boyer D L. 1991. Current deflections in the vicinity of multiple seamounts. Journal of Physical Oceanography, 21(8): 1122-1138. DOI:10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2
Zhang X Z, Boyer D L. 1993. Laboratory study of rotating, stratified, oscillatory flow over a seamount. Journal of Physical Oceanography, 23(6): 1122-1141. DOI:10.1175/1520-0485(1993)023<1122:LSORSO>2.0.CO;2
葛淑兰, 石学法, 吴永华, 等. 2005. 冲绳海槽北部CSH1孔岩石磁学特征及其早期成岩作用的影响. 海洋学报, 27(6): 56-64. DOI:10.3321/j.issn:0253-4193.2005.06.008
郭雪莲, 刘秀铭, 吕镔, 等. 2011. 天山黄土区与黄土高原表土磁性特征对比及环境意义. 地球物理学报, 54(7): 1854-1862. DOI:10.3969/j.issn.0001-5733.2011.07.019
蒋星亮. 2017.西北太平洋采薇深海海山绕流问题数值模拟研究[硕士论文].南京: 南京信息工程大学. http://cdmd.cnki.com.cn/Article/CDMD-10300-1017296266.htm
李波, 王艳, 钟和贤, 等. 2016. 花东海盆浊流沉积的磁性特征及其环境意义. 地球物理学报, 59(9): 3330-3342. DOI:10.6038/cjg20160917
梁文天, 靳春胜, Nantasin P, 等. 2015. 秦岭造山带晚三叠世糜署岭岩体的岩石磁学及磁组构可靠性约束. 地球物理学报, 58(3): 953-970. DOI:10.6038/cjg20150321
钱前坤. 2016.西北太平洋采薇海山附近海域的沉积和生物扰动作用[硕士论文].厦门: 厦门大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3024600
秦华峰, 刘青松, 潘永信. 2008. 一阶反转曲线(FORC)图的原理及应用实例. 地球物理学报, 51(3): 743-751. DOI:10.3321/j.issn:0001-5733.2008.03.015
孙玉芳, 强小科, 徐新文, 等. 2011. 黄土高原西北缘末次冰期晚期以来黄土沉积物的岩石磁学性质. 地球物理学报, 54(5): 1310-1318. DOI:10.3969/j.issn.0001-5733.2011.05.020
王彦美, 张伙带, 刘季花, 等. 2016. 麦哲伦海山区采薇海山富钴结壳伴生有用元素含量变化及空间分布特征. 海洋地质与第四纪地质, 36(2): 65-74.
韦振权. 2015. 西太平洋采薇海山群基岩特征及其富钴结壳成矿意义. 矿物学报, 35(S1): 792-793.
韦振权, 邓希光, 朱克超, 等. 2017. 西太平洋采薇海山群基岩特征. 海洋地质前沿, 33(12): 1-6.