地球物理学报  2019, Vol. 62 Issue (5): 1650-1662   PDF    
青藏高原东北缘壳幔各向异性研究:基于SKS和Pms震相分析
郭桂红1, 武澄泷2, 唐国彬3, 侯爵2,4,5, 张明辉6, 贺志洪7, 张智3, 蒲举8, 刘旭宙8, 陈继峰8, 程建武8     
1. 兰州大学, 西部灾害与环境力学教育部重点实验室, 兰州 730000;
2. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
3. 广西隐伏金属矿产勘查重点实验室, 桂林理工大学地球科学学院, 广西桂林 541004;
4. 中国地震局地球物理研究所, 北京 100081;
5. 中国科学院大学, 北京 100049;
6. 滨州学院信息工程学院, 山东滨州 256600;
7. 中国有色金属工业昆明勘察设计研究院, 昆明 650051;
8. 中国地震局兰州地震研究, 兰州 730000
摘要:利用甘肃和青海两省固定宽频带地震台记录的远震波形资料,挑选高质量SKS震相,联合使用最小切向能量方法和旋转互相关方法获得230对高信噪比分裂参数;同时对接收函数中Pms震相随方位角的变化进行拟合,得到了24个台站的地壳各向异性分裂参数.整个区域SKS分裂快波方向均值为123°,Pms分裂快波方向均值为132°,且大部分区域SKS、Pms快波方向与地表构造走向相一致,说明青藏高原东北缘以岩石圈垂直连贯变形为主,地壳上地幔相互耦合.SKS、Pms分裂时差均值分别为1.0 s和0.6 s,显示地壳各向异性对于SKS分裂时差有较大贡献.昆仑断裂附近Pms、SKS分裂快波方向与昆仑断裂走向基本一致,说明昆仑断裂可能是岩石圈尺度深大断裂;而阿尔金断裂东缘二者快波方向显著差异意味着阿尔金断裂在东缘可能仅为地壳尺度的断裂.
关键词: 青藏高原东北缘      上地幔      地壳      各向异性      剪切波分裂     
Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases
GUO GuiHong1, WU ChengLong2, TANG GuoBin3, HOU Jue2,4,5, ZHANG MingHui6, HE ZhiHong7, ZHANG Zhi3, PU Ju8, LIU XuZhou8, CHEN JiFeng8, CHENG JianWu8     
1. Lanzhou University and The Key Laboratory of Mechanics on Disaster and Environmental in Western China, Lanzhou 730000, China;
2. State Key laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, College of Earth Sciences and Guilin University of Technology, Guangxi Guilin 541004, China;
4. Institute of Geophysics, Chinese Earthquake Administration, Beijing 100081, China;
5. University of Chinese Academy of Sciences, Beijing 100049, China;
6. Binzhou University, Institute of information engineering, Shandong Binzhou 256600, China;
7. Kunming Prospecting Design Institute of China Nonferrous Metals lndustry, Kunming 650051, China;
8. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
Abstract: Rock deformation may produce anisotropy, thus, seismic anisotropy contains deformation of the crust and upper mantle. Based on teleseismic SKS and Pms phases recorded by permanent broadband stations in Gansu and Qinghai provinces in the northeastern margin of the Tibetan Plateau, shear-wave splitting analysis is made to investigate the seismic anisotropy of crust and upper mantle in this region, which permits to infer the related deformation mechanism. This study obtains 230 pairs of splitting parameters at 56 stations using the minimum transverse energy method and rotation correlation method jointly from teleseismic SKS phase. The splitting parameters of crustal anisotropy were also revealed by the data from 24 stations using the sinusoidal moveout of the P-to-S converted phase from the Moho (Pms) in receiver functions. The matches and mismatches between observations at the surface and those from deep structures provide critical clues regarding the nature of the geodynamic process. Our shear-wave splitting results show that the average fast polarization directions of SKS and Pms are 123° and 132°, respectively. The NW-SE directed fast directions of crust and upper mantle are generally consistent with the main active structures on the surface, suggesting a vertically coherent deformation within the lithosphere. The average splitting times of SKS and Pms are 1.0 s and 0.6 s, respectively, indicating that crustal anisotropy appears to play an important role in explaining the amount of SKS splitting times. The fast directions of SKS and Pms near the Kunlun fault are approximately parallel to its strike, which suggests that the Kunlun fault cut through the lithospheric mantle. However, the angle difference between the fast directions of SKS and Pms at the eastern Altyn Tagh fault implies the fault is a crustal-scale structure at its eastern end.
Keywords: Northeastern Tibetan Plateau    Upper mantle    Crust    Anisotropy    Shear-wave splitting    
0 引言

约60 Ma以来印度与欧亚板块的碰撞与持续汇聚,形成规模巨大的青藏高原(Yin and Harrison, 2000).前人提出以下几种动力学模式解释高原隆升和扩展机制:(1)构造逃逸模型,壳幔物质沿着块体边界的大型断层侧向挤出,形变主要集中在块体边界区域,而其内部形变则较弱(Tapponnier et al., 2001);(2)黏性薄层模型(Thin viscous sheet model),作为印度—欧亚大陆碰撞的响应,整个高原岩石圈像黏性薄层一样一致缩短增厚(England and McKenzie, 1982);(3)地壳流模型,中下地壳流的存在使得应变无法从上地壳传导到上地幔,二者形变不一致(Royden, 1996Clark and Royden, 2000).青藏高原东北缘对于研究印度—欧亚碰撞的远场效应具有重要意义(Dayem et al., 2009Tian and Zhang, 2013).该区地处青藏地块、华南地块、鄂尔多斯地块和阿拉善地块的交汇处,其边界为三大左旋走滑断裂,分别为南部的昆仑断裂(KLF), 西北部的阿尔金断裂(ATF)以及东北部的海原断裂(HYF).活动的逆冲断层广泛分布在高原东北缘约50万km2的区域内(Tapponnier et al., 2001).从晚新近纪开始,东北缘沿着NE30°方向累计缩短速率为1.5 cm·a-1(Meyer et al., 1998),仅略小于喜马拉雅山脉的缩短速率2.0 cm·a-1(Tapponnier et al., 2001).在这样一个边界区域研究岩石圈的形变模式有助于理解青藏高原演化的动力学过程(Herquel et al., 1995, 1999; Guilbert et al., 1996; Flesch et al., 2005; Lev et al., 2006; Xu et al., 2014; Deng et al., 2015, 2019Wu et al., 2017, 2018).

剪切波穿过各向异性介质时会发生分裂现象,可以用来研究地壳上地幔的形变及相关的地球动力学过程(Silver,1996Savage,1999).一般认为中上地壳各向异性主要是由含液体的微裂隙在应力作用下定向排列(即EDA)而引起的(Crampin, 1981; Crampin and Peacock, 2005);到下地壳裂隙已关闭,各向异性主要由各向异性矿物如云母、角闪石的晶格定向排列引起(Zhang and Karato, 1995; Meissner et al., 2002);而上地幔各向异性来源于形变导致的橄榄石等各向异性矿物晶格的定向排列(Silver and Chan, 1991).分裂参数快波方向(φ)和分裂时差(δt)可以分别指示各向异性方向及强度(Silver and Chan, 1991).剪切波分裂分析是研究地震各向异性的有效手段.该区域已经有大量剪切波分裂相关研究(常利军等,2008Huang et al., 2008, 2011Tang et al., 2010Chang et al., 2011, 2015a, b, 2017Li et al., 2011Soto et al., 2012Zhang et al., 2012Wu et al., 2015, 2019Ye et al., 2016Yu et al., 2016Yang et al., 2018),然而壳幔形变模式还在争论之中.SKS分裂参数反映了从核幔边界到台站下方的累积效果,贡献主要来自于上地幔,然而在地壳厚度较大且形变较剧烈的青藏高原东北缘地区地壳各向异性的贡献不可忽视.Pms震相为近垂直入射的P波在Moho面的转换波,因此Pms分裂参数能够提供整个地壳的各向异性信息(Chen et al., 2013).本研究采用甘肃和青海两省的宽频带固定台站资料计算SKS和Pms震相的分裂参数,来获取青藏高原东北缘地壳和上地幔各向异性特征,在此基础上,结合郭桂红等(2015)利用近场直达S波分裂得到的上地壳各向异性,综合探讨该区域的壳幔形变机制.

1 数据和方法 1.1 SKS震相剪切波分裂

我们利用甘肃和青海两省地震台网56个宽频带三分量地震台站(见图 1)记录的远震事件(2012-01—2015-06),选取震中距为85°~130°、震级大于5.5且SKS震相清晰的地震波形进行剪切波分裂分析.共使用了45个远震事件,主要来自于太平洋汤加—斐济群岛.为提高信噪比原始数据采用0.04~0.5 Hz带通滤波.采用最小切向能量(SC)(Silver and Chan, 1991)和旋转互相关(RC)(Bowman and Ando, 1987)两种方法分别计算快波偏振方向和分裂时差,以两种计算结果的差异来评估数据质量(Wüstefeld et al., 2008).即:快波偏振方向之差|Δφ|=|φRC -φSC|和δt之比ρ=δtRC/δtSC.级别为good的分裂参数满足信噪比>5.0,0.8≤ρ≤1.1, |Δφ|≤10°,级别为fair的分裂参数信噪比>5.0,0.7≤ρ≤1.2, |Δφ|≤15°;本文所选用结果均为fair级别以上.图 2展示了来自PLT台站的一个质量好(good)的分裂结果,可以看到不同方法得到了大致相同的结果.经过网格搜索以及各向异性校正,快慢波波形变得一致,切向能量基本消除,质点运动轨迹由椭圆变为线性,可判断得到了准确的各向异性参数.由于SC方法能够提供比较稳定的结果,本文采用SC方法所得分裂参数进行分析,RC所得结果仅用于判定结果质量时作参考.对于具有多对分裂参数(≥2)的台站,采用无偏估计得到每个台站的平均快波方向和分裂时差.

图 1 青藏高原东北缘台站分布 位于阿拉善、东祁连、昆仑三个块体的台站用不同符号表示,空心三角代表其他台站,白色箭头代表绝对板块运动方向(APM),通过板块运动计算器http://www.unavco.org,使用GSRM V2.1模型计算得到(Kreemer et al., 2014),左下角红色方框为研究区域,蓝色箭头代表主压应力方向,数据来自http://www.world-stress-map.org,其他缩写如下:ALF:阿尔金断裂;HYF:海原断裂;KLF:昆仑断裂;WQLF:西秦岭断裂;LMSF:龙门山断裂;QB:柴达木盆地;QL:祁连造山带;AL:阿拉善块体;OR:鄂尔多斯块体;EQL,东祁连块体;KL:昆仑块体. Fig. 1 Map showing topography, major faults and distribution of seismic stations in the northeastern Tibetan Plateau Stations located in Alax, East Qilian and Kunlun blocks are indicated with different symbols. Other stations are indicated with open triangles. White arrows indicate the absolute plate motions (APM) calculated by the Plate Motion Calculator from http://www.unavco.org using the GSRM V2.1 model (Kreemer et al., 2014). The red rectangle in lower left shows the location of the study area. Blue arrows indicate the direction of principal compressive stress, and the data is obtained from http://www.world-stress-map.org. Abbreviations: ALF, Altyn Tagh fault; HYF, Haiyuan fault; WQLF, West Qinling fault; KLF, Kunlun fault; LMSF, Longmenshan fault; QB, Qaidam basin; QL, Qilian orogeny; AL, Alxa block, OR, Ordos block; EQL, East Qilian block; KL, Kunlun block.
图 2 使用Splitlab软件(Wüstefeld et al., 2008)计算SKS分裂的示例(来自于台站PLT记录的地震事件2014:188:11:23) 上部展示了初始地震波形(a),地震事件、台站、分裂参数等相关信息(b)和以台站PLT为中心的结果方位图(c).中部为旋转互相关法(RC)相关结果,(d)旋转互相关法处理得到的快波和慢波,分别用蓝线和红线表示;(e)旋转互相关法处理得到的径向Q和切向T分量,分别用蓝线和红线表示;(f)旋转互相关法处理前和处理后的质点运动轨迹,分别用蓝线和红线表示;(g)相关参数.下部为最小切向能量法(SC)法相关结果,图(h)—(k)和图(d)—(g)类似. Fig. 2 Example of SKS-wave splitting measurement using the SplitLab software package (Wüstefeld et al., 2008) for event 2014:188:11:23 recorded at station PLT Upper panels display the initial waveforms (a), information of the event-station pair and the measurement result (b), and the stereoplot (c) centered at station PLT. Middle panels display results of the rotation-correlation (RC). (d) seismogram components in fast (blue dashed line) and slow (red solid line) directions after RC-correction (normalized); (e) radial Q (blue dashed line) and transverse T (red solid line) components after RC-correction (not normalized); (f) particle motion before (blue dashed line) and after (red solid line) RC-correction; and (g) map of correlation coefficients. Lower panels display the results of the minimum transverse energy (SC) technique. (h)—(k) are similar with (d)—(g) in middle panels.
1.2 Pms震相剪切波分裂

通过拟合接收函数中Pms转换波到时随后方位角的变化可以研究地壳各向异性(Liu and Niu, 2012).本文所使用接收函数来自Tian和Zhang(2013)Tian等(2014),宽频带地震数据来自甘肃和青海宽频带固定台站(2007-08—2009-10),震级大于5.5,震中距为30°~90°.研究表明(Rümpker et al., 2014)当Pms转换波通过单层水平各向异性层时,其到时可表示为

(1)

其中t0代表当地壳为各向同性时Pms的参考到时,δt表示快慢波分裂时差,φ为快波方向,θ为地震事件后方位角.对t0φ和δt进行网格搜索径向接收函数Pms叠加振幅最大值来得到最佳参数对,搜索范围φ为0°~180°,步长为1°,基于该区地壳较厚、变形剧烈,δt搜索范围设为0.0~1.5 s,步长0.02 s,t0在5~10 s进行搜索.地震事件方位角分布过于集中会影响到分裂参数的选取,故将挑选的接收函数以10°间隔进行平滑.对于分裂时差小于0.2 s,我们定义为弱各向异性(Null)台站.图 3展示了来自HZT和DUL台计算Pms分裂参数的示例,其中DUL台为Null.

图 3 台站HZT(上)和台站DUL(下)得到的地壳各向异性 图左为不同分裂参数对应的Pms理论到时处振幅叠加值,黑点表示最佳分裂参数,对应的振幅叠加值最大;图右以10°间隔平滑后的径向接收函数;黑点为Pms振幅最大时的时间,绿线为最佳分裂参数对应的Pms到时随后方位角的变化曲线. Fig. 3 Crustal anisotropy estimated derived from receiver functions of stations HZT (upper) and DUL (lower) Left: Stacked amplitudes calculated based on all candidate pairs of fast directions and delay times. Black dots denote the optical parameters corresponding to maximum amplitudes. Right: radial receiver functions after smoothing with 10° interval. Black dots are the times of maximum amplitudes Pms. The green curve represents the theoretical Pms arrivals varying with back-azimuth.
2 测量结果与分析 2.1 SKS分裂结果

共得到56个台站230条高质量的SKS分裂结果(图 4).由于分裂参数对数量有限,对单台分裂参数根据其误差计算加权平均值(表 1),对存在多个数据结果(≥2)的台站采用无偏估计.平均快波方向为123° ± 29°,平均分裂时差为1.0 ± 0.3 s,与前人结果相一致(图 5).分裂时差从0.3 s到2.3 s,说明了青藏高原东北缘构造形变的复杂性.海原断裂及西秦岭断裂附近HJT、SGT、JTA、BYT、LXA和HZT等台站分裂参数随方位角变化明显,XUN和TOR台只有一条分裂参数,且与周围台站快波方向差别较大,可能是由于该区域存在双层各向异性层(Li et al., 2011Ye et al., 2016Huang et al., 2017),或对称轴倾斜等情况有关.为方便分析,我们根据台站位置分布将研究区域分成三个区域(图 1):阿拉善块体(AL),东祁连块体(EQL),昆仑块体(KL).阿拉善块体平均快波方向为116° ± 19°,平均分裂时差为1.1 ± 0.3 s;东祁连块体平均分裂参数分别为149°±24°,1.0 ± 0.2 s;昆仑块体平均分裂参数分别为111° ± 25°,0.9 ± 0.6 s.

图 4 青藏高原东北缘SKS分裂结果 其中蓝色短棒代表单条分裂结果,红色短棒为单台站平均分裂参数.右上角为分裂时差分布图,左下角为所用地震事件分布图.SG:松潘甘孜块体;其他缩写如图 1. Fig. 4 Results of SKS splitting measurements in northeastern Tibetan Plateau The blue bars represent individual splitting measurement results. The red bars represent station-averaged splitting measurements. The upper right inset shows the distribution of individual delay times. The lower left inset shows the distribution of earthquakes used for the SKS splitting analysis.SG:Songpan-Garzê block; others are the same as Fig. 1.
表 1 青藏高原东北缘地区SKS(SC方法)分裂参数 Table 1 Splitting parameters of SKS (SC method) in northeastern Tibetan Plateau
图 5 本文SKS分裂参数与前人结果对比 红色短棒代表本文SKS结果,灰色短棒代表前人结果(Huang et al., 2008Tang et al., 2010Huang et al., 2011Li et al., 2011Soto et al., 2012Zhang et al., 2012Chang et al., 2015a, b2017Wu et al., 2015Yu and Chen, 2016Li et al., 2018Yang et al., 2018).这些结果来自Splitlab数据库http://splitting.gm.univ-montp2.fr/ Fig. 5 Comparison of SKS splitting measurements between this study and previous work The red bars indicate SKS splitting measurements of this study. The gray bars indicate SKS splitting measurements of previous work (Huang et al., 2008; Tang et al., 2010; Huang et al., 2011; Li et al., 2011; Soto et al., 2012; Zhang et al., 2012; Chang et al., 2015a, b, 2017; Wu et al., 2015; Yu and Chen, 2016; Li et al., 2018; Yang et al., 2018). They are downloaded from http://splitting.gm.univ-montp2.fr/.
2.2 Pms分裂结果

获取Pms分裂参数应满足一些假设,首先,介质为水平对称轴的单层各向异性层;其次,台站有足够的方位角分布来拟合Pms到时的变化得到分裂参数对;最后,Moho面两侧介质波速差异显著,形态平缓以保证得到高信噪比的Pms震相.经过分析所有台的接收函数,有24个台站得到了可靠的Pms分裂参数,其中5个为弱各向异性(表 2表 3图 6).阿尔金断裂附近台站AXX快波方向为NEE-SWW向,平行于断裂走向,与SKS快波方向接近垂直;XIN台为NNE-SSW向;其他台站快波方向以NW-SE为主,基本平行于SKS快波方向以及构造走向,与前人研究结果一致(Wang et al., 2016Xu et al., 2018).该区域Pms平均分裂时差为0.6 s(除Null外),占SKS平均分裂时差1.0 s的一半以上,表明该区域地壳形变剧烈,各向异性较强.阿拉善块体平均快波方向为131° ± 17°,平均分裂时差为0.6 ± 0.3 s;东祁连块体平均分裂参数分别为140° ± 28°,0.5 ± 0.2 s;昆仑块体平均分裂参数分别为133° ± 16°,0.8 ± 0.2 s.

表 2 Pms和SKS分裂参数对比 Table 2 Comparison of splitting parameters between Pms and SKS phases
表 3 Pms空解 Table 3 Pms null results
图 6 本文Pms分裂参数与前人结果对比 红色短棒代表本研究结果,绿色短棒代表前人结果(Wang et al., 2016; Xu et al., 2018),红色圆点表示Null结果(时差小于0.2 s).SG:松潘甘孜块体;QT:羌塘块体;JS:金沙江缝合带;其他缩写如图 1. Fig. 6 Comparison of Pms splitting parameters between this study and previous work The red bars indicate Pms splitting measurements of this study. The green bars indicate Pms splitting measurements by other researchers (Wang et al., 2016; Xu et al., 2018). The red solid circles represent null cases.SG:Songpan-Garzê block; QT: Qiangtang block; JS:Jinsha suture; others are the same as Fig. 1.
3 讨论分析 3.1 各向异性来源

SKS分裂得到的各向异性参数是沿着射线路径从核幔边界到台站的积分结果,对各向异性层深度没有直接的约束.大量研究(Silver, 1996)表明,来自地壳的平均贡献较弱,小于0.2 s,同时来自于下地幔及地幔过渡带的贡献也小于0.2 s.SKS分裂测量所得的各向异性主要来自于上地幔,包括软流圈及地幔岩石圈.

为了检测简单软流圈流动模型,将快波方向与绝对板块运动(APM)方向进行对比,如果板块随着下伏软流圈而运动,那么板块运动方向将指示软流圈的流向.青藏高原东北缘地区APM方向为100°,与SKS分裂快波方向平均夹角为23°,虽然大致平行,但是与各向异性存在的较大的空间变化不匹配,因此用简单的软流圈流动模型无法来解释该区域各向异性的来源.在昆仑断裂附近的相距约60 km的DBT和REG台SKS分裂快波方向相差42°,根据菲涅尔带的分析方法(Alsina and Snieder, 1995)表明如果台站相距较近,快波方向变化明显将表明各向异性很可能来自于较浅的深度,位于岩石圈内部.

高原东北缘在印度与欧亚板块碰撞汇聚的远程作用下,最大主压应力为NE向(图 1),形成了与该应力方向近垂直的若干条NWW向走滑及逆冲断裂.与此同时,壳幔物质沿着NE向挤出,在遇到坚硬的鄂尔多斯块体和四川块体的阻挡后,在两个块体之间形成了近EW向的秦岭山脉.该区域SKS分裂快波方向在昆仑断裂、西秦岭断裂、海原断裂以及龙门山断裂附近都与断裂走向一致,说明岩石圈形变是高原东北缘各向异性的主要成因.在高原周边的银川地堑以及阿尔金断裂附近,快波方向与地表断裂走向差别较大,可能与“化石”各向异性有关(王琼等,2013).Zhang等(2012)分析得到各向异性强度与岩石圈厚度成正比,Chang等(2017)得到了SKS快波方向与地表形变场相一致,均认为该区域各向异性来自于岩石圈的垂直连贯变形导致了研究区域的各向异性.

为了进一步分析地壳各向异性对SKS观测得到的各向异性的贡献,我们将Pms分裂得到的地壳各向异性与SKS分裂参数进行对比.在高原东北缘,Pms分裂快波方向与SKS分裂快波方向大致平行,平均分裂时差为0.6 s,超过SKS平均分裂时差的一半.而前人利用近震S波得到的该区域上地壳各向异性为2.8 ms·km-1(郭桂红等,2015),假设上地壳厚度为20 km,则上地壳各向异性为0.056 s,意味着地壳各向异性基本源于中下地壳.

3.2 岩石圈形变机制

地表与深部构造的关系对于我们理解地球内部的形成与演化意义重大,不同深度观测数据的对比将对理解地球动力学过程提供关键的线索.在青藏高原东北缘许多剪切波分裂研究综合利用了地表构造,GPS速度,绝对板块运动(APM),以及多尺度的各向异性等信息来研究壳幔不同深度的形变.Li等(2011)在西宁附近根据SKS分裂参数随方位角变化的特征得到了双层各向异性,下层为NWW-SEE向,可能与印度—欧亚板块碰撞导致的现今的造山作用相关,或者与欧亚板块运动引起的软流圈流动相关;上层为NEE-SWW向与GPS方向平行,可能由中下地壳流引起.Ye等(2016)在祁连造山带发现了双层各向异性现象,认为下地壳低速层可能是逆冲滑脱构造导致了壳幔解耦,而在西秦岭和松潘甘孜块体仍然是岩石圈垂直连贯变形为主.Huang等(2017)在东北缘也发现了双层各向异性,认为上层各向异性可能来自于下地壳流或地壳内部存在拆离层造成,下层与该区域总体快波方向相一致.然而,Chang等(2017)对比了GPS和第四纪断层走滑速率得到的地表形变场和SKS分裂参数得到的地幔形变场,认为在东北缘地区岩石圈垂直连贯变形.Wu等(2015)分析各向异性更多来自于岩石圈的形变,在NE向挤压作用下不同块体强度的差异导致了分裂参数的不同.Wang等(2016)Xu等(2018)计算了东北缘Pms分裂参数,通过对比得到其与地表构造走向以及SKS分裂参数相一致,认为该区域形变方式为岩石圈垂直连贯变形为主;同时结合地壳VP/VS较低,得出该区域较厚的地壳来自于上地壳缩短增厚.张辉等(2012)郭桂红等(2015)发现了东北缘近震S波分裂参数的分区性特征,在祁连山—河西走廊区域快波方向与构造应力相一致,在甘东南地区受到构造应力与活动断裂的共同作用.总的来说,大多数研究都表明青藏高原东北缘壳幔各向异性主要为NW-SE向,与地表构造基本一致,壳幔形变耦合;局部区域SKS分裂参数随方位角变化,可能存在双层各向异性,壳幔形变解耦.

图 7展示了不同块体之间的近震S波分裂参数,Pms分裂参数以及SKS分裂参数,他们分别代表上地壳各向异性,地壳各向异性和上地幔各向异性.在昆仑块体和东祁连块体,三者快波方向大致平行,均为NW-SE向,说明两个块体的形变模式为岩石圈垂直连贯变形,地壳上地幔相互耦合.昆仑块体Pms分裂时差接近SKS分裂时差,说明地壳形变产生各向异性贡献较大,可能来自于昆仑断裂带较强的剪切作用.而在东祁连块体,Pms分裂时差约占SKS分裂时差的一半,暗示了地壳和岩石圈地幔各向异性的贡献大致相当.在阿拉善块体,Pms分裂快波方向和SKS分裂快波方向均呈现NW-SE向,而近震S波分裂快波方向为NE-SW向,与前两者近乎垂直,与昆仑块体和东祁连块体的情况不同.这是由于近震S波分裂反映的上地壳各向异性主要受到该区区域构造应力的影响;而在昆仑块体和东祁连块体上地壳各向异性受活动断裂影响较大(张辉等,2012郭桂红等,2015).此外,Pms分裂得到的地壳各向异性主要来自于中下地壳的贡献,而Pms与SKS快波方向平行,故该区域形变模式也为岩石圈垂直连贯变形.

图 7 近震S波、Pms和SKS震相分裂参数 蓝色短棒代表近震S波的快波方向,来自郭桂红等(2015),红色短棒代表Pms分裂参数,绿色短棒为SKS分裂参数,蓝、红、绿色长棒分别代表区域平均的近震S波、Pms和SKS分裂结果.同心圆半径代表分裂时差大小,对于Pms和SKS,从0到1.5 s,以0.5 s为间隔;对于近震S波,从0到0.15 s以0.05 s为间隔. Fig. 7 Topographic map displaying the splitting parameters of local S-wave, Pms and SKS phases measured in this study The blue short bars indicate local S-wave fast directions from Guo et al., (2015). The red short bars indicate Pms splitting measurements of this study. The green short bars indicate SKS splitting measurements of this study. The blue, red and green long bars represent region average splitting parameters of local S-wave, Pms and SKS, respectively. Vectors are centered at the origin with a 0.5 s increase interval from 0 to 1.5 s for Pms- and SKS-wave splittings, and with a 0.05 s increase interval from 0 to 0.15 s for local S-wave splitting.
3.3 主要走滑断裂的影响

昆仑断裂与阿尔金断裂是青藏高原东北缘重要的走滑断层,对于持续进行的印度和欧亚板块碰撞引起的高原物质东向运移有重要的协调作用(Tapponnier et al., 1982, 2001; Yin and Harrison, 2000).然而这些断裂延伸范围仅限于上地壳,还是切穿到了岩石圈仍然处于争论之中(Wittlinger et al., 1998Zhao et al., 2006).如果该断裂是地壳尺度的结构,则可能会影响到Pms分裂参数;而如果该断裂切穿了岩石圈,则将在断裂附近得到与其走向相平行的SKS分裂快波方向.我们将Pms和SKS分裂参数与断裂走向进行对比,将更好的判断断裂的延伸尺度.

在昆仑断裂附近,DAW、LQT、LTT、MXT、WDT、CXT等台SKS分裂快波方向与断裂走向平行,同时在LTT、MXT和MQT等台Pms分裂快波方向与断裂走向大致平行,DBT和CXT台近震S波分裂得到了NWW-SEE向的快波方向,说明了该断裂可能是延伸到岩石圈尺度的深大断裂.阿尔金断裂走向为NEE-SWW,和在该断裂附近台站AXX、SBC、CHM的SKS分裂快波方向几乎正交,而在AXX台Pms分裂快波方向与断裂走向基本一致,这些观测表明阿尔金断裂在东段可能仅仅是地壳尺度的断裂,与前人利用宽角反射数据得到的结果相吻合(Zhao et al., 2006).此外,沿着阿尔金断裂东段第四纪玄武岩喷发的缺失也支持该结论(Yin and Harrison, 2000).然而,在阿尔金断裂的西部,SKS分裂快波方向与其走向是平行的,说明在该区域断裂的应变可能已经延伸到岩石圈地幔(Herquel et al., 1999).同时在阿尔金断裂西部的Ashiko盆地中发现了第四纪的玄武岩喷发物,暗示了阿尔金断裂在西部切穿到了岩石圈(Yin and Harrison, 2000).所以阿尔金断裂在东部可能是地壳尺度的断裂,而在西部可能是岩石圈尺度的断裂(Yin and Harrison, 2000).

4 结论

通过对甘肃、青海地区宽频带地震台站记录的SKS震相以及接收函数中Pms震相的剪切波分裂分析,获得青藏高原东北缘地壳上地幔各向异性.结果显示该区SKS分裂快波方向以NW-SE为主,与地表构造大致平行;推测各向异性的主要贡献来自岩石圈形变造成的各向异性矿物晶格定向排列.对Pms震相分裂分析得到的地壳各向异性快波方向也为NW-SE方向,与SKS分裂快波方向相吻合,表明该区域地壳上地幔相互耦合,岩石圈垂直连贯变形.SKS平均分裂时差为1.0 s,Pms平均分裂时差为0.6 s,显示地壳各向异性对SKS分裂时差贡献较大.昆仑断裂附近Pms、SKS分裂快波方向与其走向平行,说明昆仑断裂可能是岩石圈尺度的深大断裂,而阿尔金断裂东缘壳幔各向异性快波方向的差异意味着该断裂在东缘可能仅为地壳尺度的断裂.

致谢  感谢中国地震局地球物理研究所李永华研究员、中国科学院地质与地球物理研究所徐涛研究员的指导和帮助;感谢甘肃省地震局提供波形数据;感谢中国科学院地质与地球物理研究所田小波研究员提供接收函数波形数据;感谢匿名审稿人很好的意见,对稿件提升很大.
References
Alsina D, Snieder R. 1995. Small-scale sublithospheric continental mantle deformation:constraints from SKS splitting observations. Geophysical Journal International, 123(2): 431-448. DOI:10.1111/gji.1995.123.issue-2
Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal of the Royal Astronomical Society, 88(1): 25-41. DOI:10.1111/j.1365-246X.1987.tb01367.x
Chang L J, Ding Z F, Wang C Y, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699: 93-101. DOI:10.1016/j.tecto.2017.01.025
Chang L J, Flesch L M, Wang C Y, et al. 2015a. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophysical Research Letters, 42(14): 5813-5819.
Chang L J, Wang C Y, Ding Z F, et al. 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 51(2): 431-438.
Chang L J, Wang C Y, Ding Z F. 2011. Upper mantle anisotropy in the Ordos Block and its margins. Science China Earth Sciences, 54(6): 888-900. DOI:10.1007/s11430-010-4137-2
Chang L J, Wang C Y, Ding Z F, et al. 2015b. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis. Science China Earth Sciences, 58(10): 1872-1882. DOI:10.1007/s11430-015-5098-2
Chen Y, Zhang Z J, Sun C Q, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 24(3-4): 946-957. DOI:10.1016/j.gr.2012.04.003
Clark M K, Royden L H. 2000. Topographic ooze:building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.
Crampin S. 1981. A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 3(4): 343-391. DOI:10.1016/0165-2125(81)90026-3
Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1): 59-77. DOI:10.1016/j.wavemoti.2004.05.006
Dayem K E, Molnar P, Clark M K, et al. 2009. Far-field lithospheric deformation in Tibet during continental collision. Tectonics, 28(6): TC6005.
Deng Y F, Li J T, Song X D, et al. 2019. The lithospheric-scale deformation in NE Tibet from joint inversion of receiver function and surface wave dispersion. Terrestrial, Atmospheric and Oceanic Sciences, 30: 1-11. DOI:10.3319/TAO.2019.01.22.01
Deng Y F, Shen W S, Xu T, et al. 2015. Crustal layering in northeastern Tibet:A case study based on joint inversion of receiver functions and surface wave dispersion. Geophysical Journal International, 203(1): 692-706. DOI:10.1093/gji/ggv321
England P, McKenzie D. 1982. A thin viscous sheet model for continental deformation. Geophysical Journal International, 70(2): 295-321. DOI:10.1111/j.1365-246X.1982.tb04969.x
Flesch L M, Holt W E, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth and Planetary Science Letters, 238(1-2): 248-268. DOI:10.1016/j.epsl.2005.06.023
Guilbert J, Poupinet G, Jiang M. 1996. A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (Northern Tibetan plateau). Physics of the Earth and Planetary Interiors, 95(3-4): 167-174.
Guo G H, Zhang Z, Cheng J W, et al. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication. Chinese Journal of Geophysics (in Chinese), 58(11): 4092-4105. DOI:10.6038/cjg20151117
Herquel G, Tapponnier P, Wittlinger G, et al. 1999. Teleseismic shear wave splitting and lithospheric anisotropy beneath and across the Altyn Tagh fault. Geophysical Research Letters, 26(21): 3225-3228. DOI:10.1029/1999GL005387
Herquel G, Wittlinger G, Guilbert J. 1995. Anisotropy and crustal thickness of northern-Tibet. New constraints for tectonic modelling. Geophysical Research Letters, 22(14): 1925-1928.
Huang Z C, Tilmann F, Xu M J, et al. 2017. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting. Earth and Planetary Science Letters, 478: 66-75. DOI:10.1016/j.epsl.2017.08.030
Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117. DOI:10.1016/j.epsl.2011.03.038
Huang Z M, Xu L J, Wang N M, et al. 2008. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophysical Research Letters, 35(19): L19301. DOI:10.1029/2008GL035188
Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10): 3849-3889. DOI:10.1002/2014GC005407
Lev E, Long M D, Van Der Hilst R D. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251(3-4): 293-304. DOI:10.1016/j.epsl.2006.09.018
Li H Y, Song X D, Lü Q T, et al. 2018. Seismic imaging of Lithosphere structure and upper mantle deformation beneath East-Central China and their tectonic implications. Journal of Geophysical Research:Solid Earth, 123(4): 2856-2870. DOI:10.1002/jgrb.v123.4
Li Y H, Wu Q J, Zhang F X, et al. 2011. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth and Planetary Science Letters, 304(1-2): 147-157. DOI:10.1016/j.epsl.2011.01.026
Liu H F, Niu F L. 2012. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophysical Journal International, 188(1): 144-164. DOI:10.1111/gji.2012.188.issue-1
Meissner R, Mooney W D, Artemieva I. 2002. Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 149(2): 1-14.
Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1): 1-47. DOI:10.1046/j.1365-246X.1998.00567.x
Royden L H. 1996. Coupling and decoupling of crust and mantle in convergent orogens:implications for strain partitioning in the crust. Journal of Geophysical Research:Solid Earth, 101(B8): 17679-17705. DOI:10.1029/96JB00951
Rümpker G, Kaviani A, Latifi K. 2014. Ps-splitting analysis for multilayered anisotropic media by azimuthal stacking and layer stripping. Geophysical Journal International, 199(1): 146-163. DOI:10.1093/gji/ggu154
Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106. DOI:10.1029/98RG02075
Silver P G. 1996. Seismic anisotropy beneath the continents:probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24: 385-432. DOI:10.1146/annurev.earth.24.1.385
Silver P G, Chan W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research:Solid Earth, 96(B10): 16429-16454. DOI:10.1029/91JB00899
Soto G L, Sandvol E, Ni J F, et al. 2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet. Journal of Geophysical Research:Solid Earth, 117(B5): 805308. DOI:10.1029/2011JB008919
Tang Y C, Chen Y J, Fu Y V, et al. 2010. Mantle anisotropy across the southwestern boundary of the Ordos block, North China. Earthquake Science, 23(6): 549-553. DOI:10.1007/s11589-010-0754-2
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology, 10(12): 611-616. DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978
Tian X B, Liu Z, Si S K, et al. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening. Tectonophysics, 634: 198-207. DOI:10.1016/j.tecto.2014.07.001
Tian X B, Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model. Gondwana Research, 24(2): 548-559. DOI:10.1016/j.gr.2012.12.024
Wüstefeld A, Bokelmann G, Zaroli C, et al. 2008. SplitLab:a shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5): 515-528.
Wang Q, Gao Y, Shi Y T, et al. 2012. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau:evidence from shear wave splitting of SKS, PKS and SKKS. Chinese Journal of Geophysics (in Chinese), 56(3): 892-905. DOI:10.6038/cjg20130318
Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1): 167-179. DOI:10.1093/gji/ggv420
Wittlinger G, Tapponnier P, Poupinet G, et al. 1998. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault. Science, 282(5386): 74-76. DOI:10.1126/science.282.5386.74
Wu C L, Tian X B, Xu T, et al. 2019. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere:New evidence based on shear wave splitting measurements. Earth and Planetary Science Letters, 514: 75-83. DOI:10.1016/j.epsl.2019.02.037
Wu C L, Xu T, Badal J, et al. 2015. Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet. Tectonophysics, 659: 91-101. DOI:10.1016/j.tecto.2015.07.030
Wu Z B, Xu T, Badal J, et al. 2017. Crustal shear-wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions. Gondwana Research, 41: 400-410. DOI:10.1016/j.gr.2015.08.009
Wu Z B, Xu T, Liang C T, et al. 2018. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions. Geophysical Journal International, 212(3): 1920-1931. DOI:10.1093/gji/ggx521
Xu T, Wu Z B, Zhang Z J, et al. 2014. Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet. Tectonophysics, 627: 98-107. DOI:10.1016/j.tecto.2013.11.010
Xu X M, Niu F L, Ding Z F, et al. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497: 204-216. DOI:10.1016/j.epsl.2018.06.010
Yang Y H, Liang C T, Fang L H, et al. 2018. A comprehensive analysis on the stress field and seismic anisotropy in Eastern Tibet. Tectonics, 37(6): 1648-1657. DOI:10.1029/2018TC005011
Ye Z, Li Q S, Gao R, et al. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications. Tectonophysics, 671: 1-8. DOI:10.1016/j.tecto.2016.01.011
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 180-185.
Yu Y, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China:Eastward Tibetan asthenospheric flow around the southern Ordos. Earth and Planetary Science Letters, 455: 1-6. DOI:10.1016/j.epsl.2016.08.026
Zhang H, Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 55(1): 95-104. DOI:10.6038/j.issn.0001-5733.2012.01.009
Zhang H S, Teng J W, Tian X B, et al. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements. Geophysical Journal International, 191(3): 1285-1294.
Zhang S Q, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534): 774-777. DOI:10.1038/375774a0
Zhao J M, Mooney W D, Zhang X K, et al. 2006. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan plateau and tectonic implications. Earth and Planetary Science Letters, 241(3-4): 804-814. DOI:10.1016/j.epsl.2005.11.003
常利军, 王椿镛, 丁志峰, 等. 2008. 青藏高原东北缘上地幔各向异性研究. 地球物理学报, 51(2): 431-438. DOI:10.3321/j.issn:0001-5733.2008.02.015
郭桂红, 张智, 程建武, 等. 2015. 青藏高原东北缘地壳各向异性的构造含义. 地球物理学报, 58(11): 4092-4105. DOI:10.6038/cjg20151117
王琼, 高原, 石玉涛, 等. 2013. 青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据. 地球物理学报, 56(3): 892-905. DOI:10.6038/cjg20130318
张辉, 高原, 石玉涛, 等. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征. 地球物理学报, 55(1): 95-104. DOI:10.6038/j.issn.0001-5733.2012.01.009