地球物理学报  2019, Vol. 62 Issue (5): 1789-1808   PDF    
川滇地块西部差异性旋转的构造意义:青藏高原东南缘白垩纪红层古地磁学新证据
王恒1, 杨振宇2     
1. 中国地震局地质研究所, 北京 100029;
2. 首都师范大学资源环境与旅游学院, 北京 100048
摘要:印度-欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80 Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.
关键词: 青藏高原东南缘      川滇地块      古地磁      构造旋转      白垩系     
Differential rotation in the western Sichuan-Yunnan Block and its geological implications: New palaeomagnetic evidence from the Cretaceous red beds in the southeastern margin of the Tibetan Plateau
WANG Heng1, YANG ZhenYu2     
1. Institute of Geology, China Earthquake Administration, Beijing 100029, China;
2. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China
Abstract: The collision of India and Eurasia has produced significant crustal deformation in the Tibetan Plateau and its periphery. However its mechanism along faults in the southeastern margin of the plateau remains poorly understood. To address this issue, we carry out a palaeomagnetic investigation of Cretaceous red beds in the Sanchahe area on the eastern Yupaojiang Fault in the western Sichuan-Yunnan Block in order to determine the range of rotation along the fault. The area is divided into two segments by Sanchahe town, and the bedding attitudes are defined by two plunging fold axes. The mean direction of the High Temperature Component (HTC) from the southern segment of the Sanchahe area is Ds=29.3°, Is=45.7°, ks=54.3, α95=6.6° after tilt correction, and Ds=30.6°, Is=46.6°, κ=69.3, α95=5.8° after tilt correction using an inclined fold axis. The HTC direction for the northern segment is Ds=350.4°, Is=42.1°, κ=69.4, α95=9.2° after tilt correction, and Ds=347.4°, Is=41.9°, ks=96.6, α95=7.8° after tilt correction using an inclined fold axis. The southern segment experienced 20.5°±4.8° of clockwise rotation, whereas the northern segment experienced 22.7°±6.6° of anticlockwise rotation with respect to East Asia. Compared with previous palaeomagnetic results in this area, our results suggest that the Sichuan-Yunnan Block experienced~20° of clockwise rotation, and~20° of anticlockwise rotation in the northern segment of the Sanchahe area relative to the South China Block. This indicates a~40° range of anticlockwise rotation in the northern segment of the Sanchahe area relative to the southern segment of the Sanchahe area, and that intense local deformation occurred along the Yupaojiang Fault which induced the formation of detachments in the upper crust.
Keywords: Southeastern margin of Tibetan Plateau    Sichuan-Yunnan block    Palaeomagnetism    Tectonic rotation    Cretaceous    
0 引言

自古近纪印度与欧亚板块发生初始碰撞以来,印度板块持续向欧亚板块楔性挤压导致欧亚板块南缘发生了强烈的陆内地壳变形,形成了青藏高原内部及周缘一系列复杂山系和特殊地貌,导致了青藏高原构造隆升以及高原周缘岩石圈地壳沿大型走滑断裂发生构造运动(Tapponnier et al., 1982, 1986, 2001; Allen et al., 1984; Wang et al., 1998; Johnson, 2002; Guillot et al., 2008; Burchfiel and Chen, 2013).青藏高原东南缘是高原周缘地壳构造变形最为典型的区域,因此被认为是研究青藏高原周缘地区构造演化动力学机制和运动学特征的理想地区(Leloup et al., 1993, 1995; Wang et al., 1998).青藏高原东南缘是指位于实皆断裂以东和鲜水河—小江断裂以西的扇形地区,主要是由川滇、禅泰(Shan-Thai Block)和印支地块三大块体组成,并由大型走滑断裂带所分割.印度—欧亚板块碰撞以来,禅泰和印支地块地壳物质发生了复杂的构造变形(Tapponnier et al., 1982, 2001; Leloup et al., 1993, 1995; Roger et al., 1995; Burchfiel and Wang, 2003; Gilley et al., 2003) (图 1A).构造磁学研究显示:白垩纪以来禅泰和印支地块相对欧亚板块经历了约800 km的南向逃逸,禅泰地块相对于欧亚大陆发生了20°~ 80°顺时针旋转,局部地区旋转量甚至高达135°;印支地块相对于欧亚大陆发生了约30°的顺时针旋转(Funahara et al., 1993; Yang and Besse, 1993;杨振宇等, 2001;李仕虎等, 2012; Tong et al., 2013;徐颖超等,2017).然而川滇地块大规模的构造变形、南东向侧向挤出自中新世才开始启动(Wang et al., 2008a, 2008b, 2012),并持续至今;鲜水河—小江断裂和金沙江—哀牢山—红河断裂分别构成了川滇地块的北东侧和西侧的边界断裂,调节青藏高原浅层岩石圈南东向运动及构造旋转,也是目前青藏高原东南缘强震高发地区,因此川滇地块及其边界断裂的构造演化历史值得深入研究.

图 1 (A) 青藏高原及其周缘地区构造简图;(B)中国境内青藏高原东南缘主要地质单元区域构造图(改自Wang et al., 1998) 青藏高原东南缘重要的地质单元: (1)松潘—甘孜褶皱带; (2)义敦岛弧火山岩带; (3)楚雄盆地; (4)三江褶皱带. JARF, 金沙江—哀牢山—红河断裂系; GYF, 甘孜—玉树断裂; XSF, 鲜水河断裂; ANF, 安宁河断裂; ZMF, 则木河断裂; SMF, 石棉断裂; XJF, 小江断裂; JQF, 金河—箐河断裂; CHF, 程海断裂; LJF, 丽江—剑川断裂; HEF, 鹤庆—洱源断裂; YPJF, 渔泡江断裂; SJF, 三街断裂; CSF, 崇山断裂; LZF, 绿汁江断裂(改自四川省地质构造图和云南省地质构造图). Fig. 1 (A) Schematic tectonic map of the Tibetan Plateau and surrounding areas. (B) Regional tectonic map showing the major units in the southeastern margin of the Tibetan plateau within China (modified from Wang et al., 1998) (1) Songpan-Garzê Fold Belt; (2) Yidun Volcanic Arc; (3) Chuxiong Basin; (4) Three-River Fold Belt (Three rivers infer to Jiangsha-Jiang, Nu-Jiang and Lancang-Jiang). Rocks of the South China Block are unpatterned. JARF, Jinshajiang-Ailaoshan-Red River Fault System; GYF, Garzê-Yushu Fault; XSF, Xianshuihe Fault; ANF, Anninghe Fault; ZMF, Zemuhe Fault; SMF, Shimian Fault; XJF, Xiaojiang Fault; JQF, Jinhe-Qinghe Fault; CHF, Chenghai Fault; LJF, Lijiang-Jianchuan Fault; HEF, Heqing-Eryuan Fault; YPJF, Yupaojiang Fault; SJF, Sanjie Fault; CSF, Chongshan Fault; LZF, Lvzhijiang Fault (modified from the Geological Structure Map of Sichuan Province and the Geological Structure Map of Yunnan Province).

古地磁数据显示自印度—欧亚板块碰撞以来,分布于鲜水河—小江断裂系两侧的浅层地壳物质沿着走滑断裂发生了差异性构造旋转,其构造旋转量自北向南逐渐增大(Huang and Opdyke, 1992; Otofuji et al., 1998; Tamai et al., 2004);而川滇地块内部远离边界断裂的楚雄和剑川盆地渐新世以来的旋转变形量则保持一致(约15°~20°顺时针旋转)(Funahara et al., 1992; Yoshioka et al., 2003; Tong et al., 2015; Wang et al., 2016).渔泡江断裂与红河断裂带之间的区域自中生代以来发育一系列逆冲推覆构造,古生界、上三叠统及侏罗—古近系均被卷入逆冲推覆构造体系,沉积盖层滑脱导致褶皱逆冲构造发育,后经区域走滑作用改造,自西向东分布丽江—剑川断裂、鹤庆—洱源断裂、程海—宾川断裂(云南省地质矿产局, 1990),将楚雄盆地和剑川盆地分割开来(Wang et al., 1998; Fan et al., 2006) (图 1).川滇地块西缘一系列逆冲推覆作用以及后期走滑断裂可能导致断裂周缘差异性旋转变形,与川滇地块远离断裂区域的构造旋转量进行对比,可以揭示印度—欧亚板块碰撞后川滇地块西缘红河断裂北部尾端拉张区及其周缘区域中晚新生代构造演化过程及其动力学机制,也是检验该构造变形区的古地磁数据究竟代表区域的构造旋转还是局部的构造变形的关键所在.

本次研究通过对川滇地块楚雄盆地鱼泡江断裂东侧白垩纪地层开展构造古地磁学研究,结合前人在川滇地块楚雄盆地核部、剑川盆地、永胜盆地获得的构造磁学及地质学研究结果,揭示印度—欧亚大陆碰撞以来川滇地块西缘鱼泡江断裂周缘区域的地壳旋转变形量,一方面验证川滇地块在南东向运动的过程中是否表现为相对刚性块体,在断层密集发育的西缘地区是否存在差异性旋转;另一方面根据川滇地块内部南北向断裂带发育过程与地壳构造旋转变形量之间的关系,探讨川滇地块西缘自印度—欧亚碰撞以来,经历一系列逆冲推覆作用以及之后走滑断裂作用的改造,浅层地壳物质发生差异性构造旋转变形的运动学过程.

1 区域地质背景及采样

川滇地块位于印支地块北东侧,由松潘—甘孜褶皱带、义敦岛弧火山岩带以及华南板块西南部的楚雄盆地组成(图 1B),其北东侧以鲜水河—小江左行走滑断裂作为其与华南板块稳定区的构造边界,南侧以金沙江—哀牢山—红河走滑断裂系作为其与三江褶皱带的构造边界(云南省地质矿产局, 1990; Wang et al., 1998) (图 1B).楚雄盆地作为川滇地块的核心部位,其夹于金河—箐河断裂、绿汁江断裂和程海—宾川断裂之间,具有基底和沉积盖层双层构造(云南省地质矿产局, 1990).

川滇地块楚雄盆地大部分地区缺失震旦系—中三叠统盖层,晚三叠世开始发育巨厚的上三叠统—古近系始新统红层(图 2).盆地内侏罗系厚度由西向东逐渐减薄.白垩系—古近系沉积中心自西向东迁移.该区地壳构造变形较为简单,结晶基底中北东东向褶皱和片理发育,白垩系—始新世红层发育了北西向—北北西向褶皱(Tapponnier et al., 1990;云南省地质矿产局, 1990; Leloup et al., 1995).青藏高原东南缘受到侧向碰撞挤压作用影响,从西向东形成一系列近南北走向逆冲断层和推覆构造组合,且具有薄皮构造特点,推覆构造卷入地层主要是三叠系及以上地层,局部可见寒武系至奥陶系(李光勋, 1994;吴根耀, 1994;刘俊来等, 2006).早期发育的逆冲断层和推覆构造,普遍遭受后期区域走滑断层作用与伸展作用的改造(Tapponnier et al., 1986, 1990; Leloup et al., 1995;刘俊来等, 2006).

图 2 (A) 川滇地块楚雄盆地白垩系构造磁学剖面分布图;(B)三岔河剖面采点分布图;(C)地层产状等面积投影图: (a) DS1-DS15地层,(b) DS1-DS10地层,(c) DS10-DS15地层,(d)产状补测点DS16-DS22地层 Fig. 2 (A) Simplified geological map of the sampling area, the Chuxiong Basin, illustrating the distribution of sampling sites; (B) Sampling sites in the Sanchahe area; (C) Lower hemisphere equal-area projection of strata attitudes at sites: (a) DS1-DS15, (b) DS1-DS10, (c) DS10-DS15, (d) DS16-DS22

程海—宾川断裂是大理微地块的东侧边界断裂,构成了丽江、大理地区古生界和滇中中生界之间的分界线(谭筱虹, 1999;段建中和谭筱虹, 2000;段建中等, 2001).而渔泡江逆冲推覆断裂是程海—宾川断裂东侧的一条南北向断裂,长约90 km,距程海—宾川断裂8~35 km,断层面倾向西,倾角约60°(刘和甫等, 2000;吕财, 2015).渔泡江断裂两侧广泛发育上三叠统浅海相、海陆过渡相碎屑、碳酸盐沉积地层,以及侏罗纪、白垩纪红层,为华南板块的盖层沉积,未见基底出露(云南省地质矿产局, 1990).燕山期晚期构造运动卷入上三叠统—白垩系,形成北西走向的构造线;研究区内褶皱与断裂发育密切相关,断裂东盘发育白垩系,仅在南部小背斜轴出露少量侏罗系,沿着断层线破碎带发育,切割地层和褶皱轴线较为明显(云南省地质矿产局, 1990).楚雄盆地的侏罗—白垩纪红层盖层,形成的褶皱和缓开阔,但是在渔泡江断裂附近受到断层影响变形比较严重,局部发育褶皱,表现为一系列北东东倾的单斜地层,并发育同层短轴褶曲(云南省地质局, 1973).渔泡江断裂两侧白垩系褶皱翼部发育成束褶曲,轴向和主轴平行,向两端延伸并倾伏(云南省地质局, 1965, 1973).

红河断裂北部尾端拉张区是川滇地块西缘构造变形较为复杂的地区,剑川盆地与楚雄盆地之间发育丽江—剑川断裂、程海—宾川断裂及渔泡江断裂等一系列近南北走向断裂,但这些断裂是如何调节川滇地块西缘的构造旋转还需要深入研究.因此本次古地磁研究将采样剖面布置于楚雄盆地西部大姚县至三岔河镇新开公路两侧.整条剖面位于渔泡江断裂东侧上白垩统赵家店组,各采样点布设在褶皱两翼,用便携式汽油钻共采集15个采点193块定向岩心样品,并用磁罗盘定向,用GPS进行精确定位,所有采样点均经过2010年国际参考地磁场(International Geomagnetism Reference Field) (Finlay et al., 2010)换算得来的现代地磁场磁偏角校正.

2 岩石磁学实验

样品的加工及测试工作在中国地质科学院地质力学研究所国土资源部古地磁与古构造重建重点实验室进行.定向岩心加工成高度为22 mm,直径为25.4 mm的标准样品,每块岩心至少加工两块样品.

为了确定样品中载磁矿物的种类,我们根据古地磁采点的分布情况及样品岩性特征,挑选了4块代表性样品进行饱和等温剩磁(IRM)及反向直流场退磁曲线、三轴等温剩磁热退曲线(在z, y, x方向分别加载强度为2.5 T,0.4 T,0.12 T的直流场) (Lowrie, 1990).

饱和等温剩磁(IRM)及反向直流场退磁实验显示三岔河剖面样品剩磁强度随外部直流磁场的增大逐步递增,在外加直流磁场达到2.5 T时样品仍未达到饱和磁化(图 3),当反向直流磁场增加至500~1000 mT之间时,样品等温剩磁强度减小为0(图 3),显示高矫顽力磁性矿物的存在,表明主要载磁矿物为赤铁矿.三轴等温剩磁热退磁实验显示软磁组分和中磁组分所占比重非常小,而且阻挡温度在580 ℃附近,表明样品中含有少量磁铁矿;硬磁组分阻挡温度在650~690 ℃,显示样品中主要载磁矿物为赤铁矿(图 4).

图 3 三岔河剖面典型样品的饱和等温剩磁获得曲线和反向直流场退磁曲线 Fig. 3 Isothermal remanent magnetization acquisition curves and saturation IRM reverse field demagnetization curves for representative samples of the Sanchahe area
图 4 三岔河剖面典型样品三轴等温剩磁热退磁曲线 Fig. 4 Three-component IRM thermal demagnetization curves for representative samples of the Sanchahe area

饱和等温剩磁(IRM)及反向直流场退磁实验及三轴等温剩磁热退磁实验结果说明三岔河剖面样品主要的载磁矿物为赤铁矿,且含有少量磁铁矿.

3 磁化率各向异性结果

磁化率各向异性数据同时满足低磁化率(<10-4SI)和低各向异性度(P<1.05)两个条件时反映沉积组构特征(Hrouda, 2007Sagnotti, 2011);反之磁化率各向异性则显示后期构造应力作用的结果.三岔河剖面15个采点磁化率均不小于10-4SI很可能说明磁组构数据为后期构造应力改造的结果.根据磁化率各向异性椭球体与有限应变椭球体对应关系,可将沉积岩变形组构类型及其发育期次分为六种类型(Parés et al., 1999; Parés and van der Pluijm, 2002; Saint-Bezar et al., 2002; Evans et al., 2003;贾东等, 2007; Luo et al., 2009).

三岔河剖面可以鉴别出3种磁组构类型.

(1) 初始变形磁组构:沉积作用和成岩压实作用导致载磁矿物在稳定的水动力条件下平行地层层面沉积压实,因此磁面理方向平行于层面,K1K2无规律分散于磁面理,K3垂直于磁面理,形成沉积磁组构;初始变形组构是在主压应力方向发生构造缩短,主压应力最早阶段通常平行于地层方向.原始沉积组构受到挤压应力作用而发育有最早期阶段的弱变形磁组构,使得研究地层中磁性矿物颗粒形状发生极微弱的转变(Huang et al., 2006, 李震宇等, 2010), 但磁面理依旧平行于沉积层面,K3垂直于磁面理,K1K2平行于磁面理并逐渐发生分离,K2逐渐向构造缩短的方向偏离,K1逐渐向与构造缩短相垂直的方向偏离(Saint-Bezar et al., 2002; Evans et al., 2003; Borradaile and Jackson, 2004).这类磁组构T>0,在扁圆区分布(Tarling and Hrouda, 1993).

三岔河剖面DS1、DS2、DS3三个采点的磁组构结果显示K3垂直于由K1K2所组成的磁面理,K1K2开始发生分离,说明三个采点属于初始变形磁组构过渡类型.DS3的磁面理方向与地层层面相平行,但DS1和DS2磁面理方向与地层层面小角度相交,说明DS1和DS2采点附近地层所受到的构造挤压应力与地层层面并不平行,从而导致磁面理与地层层面小角度相交.地理坐标系下磁组构椭球体最大轴K1和中间轴K2组成磁面理,并具有从磁面理平面散乱分布向优势方向集中分布趋势,而最小轴K3大致与磁面理垂直(图 5),指示了沉积磁组构到初始变形磁组构过渡的特征.

图 5 三岔河剖面磁化率各向异性在地理坐标系下等面积投影图及磁组构各向异性度(P)和椭球体形态因子(T)关系图(K1:最大轴,K2:中间轴,K3:最小轴,P:各向异性度,T:磁组构椭球体形态因子) Fig. 5 Equal-area projections before correction and P-T curves of AMS data in stratigraphic coordinates(K1:maximum, K2:intermediate, K3:minimum, P:corrected degree of anisotropy, T:shape parameter)

(2) 铅笔状磁组构:随着构造应力的持续增加,应变椭球体逐渐从扁圆形向长圆形过渡,磁组构K3轴方向逐渐从垂直于磁面理的方向往构造缩短方向偏离,因此K3轴偏转方向指示了最大挤压应力的方向.磁组构椭球体最大轴K1发生分离,磁线理方向与地层构造形迹一致且与地层走向方向平行,中间轴K2和最小轴K3呈带状分布并与最大轴K1垂直,说明该研究地层经历了更强烈的变形过程,这类磁组构T<0,在扁长区分布(Tarling and Hrouda, 1993; Saint-Bezar et al., 2002; Evans et al., 2003; Borradaile and Jackson, 2004).

采样点DS5-DS14磁组构结果显示磁面理不发育,K1轴的优势方向代表垂直构造缩短的方向,K3轴散布的方向代表了构造缩短方向,显示了较强的应变状态.地理坐标系下磁化率椭球体最大轴K1方向在优势方向明显集中,指示构造缩短的垂直方向.磁化率各向异性受到构造应力作用程度进一步加深,主要发育磁线理(图 5),指示了铅笔状磁组构过渡的特征.

(3) 弱劈理磁组构:随着构造缩短的进一步加剧,岩层垂直于构造缩短的方向开始递进伸长,从而K1轴和K3轴所组成的磁面理发育并与地层层面相交,磁组构椭球体表现为K3轴在构造缩短优势方向集中,因此K3轴偏转方向指示了最大挤压应力的方向.这类磁组构T>0,在扁圆区分布(Tarling and Hrouda, 1993; Saint-Bezar et al., 2002; Evans et al., 2003; Borradaile and Jackson, 2004).

采样点DS4、DS15磁组构结果显示磁面理发育,K3轴垂直于由K1轴和K2轴组成的磁面理,K3轴的优势方向代表了构造缩短方向,显示了更强的应变状态.地理坐标系下磁化率椭球体最小轴K3方向指示构造缩短方向,而最大轴K1方向指示构造缩短的垂直方向(图 5).通常情况下磁线理方向与地层构造形迹一致且与地层走向方向平行,但是三岔河地区的磁线理方向与地层产状之间没有明显规律,显示三岔河镇南侧的主压应力方向为近E-W,而三岔河镇以北的主压应力方向为近NW-SE.渔泡江断裂主要为南北走向,断裂西侧地层向东逆冲,断裂东侧白垩系向东掀斜,区域整体的构造应力方向为近东西向,与DS1-DS10磁组构K1轴所指示的磁线理方向相垂直,说明磁组构方向记录了区域整体的构造应力趋势,而DS11-DS15与DS1-DS10磁组构K1轴所指示的磁线理方向之间有约40°角度差(表 1).

表 1 三岔河剖面各点磁化率各向异性数据 Table 1 Summary of the anisotropy magnetic susceptibility data
4 样品系统热退磁数据分析

系统热退磁实验在中国地质科学院地质力学研究所由美制2G超导磁力仪和TD48热退磁炉完成,根据岩石磁学的分析得到样品的可能载磁矿物组合设置合理的退温步骤,低温加热阶段温度间隔较大,高温段间隔变小,660~680 ℃以10 ℃为间隔,共计16~20步系统退磁测试.从系统热退磁的正交矢量图可以看出,采自古新世地层的样品包含低温剩磁组分(Low-Temperature Component, LTC)和高温剩磁组分(High-Temperature Component, HTC).大部分样品可在系统热退磁660 ℃到690 ℃时解阻,并通过主成分分析法(Kirschvink, 1980)获得高温剩磁组分.

图 6 三岔河剖面代表性样品的热退磁Z氏图(地层产状校正前) 实心圆和空心圆分别代表水平和垂直投影. Fig. 6 Zijderveld diagrams of thermal demagnetization results for the representative samples from Sanchahe section (before tilt-correction) Solid and open circles represent vector endpoints projected onto the horizontal and vertical planes, respectively.

低温剩磁组分在系统退磁温度区间100~400 ℃从DS1-DS14共14个采样点中分离出来.低温剩磁组分在倾斜校正前为:Dg=349.6°,Ig=58.1°,kg=12.4,α95=11.8°(N为14个采样点),倾斜校正后为:Ds=17.6°,Is=52.9°,ks=22.4,α95=8.6°,褶皱检验结果显示,精度参数k值产状校正后比校正前增大(ks/kg=1.81035),在95%及99%置信度下McFadden(1990)褶皱检验没有意义(Inconclusive) (ζIn-Situ=7.272,ζTilt-Corrected=8.659,ζc(95%)=4.358,ζc(99%)=6.087),低温剩磁组分显示了相对集中的特征,与高温剩磁组分的分布特征相似,且“低温剩磁组分”倾斜校正前的平均方向与当地现代地磁场方向(D=358.8°, I=39.3°)不尽相同,说明代表现代地磁场方向的低温组分可能未被有效分离.

高温剩磁平均方向可分为两组:DS1-DS10为一组优势方向,DS11-DS15为另一组优势方向(图 7b).三岔河南侧DS1-DS10采样点附近的地层产状赤平投影图显示地层发育倾伏褶皱(图 2C),褶皱枢纽倾伏向121.1°,倾伏角21.9°(α95=10.1°,N=9,DS9采点的地层产状较为离散未加入统计);三岔河镇以北DS11-DS15采样点附近的地层同样发育倾伏褶皱,褶皱枢纽倾伏向298.9°,倾伏角15.2°(α95=7.9°,N=5).

图 7 三岔河采样剖面剩磁磁化方向的等面积投影图 实心圆、空心圆分别代表下、上球面投影,五角星代表平均方向. Fig. 7 Equal-area projections of the site-mean directions for magnetic component from Sanchahe section Solid (open) symbols are lower (upper) hemisphere projection. Mean direction is shown by star.

造山带及其周缘地区地壳通常会受到褶皱和断层等构造事件影响,发生一系列构造变形,不同应力背景下的构造变形可以导致多次褶皱作用,从而导致采样地层绕倾伏轴产生多次构造旋转叠加(Bullard et al., 1965).净旋转量是指采样地层在构造旋转过程中,从最初的沉积方向旋转到现今方向上所发生角度差别(MacDonald, 1980).当构造旋转域范围小于数公里视构造旋转量的影响就不能忽视(MacDonald, 1978).本次研究采用PaleoMac 6.5对采样点开展古地磁数据倾伏校正(Cogné, 2003).

三叉河镇南侧样品DS1-DS10的高温剩磁平均方向在倾斜校正之前Dg=359.1°,Ig=46.9°,kg=10.6,α95=15.6°,倾斜校正之后Ds=29.3°,Is=45.7°,kg=54.3,α95=6.6°,倾伏校正之后Ds=30.6°,Is=46.6°,ks=69.3,α95 =5.8°(图 7c).褶皱检验结果显示,倾伏校正之后精度参数k值产状校正后比校正前增大(ks/kg= 6.54403),且通过95%及99%置信度McFadden(1990)褶皱检验(ζIn-Situ=5.643,ζTilt-Corrected= 1.967,ζc(95%)=3.685,ζc(99%)=5.120) (McFadden, 1990).展平检验显示展平达100%时,精度参数(k)达到最大值,Dmax=28.9°, Imax=46.6°, kmax=62.0,方向与倾斜校正之后高温剩磁组分相近.

三叉河镇北侧样品DS11-DS15的高温剩磁平均方向在倾斜校正之前Dg=345.6°,Ig=67.0°,kg=35.7,α95=13.0°,倾斜校正之后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏校正之后Ds=347.4°,Is=41.9°,κ=96.6,α95=7.8°(图 7d).褶皱检验结果显示,倾伏校正之后精度参数k值产状校正后比校正前增大(ks/kg=2.70387),McFadden (1990)褶皱检验在95%及99%置信区间均无意义(ζIn-Situ=3.413,ζTilt-Corrected= 2.871,ζc(95%)=2.609, ζc(99%)=3.573) (McFadden, 1990).

如果不考虑离散的采样点(DS14),高温剩磁平均方向在倾斜校正之前Dg=339.8°,Ig=72.0°,kg=129.0,α95=8.1°,倾斜校正之后Ds=354.8°,Is=39.9°,kg=354.5,α95=4.9°,地层倾伏校正之后Ds=350.7°,Is=39.9°,ks=294.8,α95 =5.4°(图 7e).褶皱检验结果显示,精度参数k值倾伏校正后比校正前有所增大(ks/kg=2.28453),且在95%及99%置信度,通过McFadden(1990)褶皱检验(ζIn-Situ= 3.648,ζTilt-Corrected=1.543,ζc(95%)=2.335, ζc(99%)=3.180) (McFadden, 1990).展平检验显示展平达100%时,精度参数(k)达到最大值,Dmax=354.8°, Imax =39.9°, kmax =343.5.

虽然三岔河镇北侧的DS11-DS15采样点数较少,但是倾伏校正后精度参数k增大,并能通过McFadden(1990)褶皱检验,且三岔河剖面全部15个采点均属于同一时代地层,DS1-DS10的高温剩磁分量为地层褶皱前获得,同样可以认定DS11-DS15的高温剩磁分量也应为地层褶皱前获得.楚雄盆地西缘三岔河剖面15个采样点,以三岔河镇为分界点,南北两段分别通过褶皱检验,说明这高温特征剩磁分量应该是地层发生倾斜之前获得磁化,地质调查表明楚雄盆地上白垩统与古新统之间不整合接触或者假整合接触(云南省地质矿产局,1990),说明楚雄盆地可能在晚白垩世发生倾斜以及高温剩磁分量应该是在晚白垩世获得磁化,即该高温剩磁分量很可能为岩石形成时期获得的原生剩磁分量.

4 讨论 4.1 研究区构造几何形态及变形特征

通常古地磁倾斜校正默认地层是沿着倾斜地层走向线为旋转轴发生地层倾斜(MacDonald, 1980).但是非同轴挤压变形会导致倾伏褶皱、圆锥状褶皱、叠加褶皱,断层相关褶皱、构造穹隆等一系列复合褶皱模式的叠加(Pueyo et al., 2003),特别是地壳块体沿着倾斜的断层面发生构造旋转时,即旋转轴是倾伏的前提下,使用传统的倾斜校正会不同程度的造成磁偏角校正结果发生偏差,而这种校正偏差表现为视旋转量(apparent rotation)(MacDonald, 1978, 1980; Pueyo et al., 2003), 这种干扰因素增加了磁偏角数据的离散程度,也增加了古地磁数据的构造解释的难度(MacDonald, 1980).

根据区域地质调查报告记录,三岔河地区渔泡江断裂东西两侧白垩系均发育倾伏构造(云南省地质局, 1965, 1973).三岔河剖面地层产状绘制的区域构造立体简图显示三岔河镇南北两侧均分别发育小范围褶皱变形,说明研究区可能受到多组构造挤压应力后期改造.三岔河剖面各采样点地层产状的赤平投影结果显示,三叉河南侧地层和三叉河北侧地层可能分别发生构造倾伏,南侧的倾伏轴倾伏向121.1°,倾伏角21.9°,α95=10.1°;北侧的倾伏轴倾伏向298.9°,倾伏角15.2°,α95=7.9°(图 2C).

图 8 (A) 三岔河剖面构造旋转量与磁组构K1主轴方向关系图; (B)三岔河剖面基于构造旋转量与磁组构K1主轴方向使用Ward联结的树状图 Fig. 8 (A) Diagram of magnitude of tectonic rotation and the directions of the maximum susceptibility axes K1; (B) Ward cluster analysis diagram of the magnitude of tectonic rotation and the directions of the maximum susceptibility axes K1
表 2 三岔河剖面各采样点相对东亚视极移曲线构造旋转量 Table 2 Rotation of each sampling sites from the Sanchahe section relative to APWP for Asia

可以造成倾伏褶皱构造表象的动力学机制可以分为两种端元模型,分别为真倾伏褶皱(true plunging fold)和复合褶皱(interference fold)(Stewart, 1995).真倾伏褶皱的两翼是以褶皱枢纽为旋转轴发生旋转,而褶皱枢纽并不水平;复合褶皱是地层受到两组不同方向的构造挤压,褶皱两翼分别以不同的水平旋转轴发生构造旋转,两组不平行走向地层交汇的区域会形成类似于倾伏褶皱的构造模式.那么对采自褶皱两翼的构造古地磁数据进行倾斜校正,真倾伏褶皱的结果会因为错误使用地层走向线作为旋转轴进行校正而发生离散,而叠加褶皱两翼的旋转轴本就是地层走向线,所以校正结果不会受到影响;反之如果对采自褶皱两翼的数据进行倾伏校正,真倾伏褶皱的校正结果会向真实值逼近,而叠加褶皱的校正结果会受到强加的倾伏校正影响,使用错误的地层产状校正,导致校正结果以真实值为中心向周围离散(Stewart, 1995).

三岔河南侧10个采点DS1-DS10的褶皱检验结果显示,地层产状校正后精度参数k值为54.3,且通过95%置信度McFadden(1990)褶皱检验;而经过倾伏校正之后精度参数k值升至69.3,并通过95%及99%置信度McFadden(1990)褶皱检验.三岔河北侧4个采点DS11-DS13和DS15的褶皱检验结果显示,地层产状校正后精度参数k值为354,通过95%置信度McFadden(1990)褶皱检验;而经过倾伏校正之后精度参数k值变至294.8,但是通过95%及99%置信度McFadden(1990)褶皱检验.三岔河剖面南北两组数据经过倾伏校正之后均分别在95%及99%置信度下通过McFadden(1990)褶皱检验.高温剩磁分量赤平投影结果显示经过倾伏校正之后南北两段剖面的数据分别发生收敛,显示了更明显的分组性(图 7Bⅲ).

在造山带及其周缘强烈构造变形的地区,普遍发育叠加褶皱,导致地层沿着倾伏轴发生旋转,或者沿着多组水平旋转轴发生多期次构造旋转,从而致使褶皱两翼的特征剩磁矢量方向发生离散.相较于倾斜校正之后的结果,高温剩磁分量经过倾伏校正之后通过置信度更高的褶皱检验,从数据分析的角度佐证该研究区的南北两侧地层分别发生了倾伏褶皱变形.

4.2 磁化率各向异性值对剩磁方向的影响

整个剖面磁化率椭球体主轴方向等面积投影图和P-T关系图显示三岔河剖面磁组构Anisotropy of Magnetic Susceptibility (AMS)倾斜校正后显示为较低的校正各向异性度平均值,平均磁化率椭球体最大轴方位K1轴的平均方向为倾向359.6°,倾角0.8°;然而北段剖面平均磁化率椭球体最大轴的平均方向为149.0°倾角2.3°.DS1-DS10地层产状约为N-S向,南段DS11-DS15地层产状约为NW-SE向,三岔河剖面南北两段地层产状均与磁化率椭球体最大轴方位近似平行,说明AMS大体记录了构造应力挤压作用方向.

Stephenson等(1986)在理论及实践上探讨了岩石及矿物中磁化率各向异性和剩磁各向异性之间的关系,指出两者间存在线性关系,剩磁偏离角度与磁化率各向异性以及剩磁矢量与K1轴的夹角有关,各点倾斜校正后磁偏角方向与K1轴的夹角为12.5°~54.6°(表 1).Cogné等(1987)研究多畴磁铁矿的磁化率各向异性和剩磁各向异性之间的关系,Mi/Mj=(ki/kj)2,当载磁矿物为多畴磁铁矿时,剩磁各向异性大于磁化率各向异性.因此基于三岔河剖面南北两段磁化率椭球体的各向异性度P及磁化率椭球体三条主轴与地层产状的空间关系(表 1),在假设三岔河剖面的主要载磁矿物全部为多畴磁铁矿前提下,三岔河剖面磁化率各向异性对磁偏角的影响最大可达到约1.25°.况且多畴磁铁矿是目前发现的磁化率各向异性和剩磁各向异性之间呈2次指数关系的磁性载体,其他磁性载体为线性关系(阎桂林,1996).本剖面的主要载磁矿物为赤铁矿,含有少量磁铁矿.因此基于1)三岔河剖面南北两段磁化率椭球体较低的各向异性度(表 1);2)磁化率椭球体三条主轴与地层产状的空间相对关系;3)本剖面的主要载磁矿物为赤铁矿;4)各点倾斜校正后磁偏角方向与K1轴的夹角为12.5°~54.6°,可以认为磁化率各向异性对磁偏角的影响远低于1.25°,与Cogné (1987)的结论基本一致:当P为1.11时,剩磁的偏差不大于3°.因此在磁化率各向异性度P较低的地区可以忽略因磁化率各向异性的改变所产生的磁性矿物携带的剩磁方向的“偏转”.

4.3 采点相关性分析及聚类统计分析

欧亚板块视极移曲线通常被用来作为参照系,计算青藏高原及其周缘地区区域构造旋转,但是欧亚板块古地磁极是由欧洲的古地磁数据计算得到,欧亚板块范围巨大,越来越多的证据表明欧亚大陆不是一个刚性板块(Cogné, 2013).本次研究所采地层均为上白垩统下江底河组,因此选用东亚地区古地磁极视极移曲线来计算讨论三岔河地区相对于东亚地区构造旋转变形(Cogné et al., 2013).

为了定量反映三岔河剖面构造旋转量沿着渔泡江断裂具有分段性特征,基于各采样点构造旋转量和地理坐标系下磁化率各向异性K1轴方向进行相关性统计分析.相关系数(correlation coefficient, CC)反映的是两变量间的相关程度(Pearson, 1895).其计算公式为:

CC(X, Y)反映计算窗口内各采点构造旋转量和地理坐标系下K1轴方向的线性相关程度,其值为-1≤CC (X, Y)≤1,CC(X, Y)接近于1时为正相关,CC(X, Y)接近于-1时为负相关,CC(X, Y)接近于0时(-0.3≤CC(X, Y)≤0.3)可认为两者无关.

通过对研究区构造旋转量和地理坐标系下磁组构椭球体K1轴方向开展相关性分析,显示两组数据相关系数为0.921,为高度相关.进而对各采点进行聚类分析,使用平方Euclidean距离来刻画采点之间的关联性,归并方法采用离差平方和法(Ward法) (Dubien and Warde, 1979),这个方法基于方差分析的思想,同类样品之间的离差平方和较小,类与类之间的离差平方和较大.聚类分析的结果把三岔河剖面的15个采点同样分为两大类,即三岔河镇南北两侧数据独立成组,与南北两侧独立通过褶皱检验有很好一致性.

渔泡江断裂东侧的白垩系在早期构造挤压阶段受到西侧叠瓦状逆冲断层和推覆构造的东向构造挤压,使得磁组构椭球体K1轴呈近南北走向,但是受到后期构造作用改造,三岔河镇以北地区发生局部构造旋转,后期的区域构造旋转并没有深刻地改变地层中所记录的磁组构信息.

4.4 区域构造演化过程

三岔河地区位于楚雄盆地西缘,晚白垩纪以来三岔河镇以南区域发生20.5°±4.8°顺时针旋转;三岔河镇以北地区发生22.7°±6.6°逆时针构造旋转.楚雄盆地内部所采集的古地磁数据显示,除大姚、永仁的个别采点的磁偏角负异常导致采样剖面构造旋转量偏小之外,楚雄盆地远离断裂的地区以及剑川盆地基本表现为刚性块体,中新世以来以东喜马拉雅构造结为中心,鲜水河—小江断裂为边界发生约20°的顺时针旋转(Tong et al., 2015; Wang et al., 2016),说明三岔河镇以南剖面与楚雄盆地核部远离断裂地区表现为较为统一的构造旋转量,剖面南段未明显遭受到局部构造影响,而三岔河以北地区中新世以来不仅与楚雄盆地核部一同发生约20°顺时针构造旋转,而且还叠加约40°的逆时针构造旋转.

三岔河剖面南北两段磁组构信息和构造旋转量之间相关系数为0.921,为高度相关,说明三岔河地区南北两段的高温剩磁分量很可能是在早白垩世获得,之后经历了区域上近东西向的构造挤压,形成了一系列近南北走向的叠瓦状逆冲断层和推覆构造,磁组构信息记录了AMS椭球体K1轴地理坐标系下近南北走向,构造演化后期,三岔河北段剖面发育局部逆时针构造旋转.

楚雄盆地远离断裂的大姚地区、剑川盆地以及三岔河剖面南段发生较为统一的近20°顺指针构造旋转(表 3),说明楚雄盆地作为一个整体发生了区域上的构造旋转,但是楚雄盆地整体的构造旋转与三岔河剖面北段局部逆时针构造旋转之间的时间先后顺序无法确认.

表 3 川滇地块各采样点相对东亚视极移曲线构造旋转量 Table 3 Rotation of each section of the Sichuan-Yunnan Block relative to APWP for Asia
4.4.1 构造叠加和改造

青藏高原东南缘三江地区受残余新特提斯洋消亡、印度—欧亚板块碰撞影响,区域发育一系列近南北走向叠瓦状西倾东冲推覆构造与逆冲构造体系(吴根耀, 1994).崇山剪切带在38 Ma之前开始遭受挤压变形,形成区域性褶皱-逆断层组合(Zhang et al., 2010);34~32 Ma开始发生简单剪切应变(Akciz et al., 2008; Zhang et al., 2010);兰坪盆地35 Ma开始遭受构造挤压作用导致盆地基底抬升出地表(Yang et al., 2014;史鹏亮等, 2015);红河—哀牢山剪切带韧性剪切开始变形可能开始于35~17 Ma(Tapponnier et al., 1990; Schärer et al., 1994; Leloup et al., 1995, 2001; Harrison et al., 1996; Gilley et al., 2003; Chung et al., 2007; Cao et al., 2012; Liu et al., 2012),哀牢山变质杂岩早期遭受高温纯剪作用.青藏高原东南缘新生代以来逆冲断裂及推覆构造组合具有自西往东逐渐扩展的趋势(吴根耀, 1994;史鹏亮等, 2015).

近北西走向的哀牢山—红河断裂带作为川滇地块的南西边界断裂,自渐新世开始发生大规模左行走滑剪切作用,断裂西侧的印支地块相对于华南板块稳定区发生了约600 km的南向运动(Leloup et al., 1995; Chung et al., 1997; Gilley et al., 2003),并在南东向挤出过程中发生了大角度的顺时针旋转运动(Funahara et al., 1993; Huang and Opdyke, 1993; Yang and Besse, 1993).约5 Ma哀牢山—红河断裂带由左行走滑转变为右行走滑兼具正断性质(Allen et al., 1984; Wang et al., 1998; Replumaz et al., 2001; Schoenbohm et al., 2006).北西走向的鲜水河断裂系向南发育与云南境内的小江断裂系在巧家连接(Allen et al., 1991; Wang et al., 1998, 2014),年代学证据表明鲜水河断裂系起始走滑开始于17~12 Ma之间(Roger et al., 1995; Wang et al., 2008a, 2008b),地层接触关系显示小江断裂的起始走滑时间应该与上新世地层开始沉积的时间大体一致,起始走滑时间约为5~4 Ma(Wang et al., 1998, 2008a, 2008b), 也有证据证明小江断裂左旋走滑可能开始于13 Ma(Li et al., 2015).自渐新世以来川滇地块受到印度—欧亚板块碰撞后持续汇聚作用的构造影响开始南向运动,其东侧的鲜水河断裂也在同一时期不断向南延伸发育;至5~4 Ma开始红河断裂的走滑性质开始转换,小江断裂也在此时开始发育,说明青藏高原东南缘构造演化的整体格局自上新世开始发生转换.

青藏高原东南缘表层地壳物质不断调节吸收印度—欧亚板块碰撞后造山作用所造成的构造收敛,早期发育的逆冲断层与推覆构造,开始逐渐遭受后期区域走滑断层作用与伸展作用的改造(刘俊来等, 2006).

4.4.2 局部倾伏褶皱变形

青藏高原东南缘逆冲推覆构造从区域上到露头不同尺度上均有发育(刘俊来等, 2006).青藏高原东南缘受到侧向碰撞挤压作用影响,从西向东形成一系列近南北走向逆冲断层和推覆构造组合,且具有薄皮构造特点(李光勋, 1994;吴根耀, 1994;刘俊来等, 2006吕财, 2015),从而导致该区普遍发育盖层滑脱产生褶皱构造(刘和甫等, 2000),而滑脱构造会导致褶皱两翼表层岩石圈在以垂直轴发生旋转的过程中产生差异性构造旋转(MacDonald, 1980).

渔泡江断裂是青藏高原东南缘一系列西倾东冲叠瓦状逆冲断层系的前锋带(刘和甫等, 2000).断裂西侧的三叠系—侏罗系逆冲推覆在断裂东侧的白垩系—古近系之上,导致靠近渔泡江断裂的地层被卷入更为剧烈的构造挤压(云南省地质矿产局, 1990).三岔河镇位于渔泡江断裂以东,附近地层产状扰动严重,发育一组近东西走向地层产状,且白垩系受到强烈局部构造挤压,岩石破碎严重,发生弱变质;三岔河镇附近遭受强烈构造挤压,区域上发生构造隆升,三岔河镇南北两侧表层地层分别发育构造倾伏;经构造古地磁学研究,三岔河镇以北白垩系相对于楚雄盆地核部及三岔河镇南侧剖面发生了约40°的逆时针旋转,以上三组证据表明渔泡江断裂东侧白垩系受到断层影响,发育滑脱构造,从而导致三岔河镇南北两侧发生差异性构造旋转,局部差异性旋转造成南北两段剖面之间发育局部构造挤压,并通过三岔河镇附近的褶皱作用调节和吸收两段剖面之间的相对运动(图 9C).三岔河镇就位于背斜构造的褶皱枢纽,背斜构造的枢纽部分节理密集发育,地层产状扰动明显(图 2c—d).枢纽部的拉张破碎作用导致该区域形成一条近东西向展布的负地形,呈现向形背斜的构造特征(图 9D).而三岔河剖面就分布于近东西向背斜的南北两翼,从而导致剖面南北两段以三岔河镇为界分别发育不同方向的地层倾伏(图 2C).

图 9 三岔河剖面白垩系构造演化简图 Fig. 9 Simplified diagram showing tectonic evolution of Cretaceous in the Sanchahe area

区域地质调查报告记录渔泡江断裂东西两侧白垩系均有发育构造倾伏(云南省地质局, 1965, 1973),且区域构造立体简图(图 9D)、地层产状赤平投影(图 2C)、褶皱检验结果、高温特征剩磁磁化方向等面积投影(图 7)以及区域构造动力学机制分析结果均显示三岔河镇以北地区发生构造滑脱,因此导致三岔河镇局部发育东西走向背斜构造,致使背斜两翼先存的近南北走向的褶皱构造分别发生构造倾伏.

5 结论

(1) 通过对川滇地块楚雄盆地西缘渔泡江断裂东侧白垩系磁组构研究可以区分出三种磁组构类型:初始变形磁组构、铅笔状磁组构、弱劈理磁组构.剖面南侧磁组构数据所记录的主压应力方向为近东西向;剖面北侧磁组构数据所记录的主压应力方向为NW-SE.

(2) 川滇地块渔泡江断裂东侧上白垩统赵家店组以三岔河镇为界南北两侧分别发生倾伏,南侧倾伏轴倾伏向121.1°,倾伏角21.9°,α95=10.1°;北侧倾伏轴倾伏向298.9°,倾伏角15.2°,α95=7.9°,三岔河南侧白垩系高温剩磁分量倾伏校正后Ds=30.6°,Is=46.6°,k=69.3,α95=5.8°,相对于东亚地区80 Ma窗口期古地磁极的构造旋转量20.5°±4.8°,未显示与楚雄盆地核部产生差异性旋转;三岔河镇以北白垩系高温剩磁分量倾伏校正后Ds=347.4°,Is=41.9°,k=96.6,α95=7.8°,构造旋转量-22.7°± 6.6°,显示三岔河镇北侧白垩系相对于楚雄盆地核部及三岔河镇南侧白垩系发生了约40°逆时针构造旋转.

(3) 各采样点的构造旋转量与磁组构K1轴相关系数为0.921,通过聚类分析证明三岔河镇南侧DS1-DS10与三岔河镇北侧DS11-DS15为截然不同的两组数据.

(4) 楚雄盆地西缘一系列近南北走向西倾东冲的逆冲断裂和推覆构造组合并未导致渔泡江断裂东侧地层发育显著的差异性构造旋转,但渔泡江断裂东侧上白垩统三岔河镇以北局部发育滑脱构造,导致局域性叠加约40°逆时针旋转,可能为后期走滑断裂改造所致.滑脱构造导致三岔河镇区域性构造隆升,进而致使三岔河镇南北两侧分别倾伏.楚雄盆地核部、剑川盆地以及本次研究的渔泡江断裂东侧三岔河镇以南白垩系古地磁数据显示,川滇地块南部经历了较为统一的约20°构造旋转.青藏高原东南缘古地磁数据中既包含可以反映区域性构造旋转的结果,又包含反映了局部构造变形的结果,因此通过古地磁方法研究青藏高原东南缘的构造运动,真实地还原构造演化历史,需基于详实的构造地质的野外调查.

致谢  感谢各位审稿专家和编辑提出诸多修改建议.
References
Akciz S, Burchfiel B C, Crowley J L, et al. 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere, 4(1): 292-314. DOI:10.1130/GES00111.1
Allen C R, Gillespie A R, Yuan H, et al. 1984. Red River and associated faults, Yunnan Province, China:Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin, 95(6): 686-700. DOI:10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
Allen C R, Luo Z L, Qian H, et al. 1991. Field study of a highly active fault zone:The Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. DOI:10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2
Borradaile G J, Jackson M. 2004. Anisotropy of magnetic susceptibility (AMS):magnetic petrofabrics of deformed rocks. Geological Society, London, Special Publications, 238(1): 299-360. DOI:10.1144/GSL.SP.2004.238.01.18
Bullard E, Everett J E, Smith A G. 1965. The fit of the continents around the Atlantic. Philosophical Transactions of the Royal Society A:Mathematical, Physical & Engineering Sciences, 258(1088): 41-51.
Burchfiel B C, Wang E. 2003. Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology, 25(5): 781-792. DOI:10.1016/S0191-8141(02)00065-2
Burchfiel B C, Chen Z L. 2013. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland. Memoir of the Geological Society of America, 210: 1-164. DOI:10.1130/9780813712109
Cao S Y, Liu J L, Leiss B, et al. 2012. Initiation of left-lateral deformation along the Ailao Shan-Red River shear zone:new microstructural, textural, and geochronological constraints from the Diancang Shan metamorphic massif, SW Yunnan, China. International Geology Review, 54(3): 348-367. DOI:10.1080/00206814.2010.543789
Chung S L, Lee T Y, Lo C H, et al. 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 25(4): 311-314. DOI:10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
Chung S L, Searle M P, Yeh M W. 2007. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River Shear Zone:Implications for the onset age of left-lateral shearing:A discussion. Journal of Geology, 116(2): 231-242.
Cogné J P. 1987. TRM deviations in anisotropic assemblages of multidomain magnetite. Geophysical Journal International, 91(3): 1013-1023. DOI:10.1111/j.1365-246X.1987.tb01677.x
Cogné J P. 2003. PaleoMac:A MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochemistry, Geophysics, Geosystems, 4(1): 1007. DOI:10.1029/2001GC000227
Cogné J P. 2013. Cenozoic Eurasia is not a single rigid plate:Paleomagnetic evidence. Comptes Rendus Geoscience, 345(11-12): 419-426. DOI:10.1016/j.crte.2013.10.001
Cogné J P, Besse J, Chen Y, et al. 2013. A new Late Cretaceous to Present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation. Geophysical Journal International, 192(3): 1000-1024. DOI:10.1093/gji/ggs104
Duan J Z, Tan X H. 2000. The nature and feature of Cenozoic main strike-slip fault in the three-river area of west Yunnan. Yunnan Geology (in Chinese), 19(1): 8-23.
Duan J Z, Xue S R, Qian X G. 2001. The Cenozoic geological tectonic framework and evolution in the three-river area of west Yunnan. Yunnan Geology (in Chinese), 20(3): 243-253.
Dubien J L, Warde W D. 1979. A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms. Canadian Journal of Statistics, 7(1): 29-38. DOI:10.2307/3315012
Evans M A, Lewchuk M T, Elmore R D. 2003. Strain partitioning of deformation mechanisms in limestones:Examining the relationship of strain and anisotropy of magnetic susceptibility (AMS). Journal of Structural Geology, 25(9): 1525-1549. DOI:10.1016/S0191-8141(02)00186-4
Fan C, Wang G, Wang S F, et al. 2006. Structural interpretation of extensional deformation along the Dali fault system, southeastern margin of the Tibetan Plateau. International Geology Review, 48(4): 287-310. DOI:10.2747/0020-6814.48.4.287
Finlay C C, Maus S, Beggan C D, et al. 2010. International geomagnetic reference field:the eleventh generation. Geophysical Journal International, 183(3): 1216-1230. DOI:10.1111/j.1365-246X.2010.04804.x
Funahara S, Nishiwaki N, Miki M, et al. 1992. Paleomagnetic study of Cretaceous rocks from the Yangtze block, central Yunnan, China:implications for the India-Asia collision. Earth & Planetary Science Letters, 113(1-2): 77-91.
Funahara S, Nishiwaki N, Murata F, et al. 1993. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of Western Yunnan, China. Earth & Planetary Science Letters, 117(1-2): 29-42.
Geological Survey of Yunnan Province. 1965. Regional geological survey report (Dayao) (in Chinese).
Geological Survey of Yunnan Province. 1973. Regional geological survey report (Dali) (in Chinese).
Gilley L D, Harrison T M, Leloup P H, et al. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research:Solid Earth, 108(B2): 2127. DOI:10.1029/2001JB001726
Guillot S, Mahéo G, de Sigoyer J, et al. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225-241. DOI:10.1016/j.tecto.2007.11.059
Harrison T M, Leloup P H, Ryerson F J, et al. 1996. Diachronous initiation of transtension along the Ailao Shan-Red River shear zone, Yunnan and Vietnam. World & Regional Geology, 1(8): 208-226.
Hrouda F. 2007. Magnetic susceptibility, anisotropy.//Gubbins D, Herrero-Bervera E eds. Encyclopedia of Geomagnetism and Paleomagnetism. Netherlands: Springer.
Huang B C, Piper J D A, Peng S T, et al. 2006. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth & Planetary Science Letters, 251(3-4): 346-364.
Huang K N, Opdyke N D. 1992. Paleomagnetism of Cretaceous to lower Tertiary rocks from southwestern Sichuan:a revisit. Earth & Planetary Science Letters, 112(1-4): 29-40.
Huang K N, Opdyke N D. 1993. Paleomagnetic results from Cretaceous and Jurassic rocks of South and Southwest Yunnan:evidence for large clockwise rotations in the Indochina and Shan-Thai-Malay terranes. Earth & Planetary Science Letters, 117(3-4): 507-524.
Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79(3-4): T63-T67. DOI:10.1016/0040-1951(81)90110-4
Jia D, Chen Z X, Luo L, et al. 2007. Magnetic fabric and finite strain of fault-related folds:an example analysis of Minjiang thrust structure in western Sichuan province. Advances in Natural Science (in Chinese), 17(2): 188-195.
Johnson M R W. 2002. Shortening budgets and the role of continental subduction during the India-Asia collision. Earth-Science Reviews, 59(1-4): 101-123. DOI:10.1016/S0012-8252(02)00071-5
Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3): 699-718. DOI:10.1111/gji.1980.62.issue-3
Leloup P H, Harrison T M, Ryerson F J, et al. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research:Solid Earth, 98(B4): 6715-6743. DOI:10.1029/92JB02791
Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 13-84.
Leloup P H, Arnaud N, Lacassin R, et al. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4): 6683-6732. DOI:10.1029/2000JB900322
Li G X. 1994. A preliminary study of some thrust-nappe structures in Lanping basin. Yunnan Geology (in Chinese), 13(2): 203-215.
Li S H, Deng C L, Dong W, et al. 2015. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China:Constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics, 655: 213-226. DOI:10.1016/j.tecto.2015.06.002
Li S H, Huang B C, Zhu R X. 2012. Paleomagnetic constraints on the tectonic rotation of the southeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 55(1): 76-94. DOI:10.6038/j.issn.0001-5733.2012.01.008
Li Z Y, Huang B C, Zhang C X. 2010. Characteristic of anisotropy of magnetic susceptibility (AMS) and its tectonic significance in typical Cretaceous section from Xixia basin, central China. Acta Petrologica Sinica (in Chinese), 26(11): 3418-3430.
Liu H F, Wang Z C, Xiong B X, et al. 2000. Coupling analysis of Mesozoic-Cenozoic foreland basin and mountain system in central and western China. Earth Science Frontiers (in Chinese), 7(3): 55-72.
Liu J L, Tang Y, Tran M D, et al. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone:Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251. DOI:10.1016/j.jseaes.2011.10.020
Liu J L, Song Z J, Cao S Y, et al. 2006. The dynamic setting and processes of tectonic and magmatic evolution of the oblique collision zone between Indian and Eurasian plates:Exemplified by the tectonic evolution of the Three River region, eastern Tibet. Acta Petrologica Sinica (in Chinese), 22(4): 775-786.
Lowrie W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2): 159-162. DOI:10.1029/GL017i002p00159
Luo L, Jia D, Li H B, et al. 2009. Magnetic fabric investigation in the northwestern Sichuan Basin and its regional inference. Physics of the Earth & Planetary Interiors, 173(1-2): 103-114.
Lv C. 2015. Study of tectonic evolution and oil and gas reservoir forming conditions of Chuxiong basin[Master's thesis] (in Chinese). Hubei Jingzhou: Yangtze University.
MacDonald W D. 1978. Domains of tectonic rotation-paleomagnetic evidence from the western Caribbean. Washington, DC: American Geophysical Union.
MacDonald W D. 1980. Net tectonic rotation, apparent tectonic rotation, and the structural tilt correction in paleomagnetic studies. Journal of Geophysical Research, 85(B7): 3659-3669. DOI:10.1029/JB085iB07p03659
McFadden P L. 1990. A new fold test for palaeomagnetic studies. Geophysical Journal International, 103(1): 163-169. DOI:10.1111/gji.1990.103.issue-1
Otofuji Y I, Liu Y Y, Yokoyam M, et al. 1998. Tectonic deformation of the southwestern part of the Yangtze craton inferred from paleomagnetism. Earth & Planetary Science Letters, 156(1-2): 47-60.
Parés J M, van der Pluijm B Q, Dinarès-Turell J. 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, Northern Spain). Tectonophysics, 307(1-2): 1-14. DOI:10.1016/S0040-1951(99)00115-8
Parés J M, van der Pluijm B A. 2002. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350(4): 283-298. DOI:10.1016/S0040-1951(02)00119-1
Pearson K. 1895. Contributions to the mathematical theory of evolution. Ⅲ. Regression, heredity, and panmixia. Proceedings of the Royal Society of London, 187(4): 253-318.
Pueyo E L, Parés J M, Millán H, et al. 2003. Conical folds and apparent rotations in paleomagnetism (a case study in the Southern Pyrenees). Tectonophysics, 362(1-4): 345-366. DOI:10.1016/S0040-1951(02)00645-5
Replumaz A, Lacassin R, Tapponnier P, et al. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research:Solid Earth, 106(B1): 819-836. DOI:10.1029/2000JB900135
Roger F, Calassou S, Lancelot J, et al. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China):Geodynamic implications. Earth & Planetary Science Letters, 130(1-4): 201-216.
Sagnotti L. 2011. Magnetic anisotropy.//Gupta H K ed. Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, 717-729.
Saint-Bezar B, Hebert R L, Aubourg C, et al. 2002. Magnetic fabric and petrographic investigation of hematite-bearing sandstones within ramp-related folds:examples from the South Atlas Front (Morocco). Journal of Structural Geology, 24(9): 1507-1520. DOI:10.1016/S0191-8141(01)00140-7
Schärer U, Zhang L S, Tapponnier P. 1994. Duration of strike-slip movements in large shear zones:The Red River belt, China. Earth & Planetary Science Letters, 126(4): 379-397.
Schoenbohm L M, Burchfiel B C, Chen L Z, et al. 2006. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. GSA Bulletin, 118(5-6): 672-688. DOI:10.1130/B25816.1
Shi P L, Yang T N, Liang M J, et al. 2015. Temporal and spatial variation in the Cenozoic strain of the Sanjiang orogenic belt, SW China:A brief review and new observations. Acta Petrologica Sinica (in Chinese), 31(11): 3331-3352.
Stephenson A, Sadikun S, Potter D K. 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophysical Journal International, 84(1): 185-200. DOI:10.1111/j.1365-246X.1986.tb04351.x
Stewart S A. 1995. Palaeomagnetic analysis of plunging fold structures:Errors and a simple fold test. Earth & Planetary Science Letters, 130(1-4): 57-67.
Tamai M, Liu Y Y, Lu L Z, et al. 2004. Palaeomagnetic evidence for southward displacement of the Chuan Dian fragment of the Yangtze Block. Geophysical Journal International, 158(1): 297-309. DOI:10.1111/gji.2004.158.issue-1
Tan X H. 1999. Characteristics and formation mechanism of Cenozoic structural basins in the Three River area of west Yunnan. Yunnan Geology (in Chinese), 18(2): 112-121.
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine. Geology, 10(12): 611-616. DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157. DOI:10.1144/GSL.SP.1986.019.01.07
Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257): 431-437. DOI:10.1038/343431a0
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978
Tarling D, Hrouda F. 1993. Magnetic Anisotropy of Rocks. Netherlands: Springer.
Tong Y B, Yang Z Y, Zheng L D, et al. 2013. Internal crustal deformation in the northern part of Shan-Thai Block:New evidence from paleomagnetic results of Cretaceous and Paleogene redbeds. Tectonophysics, 608: 1138-1158. DOI:10.1016/j.tecto.2013.06.031
Tong Y B, Yang Z Y, Wang H, et al. 2015. The Cenozoic rotational extrusion of the Chuan Dian Fragment:New paleomagnetic results from Paleogene red-beds on the southeastern edge of the Tibetan Plateau. Tectonophysics, 658: 46-60. DOI:10.1016/j.tecto.2015.07.007
Wang E, Burchfiel B C, Royden L H, et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Special Paper of the Geological Society of America, 327: 1-108.
Wang E, Meng K, Su Z, et al. 2014. Block rotation:Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33(5): 686-718. DOI:10.1002/2013TC003337
Wang H, Yang Z Y, Tong Y B, et al. 2016. Palaeomagnetic results from Palaeogene red beds of the Chuan-Dian Fragment, southeastern margin of the Tibetan Plateau:implications for the displacement on the Xianshuihe-Xiaojiang fault systems. International Geology Review, 58(11): 1363-1381. DOI:10.1080/00206814.2016.1157710
Wang S F, Wang E, Fang X M, et al. 2008a. Late Cenozoic systematic left-lateral stream deflections along the Ganzi-Yushu fault, Xianshuihe fault system, eastern Tibet. International Geology Review, 50(7): 624-635. DOI:10.2747/0020-6814.50.7.624
Wang S, Fan C, Wang G, et al. 2008b. Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau. Geological Society of America Bulletin, 120(3-4): 312-327. DOI:10.1130/B25833.1
Wang S F, Jiang G G, Xu T D, et al. 2012. The Jinhe-Qinghe fault-an inactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93-102. DOI:10.1016/j.tecto.2012.04.004
Wu G Y. 1994. Tertiary thrusting-nappe structures in northwest Yunnan, China. Geotectonica et Metallogenia (in Chinese), 18(4): 331-338.
Xu Y C, Tong Y B, Wang H, et al. 2017. Paleomagnetic constrains on the reversed S-shaped structure deformation of the Lanqing-Simao Basin in the southeastern Xizang (Tibet) plateau. Geological Review (in Chinese), 63(3): 549-567.
Yan G L. 1996. Application of Anisotropy of Susceptibility to Earth Science (in Chinese). Beijing: China University of Geosciences Press.
Yang T N, Liang M J, Fan J W, et al. 2014. Paleogene sedimentation, volcanism, and deformation in eastern Tibet:evidence from structures, geochemistry, and zircon U-Pb dating in the Jianchuan Basin, SW China. Gondwana Research, 26(2): 521-535. DOI:10.1016/j.gr.2013.07.014
Yang Z Y, Besse J. 1993. Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina. Earth & Planetary Science Letters, 117(3-4): 525-552.
Yang Z Y, Sun Z M, Ma X H, et al. 2001. Palaeomagnetic study of the early Tertiary on both sides of the red river fault and its geological implications. Acta Geologica Sinica (in Chinese), 75(1): 35-44.
Yoshioka S Y, Liu Y Y, Sato K, et al. 2003. Paleomagnetic evidence for post-Cretaceous internal deformation of the Chuan Dian Fragment in the Yangtze block:a consequence of indentation of India into Asia. Tectonophysics, 376(1-2): 61-74. DOI:10.1016/j.tecto.2003.08.010
Yunnan Bureau of Geology and Mineral Resources. 1990. Regional Geology of Yunnan Province (in Chinese). Beijing: Geological Publishing House.
Zhang B, Zhang J J, Zhong D L. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4): 445-463. DOI:10.1016/j.jsg.2010.02.001
段建中, 谭筱虹. 2000. 滇西三江地区新生代主要走滑断裂性质及特征. 云南地质, 19(1): 8-23.
段建中, 薛顺荣, 钱祥贵. 2001. 滇西"三江"地区新生代地质构造格局及其演化. 云南地质, 20(3): 243-253. DOI:10.3969/j.issn.1004-1885.2001.03.003
贾东, 陈竹新, 罗良, 等. 2007. 断层相关褶皱的磁组构与有限应变:川西岷江冲断构造的实例分析. 自然科学进展, 17(2): 188-195. DOI:10.3321/j.issn:1002-008X.2007.02.006
李光勋. 1994. 兰坪盆地某些逆冲推覆构造研究. 云南地质, 13(2): 203-215.
李仕虎, 黄宝春, 朱日祥. 2012. 青藏高原东南缘构造旋转的古地磁学证据. 地球物理学报, 55(1): 76-94. DOI:10.6038/j.issn.0001-5733.2012.01.008
李震宇, 黄宝春, 张春霞. 2010. 河南西南部典型白垩纪剖面的岩石磁组构特征及其构造意义. 岩石学报, 26(11): 3418-3430.
刘和甫, 汪泽成, 熊保贤, 等. 2000. 中国中西部中、新生代前陆盆地与挤压造山带耦合分析. 地学前缘, 7(3): 55-72. DOI:10.3321/j.issn:1005-2321.2000.03.006
刘俊来, 宋志杰, 曹淑云, 等. 2006. 印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例. 岩石学报, 22(4): 775-786.
吕财. 2015.楚雄盆地构造演化及油气成藏条件研究[硕士论文].湖北荆州: 长江大学.
史鹏亮, 杨天南, 梁明娟, 等. 2015. 三江构造带新生代变形构造的时-空变化:研究综述及新数据. 岩石学报, 31(11): 3331-3352.
谭筱虹. 1999. 滇西三江地区新生代构造盆地的特征及形成机制. 云南地质, 18(2): 112-121.
吴根耀. 1994. 滇西北地区第三纪的逆冲-推覆构造. 大地构造与成矿学, 18(4): 331-338.
徐颖超, 仝亚博, 王恒, 等. 2017. 青藏高原东南缘兰坪-思茅盆地反S型构造属性的古地磁约束. 地质论评, 63(3): 549-567.
阎桂林. 1996. 岩石磁化率各向异性在地学中的应用. 北京: 中国地质大学出版社.
杨振宇, 孙知明, 马醒华, 等. 2001. 红河断裂两侧早第三纪古地磁研究及其地质意义. 地质学报, 75(1): 35-44.
云南省地质局. 1965.区域地质调查报告(大姚幅).
云南省地质局. 1973.区域地质调查报告(大理幅).
云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社.