地球物理学报  2018, Vol. 61 Issue (10): 4231-4241   PDF    
南海深部构造特征及其地质意义:来自重磁位场反演的认识
鲁宝亮1, 王万银1, 赵志刚2, 冯旭亮1,3, 张功成2, 罗新刚1, 姚攀1, 纪晓琳1     
1. 长安大学重磁方法技术研究所 长安大学地质工程与测绘学院西部矿产资源与地质工程教育部重点实验室, 西安 710054;
2. 中海油研究总院, 北京 100027;
3. 西安石油大学地球科学与工程学院, 西安 710065
摘要:莫霍面和居里面是认识深部过程重要的地质与地球物理界面.为了进一步理解南海深部构造活动与洋盆扩张的关系,本文以OBS剖面和深反射地震剖面作为约束,对卫星测高重力异常进行海水、沉积层影响校正,采用最小曲率位场分离方法消除局部密度体的重力影响,获取了反映莫霍面起伏的重力异常,并利用双界面模型重力场快速反演方法计算得到了南海地区莫霍面深度值.通过与居里面起伏的对比研究,发现南海莫霍面和居里面整体均表现为"洋盆浅、周缘深"的菱形特征,两者在洋陆转换区呈现明显的窄梯级带特征,反映了南海扩张期岩石圈的强烈伸展减薄、南北向构造拉张作用等深部构造过程.洋盆莫霍面和居里面的西南向楔形形态是对南海由东向西渐进式扩张的深部构造响应.洋盆南部莫霍面浅于北部,这与扩张中心逐渐向南迁移的特征一致,而洋盆居里面南深北浅的特征则可能与洋盆的简单剪切扩张方式以及洋盆北部的岩浆活动更活跃有关.南海地区莫霍面和居里面呈现交错叠置关系,南、北陆缘表现为明显的深部构造差异,说明南海为非对称式扩张.北部陆缘区居里面深度浅于莫霍面,而洋盆区和南部陆缘区居里面深于莫霍面,这与南、北陆缘性质的差异和南部陆缘复杂的中-新生代俯冲碰撞等构造演化相关,而洋盆区居里面深于莫霍面的现象推测与大洋上地幔橄榄岩蛇纹石化导致的岩石磁性增强有关.
关键词: 南海      深部构造      莫霍面      居里面      洋盆扩张     
Characteristics of deep structure in the South China Sea and geological implications:Insights from gravity and magnetic inversion
LU BaoLiang1, WANG WanYin1, ZHAO ZhiGang2, FENG XuLiang1,3, ZHANG GongCheng2, LUO XinGang1, YAO Pan1, JI XiaoLin1     
1. Institute of Gravity and Magnetic Technology, School of Geology Engineering and Geomatics, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an 710054, China;
2. Exploration Department of CNOOC China Ltd., Beijing 100027, China;
3. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract: The Moho and Curie surfaces are significant geological and geophysical interfaces in understanding the evolution of the deep earth. Constrained by OBS profiles and deep reflecting seismic profiles, Bouguer gravity anomalies which reflect the undulation of the Moho were acquired by correcting the gravity effect of sea water and shallower sediments from satellite altimetry gravity data, and by eliminating the effect of gravity caused by the local density bodies through the application of the minimum-curvature method. Also, based on study of gravity field inversion in a dual interface model, the Moho depth of the South China Sea (SCS) was calculated, and a comparative study with the Curie surface was carried out. The results show that the Moho and Curie surface of the SCS are shallow in the ocean basin and deep in the margins, and both of the two surfaces in the continent-ocean transition zone show the distinct narrow gradient bands, which reflect the lithospheric extension-thinning and NS tectonic extension during the expansion of the SCS. The typical wedge-shaped Moho and Curie surfaces in the ocean basin generally corresponds to the gradual expansion from east to west of the SCS. The Moho of the ocean basin is shallower in the south than that in the north, consistent with the gradual southward migration of the expansion center. While the Curie surface of ocean is deeper in the south and shallower in the north, which is probably related to the simple shear expansion of the ocean basin and occurrence of more active magmatic activity in the north of the ocean basin. The Moho and Curie surfaces exhibit staggered overlapping relationships in the SCS. The south and north continental margins show obvious deep structural differences, indicating that the SCS is an asymmetric expansion. The Curie surface is shallower than Moho in the north, but deeper in the ocean basin and south margin. These differences are closely related with the different continental marginal natures between south and north margins of the SCS, and also with the complicated Meso-Cenozoic tectonic evolution of the southern margin of the SCS. The Curie surface is deeper than Moho in the ocean basin, which is presumably related with magnetic enhancement of lithosphere, caused by the oceanic peridotite serpentinization in the upper mantle.
Keywords: South China Sea    Deep structure    Moho surface    Curie surface    Ocean basin expansion    
0 引言

南海是西太平洋最大的边缘海之一, 位于欧亚板块、太平洋板块和印度—澳大利亚板块的交汇处, 受太平洋构造域和特提斯构造域共同影响, 经历了复杂的地质演化过程, 构造现象丰富, 地壳性质多样(图 1.Taylor et al., 1983; Briais et al., 1993; 姚伯初等, 2004; Hall, 1996), 其起源与演化至今是一个富有争论的问题.近几十年国内外学者主要围绕南海的形成原因、扩张时限、动力学机制等开展了大量的地质和地球物理调查及研究工作.从2008年以来, 随着“南海深海过程演变”重大研究计划及2014年IODP349航次的实施, 对南海深海盆演化历史研究取得了突破性进展(Li et al,2014), 但是关于南海深部构造特征, 深部过程对洋盆演化、油气分布的控制作用等一系列基础问题, 认识仍存在很大的不确定性或争论.

图 1 南海地区大地构造背景(Hall, 1996) Fig. 1 Tectonic setting of the SCS from Hall (1996)

地壳浅部物质的迁移、分布与深部构造活动密切相关.莫霍面和居里面作为深部两个重要的构造界面, 反映了地壳深部构造特征以及热活动状态.莫霍面是下地壳和上地幔之间一个十分活跃开放的物质交换边界(Arndt and Goldstein, 1989), 其深度与构造热事件年龄具有相关性, 研究莫霍面的起伏对确定地壳厚度和构造热事件年龄之间的相关性具有重要意义(Meissner et al., 1987).但地球物理学和岩石学家对莫霍面却有不同的认识和理解.岩石学家把莫霍面看成是地壳和上地幔在岩性上的过渡带, 称之为壳幔边界(crust-mantle boundary, CMB), 莫霍面之上的地壳岩石主要由辉长岩、麻粒岩等富含长英质的岩石构成, 莫霍面之下的地幔则主要由橄榄岩组成.而地球物理学家则认为莫霍面是岩石圈中30~40 km处观察到的地震波速间断面.由于岩石密度和速度会随着物理化学条件的变化而发生明显改变, 因此地球物理学莫霍面与岩石学莫霍面并不总是一致的(马昌前, 1998).地球物理学莫霍面和岩石学莫霍面(CMB)与有高热流梯度的区域不一致, 在稳定的克拉通地区也不一致, 由于铁镁质的下地壳可以是榴辉岩相, 其速度比石榴石变粒岩相增加0.5~1.0 km·s-1, 导致了地球物理学确定的莫霍面与岩石学确定的莫霍面在地壳物质组成方面出现显著差异(Griffin and O′Reilly, 1987).虽然岩石学莫霍面和地球物理学莫霍面之间存在差别, 但地球物理方法仍然是研究莫霍面形态、性质的有效手段.

近年来, 不少学者利用地震、重力数据对南海的莫霍面进行了广泛研究(宋海斌等, 2002; 郝天珧等, 2008; 秦静欣等, 2011; Pichot et al., 2014; 胡立天等, 2016; Guan et al., 2016; 吴招才等, 2017), 不同的学者反演的莫霍面深度和形态存在差异, 这既与选择的反演方法有关, 又与分离的莫霍面重力异常有关.准确获得莫霍面起伏产生的重力异常是提高反演精度的关键.另外, ESP、OBS等地震探测剖面(图 2.Nissen et al., 1995; 丘学林等, 2011; Yan et al., 2001; Wang et al., 2006; Sun et al., 2009; 阮爱国等, 2011; Zhao et al., 2010; 丁巍伟和李家彪, 2011; Wei et al., 2015; 卫小冬等, 2011a, 2011b; Wu et al., 2011; McIntosh et al., 2014)为南海莫霍面的研究提供了丰富的参考资料.

图 2 南海地形特征及剖面位置 地形数据来自Smith and Sandwell, 1997.ESP, OBS剖面据Nissen et al., 1995; 丘学林等, 2011; Yan et al., 2001; Wang et al., 2006; Sun et al., 2009; 阮爱国等, 2011; Zhao et al., 2010; 丁巍伟和李家彪, 2011; Wei et al., 2015; 卫小冬等, 2011a, 2011b; Wu et al., 2011; McIntosh et al., 2014.A-A'中部地学断面据姚伯初等, 2006. Fig. 2 Terrain feature of the SCS and the profiles location Terrain data are from Smith and Sandwell (1997). The locations of EPS and OBS, solid red line, are from Nissen et al., 1995; Qiu et al., 2011; Yan et al., 2001; Wang et al., 2006; Sun et al., 2009; Ruan et al., 2011; Zhao et al., 2010; Ding and Li, 2011; Wei et al., 2015; Wei et al., 2011a, 2011b; Wu et al., 2011; McIntosh et al., 2014. The location of the central geotransection, solid black line, is from Yao et al., 2006.

居里面作为重要的深部构造界面, 是指岩石圈中由于温度超过居里点温度时, 磁性矿物转变为顺磁性甚至是无磁性的一个物理界面(Lowrie, 2007).一般情况下, 在火山和地热区居里面深度小于10 km, 岛弧和洋中脊居里面深度在5~15 km, 而在高原区居里面深度大于20 km, 而在海沟居里面深度则要大于30 km(Tanaka et al., 1999).通过磁异常反演磁性层的底界面(the depth to the bottom of magnetization, DBM)——居里面也已经成为研究岩石圈热结构的重要手段(Ross et al., 2006), 这样带来的问题就是如何去解释这个界面.早期研究认为地幔捕掳体是无磁性(Wasilewski et al., 1979; Wasilewski and Mayhew, 1992), 则可以将DBM等同于莫霍面.但最近的一些研究认为, 长波长的DBM变化是由居里温度控制的, 在有些区域与莫霍面是一致的(Salem et al., 2014), 并发现地幔岩石的组成中含有铁磁性以及铁硫化物物质(Ferré et al., 2013, 2014; Martin-Hernandez et al., 2014), 则由磁异常反演得到的居里面是位于上地幔之中, 即其深度要大于莫霍面深度, 这可能与地幔岩的蛇纹石化有关(Blakely et al., 2005; Guimarães et al., 2014).目前对南海地区居里面反演的深度结果差异较大(吴招才等, 2010; Li et al., 2010; 陈洁等, 2010; Li and Song, 2012).

为了更好地理解南海深部构造活动与洋盆扩张的关系, 本文对南海地区的莫霍面和居里面埋深、起伏及其叠置关系开展进一步研究, 探讨其深部构造涵义.在前人的研究基础之上, 利用卫星测高重力数据反演了南海地区的莫霍面深度, 并结合居里面深度(马杰等, 2018), 对南海深部构造活动与洋盆扩张方式、岩浆活动及热状态等关系进行了讨论.该研究将有助于对南海形成演化的进一步理解, 也为南海油气勘探基础关键地质问题寻求科学答案.

1 构造背景

南海形成是海底板块的生长与消减过程, 经历了海底扩张形成大洋地壳、岩浆溢出造成火山链以及板块俯冲消减等三个时期, 其中海底扩张是南海形成的核心.海底扩张的年代及其动力学的研究很大程度上需要依靠海底磁异常条带的鉴别.不同学者利用磁异常条带资料的研究提出了不同的扩张时限和扩张模式(Ben Avraham and Uyeda, 1973; Taylor and Hayes, 1983; Ru and Pigott, 1986; 何廉声和陈邦彦, 1987; 吕文正, 1987; Briais et al., 1993; Barckhausen et al., 2014; 姚伯初等, 2004; Cullen et al., 2010; Li and Song, 2012; Li et al., 2014).南海形成的动力学机制也存在不同观点, 如弧后扩张模式(Karig, 1971; Ben Avraham and Uyeda, 1973)、古南海俯冲拖曳模式(Holloway, 1982; Taylor and Hayes, 1980, 1983)、碰撞-挤出-拉张模式(Tapponnier et al., 1990; Briais et al., 1993; Leloup et al., 2001), 地幔上涌模式(Tamaki, 1995; Flower et al., 1998)、东亚陆缘右行裂解模式(周蒂等, 2002)以及Morley模式(Morley, 2002)等.根据最新深拖磁测及IODP349钻探的研究结果认为扩张开始为33 Ma, 中央海盆在23.6 Ma时发生过扩张脊南向跃迁, 并于15 Ma停止扩张, 而西南次海盆停止扩张时间为16 Ma (Li et al., 2014).随着2017年南海第三次大洋钻探IODP367和368两个航次的实施, 获取更多的直接证据, 南海成因之谜可能将被解开, 也将极大地丰富边缘海形成演化的理论.在南海扩张的构造背景下形成了深海盆以及性质不同的四周大陆边缘, 北部为被动大陆边缘, 西部为走滑边缘, 东部为俯冲边缘, 而南部为挤压边缘, 在这些边缘上则发育了20多个不同类型的新生代沉积盆地, 总面积超过100万km2, 共计发现数百个油气田, 探明油气总地质储量上百亿吨当量(张功成等, 2010), 而深部动力作用则制约着盆地的形成演变及热演化, 与油气等能源矿产的赋存、富集和分布密切相关.因此研究南海深部构造对理解其形成演化以及探究其资源效应具有重要意义.

2 重力数据及莫霍面反演 2.1 数据来源及校正

本次研究所使用的数据为卫星测高重力异常(图 3.Sandwell et al., 2013, 2014), 其数据网度为1′×1′.莫霍面深度反演需利用布格重力异常数据.本文采用双界面模型重力场快速正演方法(王万银和潘作枢, 1993)计算了海水的重力影响值, 进而对卫星测高重力异常进行海水影响校正, 并由此得到布格重力异常(图 4).布格重力异常主要是由于地壳厚度变化引起的, 在陆地区地壳较厚, 布格重力异常值比较低; 在海区地幔隆起, 洋壳比较薄, 布格重力异常值比较高.南海地区布格重力异常由陆向海逐渐增大, 陆地区布格重力异常值低, 洋盆区布格重力异常值高, 大陆边缘则表现为过渡区.

图 3 南海及邻区卫星测高重力异常(Sandwell et al., 2013, 2014) Fig. 3 Satellite altimetric gravity anomalies in the SCS (Sandwell et al., 2013, 2014)
图 4 南海及邻区布格重力异常 Fig. 4 Bouguer gravity anomalies in the SCS
2.2 莫霍面深度反演

莫霍面深度反演的准确性与重力异常的分离和反演方法有直接关系.首先获取由莫霍面起伏所引起的重力异常.布格重力异常已消除了海水的影响(图 4), 它是海底以下沉积层、莫霍面以及其他密度异常体的综合响应.从布格重力异常中获取莫霍面引起的重力异常, 则需消除沉积层以及其他密度异常体的影响.本次研究采用正演剥离与位场分离的方法计算莫霍面引起的重力异常.新生界沉积层厚度是利用地震资料约束反演获得(图 5; 冯旭亮等, 2018), 并将沉积层重力影响值从布格重力异常中消除, 然后在OBS剖面和深反射地震剖面所揭示的莫霍面深度重力正演约束下,利用最小曲率位场分离方法(纪晓琳等, 2015)消除了局部密度体(如火成岩)的重力影响, 最终得到莫霍面起伏变化引起的重力异常(图 6).

图 5 南海海域沉积层厚度(冯旭亮等, 2018) Fig. 5 Sediment thickness map of the SCS (Feng et al., 2018)
图 6 南海地区莫霍面起伏重力异常 Fig. 6 Gravity anomalies caused by Moho undulation in the SCS

在获取了莫霍面起伏产生的布格重力异常后,采用基于深度约束的双界面模型重力场快速反演方法(王万银和潘作枢, 1993), 计算了南海地区的莫霍面深度(图 7).反演结果表明, 研究区莫霍面总体表现为“洋盆浅, 周缘深”、莫霍面由陆缘向洋盆逐渐抬升、与地形呈明显的镜像关系等特征.莫霍面深度表征了南海地区的地壳类型, 主要分为大陆型地壳、洋陆过渡型地壳和大洋型地壳三类.大陆型地壳主要分布在北部的陆架区和南部陆架区.南海周边陆缘区莫霍面较深.北部陆架莫霍面深度在24~35 km之间, 南部陆架区莫霍面深度在20~26 km之间.莫霍面也反映南海多处存在微陆块, 如中、西沙群岛, 礼乐滩地区等.西沙群岛呈现微陆块性质.岛礁区莫霍面埋深相对较深, 如海南岛莫霍面埋深为30 km, 比周围深2 km; 台湾岛埋深可达40 km, 比周围深8 km; 礼乐滩比周围深4 km.大洋型地壳主要分布在中央海盆、西南次海盆以及西北次海盆, 莫霍面埋深为7~14 km; 洋盆外围显示狭窄的梯级带特征, 反映出洋壳陆壳的显著差异及洋陆转换边界的位置.另外, 加里曼丹岛以东的苏禄海莫霍面深度为10~12 km, 苏拉威西海莫霍面深度为8~10 km, 也显示出明显的洋壳特征.

图 7 南海地区莫霍面深度图 Fig. 7 Moho depth of the SCS
3 讨论 3.1 深部构造与岩石圈地学断面对比

为了对深部构造更加明晰, 本文结合居里面深度(图 8; 马杰等, 2018), 与南海中部地学断面进行了对比研究(图 9).在华南陆块的三水盆地, 居里面逐渐向下倾斜, 深度在18~20 km, 起伏变化不大.莫霍面缓慢抬升, 与地学断面获取的地壳结构逐渐抬升具有一致性, 但莫霍面整体在居里面下方.在珠江口盆地居里面有一明显坳陷, 深度自20 km增加到24 km, 且莫霍面快速抬升, 自29 km迅速减小到12 km, 莫霍面的显著抬升与地学断面显示的地壳快速减薄有关, 莫霍面位于居里面的上方.在中央海盆的洋壳区地幔上拱导致地壳减薄, 莫霍面深度在10~12 km, 居里面明显抬升后趋于稳定, 深度在15~18 km之间.而在南沙-曾母块体, 礼乐滩-巴拉望岛, 莫霍面出现明显的降低, 自10 km下降到22 km后趋于稳定, 居里面逐渐下降, 深度自18 km降低到28 km, 莫霍面整体在居里面上方.莫霍面显著下降与地学断面显示地壳厚度迅速增厚有关,地壳增厚与南海南部中-新生代洋盆消亡、陆块碰撞有密切关系.总体来看, 两个深部构造界面的空间关系在北部陆缘区居里面位于莫霍面上方, 而在洋壳区和南部陆缘区则恰好相反, 居里面位于莫霍面的下方, 但在南部陆缘区两者的差距迅速减小.而在进入苏禄海两者差距则又加大, 与南海中央海盆具有同样的构造叠置关系.整体来讲, 南海地区莫霍面和居里面呈现交错叠置的构造关系, 南、北陆缘深部构造差异较大, 洋盆非对称式扩张、中生代洋盆消亡及新生代南部陆块碰撞是其主要形成原因.

图 8 南海地区居里面深度图(马杰等, 2018) Fig. 8 Curie surface depth of the SCS (Ma et al., 2018)
图 9 (a) A-A'剖面莫霍面、居里面深度特征(位置见图 1); (b) A-A'中部地学断面(姚伯初等, 2006) Fig. 9 (a) Depth of the Moho surface, Curie surface of AA' profile (Location is shown in Fig. 1); (b) The central geotransection A-A' (Yao et al., 2006)
3.2 深部构造与大洋橄榄岩蛇纹石化

大洋橄榄岩的蛇纹石化是一个重要且普遍存在于洋中脊、俯冲带等大洋环境中的岩-水化学反应(Iyer et al., 2008).大洋橄榄岩的蛇纹石化对岩石的物理和化学性质具有明显的影响, 蛇纹石化会造成岩石密度减小, 含水量的增加和体积增大(Schroeder et al., 2002), 进而使其地震波速减小, 导致对洋壳莫霍面位置的误判(Iyer, 2007); 而且因为磁铁矿等次生矿物的产生导致岩石磁性增强(Oufi et al., 2002; Ranero et al., 2003), 磁性层加厚, 从而影响大洋磁异常分布特征.从反演的莫霍面和居里面深度来看, 陆缘区居里面要浅于莫霍面, 而在洋盆区居里面普遍深于莫霍面, 推测与大洋上地幔橄榄岩蛇纹石化导致的岩石磁性增强、磁性层加厚有关, 南海洋壳区可能存在大规模的橄榄岩蛇纹石化.残留洋中脊以南洋盆较北部居里面更深, 推测洋盆北部的岩浆活动更加剧烈或者洋盆南部的蛇纹石化更强烈.

橄榄岩的蛇纹石化会影响岩石的流变学特性, 因此对大洋岩石圈的构造运动产生重要影响.如果有少量的蛇纹岩出现即会显著的减小橄榄岩的强度(Escartín et al., 1997), 并且会明显降低蛇纹岩的内摩擦系数(μi约0.3), 减小平移断层角度, 增大低角度拆离断层的位移量, 从而为慢速扩张洋中脊的流体运移渗透提供裂隙通道(Cann et al., 1997).南海洋盆广泛的蛇纹石化对简单剪切模式的中速-慢速扩张为有利因素, 对南海大规模平移断裂的形成提供了良好的地质条件, 比如洋盆中部南北向的中南-礼乐平移断层(姚伯初, 1995).因此, 蛇纹石化作用对南海扩张起到了“润滑”作用.

3.3 深部构造与洋盆扩张的耦合效应

洋盆扩张是南海形成演化的核心问题.从反演的结果看, 南海莫霍面和居里面整体均表现为“洋盆浅、周缘深”的菱形特征, 反映了南海扩张期岩石圈的强烈伸展减薄.洋盆莫霍面和居里面的西南向楔形形态是对南海由东向西渐进式扩张(李家彪等, 2011)的深部构造响应.在洋陆转换区两者为明显的窄梯级带特征, 但是在南、北陆缘及洋壳区却并不对称, 这说明了南海为非对称式扩张, 简单剪切模型更适用于南海扩张的解释.洋盆南部莫霍面浅于北部与扩张中心逐渐向南迁移的特征一致(Li et al., 2014), 而洋盆莫霍面的南浅北深和居里面的南深北浅, 则可能与洋盆的简单剪切扩张方式以及洋盆北部的岩浆活动更活跃有关.

两个深部构造面形态与磁条带所反映的洋壳范围基本上一致.但是在台湾西南部海域磁条带不甚明显, 是否为洋壳还存在争议.台湾学者声称在该海域发现了海底磁异常条带, 磁条带分布为17至5C, 从而认为南海中央海盆扩张至少是从37 Ma开始, 而不是32 Ma, 并于15 Ma停止扩张, 以4.4 cm·a-1的半扩张速率进行(Hsu et al., 2004).最新的研究结果认为中央海盆扩张时限为33~15 Ma, 而西南次海盆停止扩张时间为16 Ma(Li et al., 2014).从反演的莫霍面看, 该区域莫霍面深度浅于12 km, 地壳厚度薄于8 km, 与中央海盆具有可比性; 而且该区域后期岩浆作用发育, 可能对磁条带的干扰较大(Hsu et al., 2004).综合以上考虑, 推测台湾西南部海域为洋壳的可能性比较大, 则洋盆扩张的年龄要比33 Ma更早.因此, 南海洋盆扩张的时限问题还值得再进一步研究.

洋盆区域的莫霍面基本上变化较为平缓, 但是沿着残留洋中脊有一个明显的莫霍面下陷带, 从中央海盆一直延伸到西南次海盆.地壳厚度也局部增厚.残留洋中脊地壳增厚, 可能是南海洋盆停止扩张后构造热沉降所致(张健和李家彪, 2011).另外, 中央海盆残留洋中脊的莫霍面深度要比西南次海盆的深度略大, 并且中央海盆居里面埋深比西南次海盆大, 可能指示了西南次海盆的扩张停止比中央海盆滞后一些.

4 结论

南海地区莫霍面和居里面整体均表现为“洋盆浅、周缘深”的菱形特征, 两者在洋陆转换区呈现为明显的窄梯级带特征, 显示出南海地区地壳组成的复杂性, 反映了南海扩张期岩石圈伸展减薄、南北向构造拉张作用等深部构造过程.洋盆莫霍面和居里面的西南向楔形形态是对南海由东向西渐进式扩张的深部构造响应.莫霍面和居里面表现为南北不对称特征, 指示了南海为非对称式扩张模式.洋盆南部莫霍面浅于北部, 与扩张中心逐渐向南迁移的特征一致, 而洋盆居里面则南深北浅则可能与洋盆的简单剪切扩张方式以及洋盆北部的岩浆活动更活跃有关.

南海地区莫霍面和居里面呈现交错叠置关系, 洋盆非对称式扩张、南部中-新生代俯冲碰撞是其主要形成原因.北部和西部陆缘区居里面深度浅于莫霍面, 而洋盆区和南部陆缘区则恰好相反, 推测南海洋盆普遍发育大洋上地幔橄榄岩蛇纹石化现象, 导致了上地幔橄榄岩的磁性增强、磁性层增厚, 从而使居里面深度大于莫霍面深度.而南海南部陆缘区居里面深于莫霍面, 与南部复杂的中-新生代俯冲碰撞等构造演化相关.

根据莫霍面深度推测台湾西南部海域为洋壳的可能性比较大, 那么洋盆扩张的年龄则要比33 Ma更早.中央海盆残留洋中脊的莫霍面深度要比西南次海盆的深度略大, 并且中央海盆居里面要比西南次海盆的深度大, 可能指示了西南次海盆的扩张停止比中央海盆滞后一些.因此, 洋盆的扩张时限问题值得进一步深入研究.

致谢  感谢潘作枢教授及论文评审专家提出的修改意见.
References
Arndt N T, Goldstein S L. 1989. An open boundary between lower continental crust and mantle:its role in crust formation and crustal recycling. Tectonophys, 161(3-4): 201-212. DOI:10.1016/0040-1951(89)90154-6
Barckhausen U, Engels M, Franke D, et al. 2014. Evolution of the South China Sea:Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58: 599-611. DOI:10.1016/j.marpetgeo.2014.02.022
Ben-Avraham Z, Uyeda S. 1973. The evolution of the China Basin and the Mesozoic paleogeography of Borneo. Earth and Planetary Science Letters, 18(2): 365-376. DOI:10.1016/0012-821X(73)90077-0
Blakely R J, Brocher T M, Wells R E. 2005. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33(6): 445-448. DOI:10.1130/G21447.1
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea-implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299-6328. DOI:10.1029/92JB02280
Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332. DOI:10.1038/385329a0
Chen J, Gao D Z, Wen N, et al. 2010. Characteristics of the geomagnetic field in the South China Sea. Progress in Geophysics (in Chinese), 25(2): 376-388. DOI:10.3969/j.issn.1004-2903.2010.02.002
Cullen A, Reemst P, Henstra G, et al. 2010. Rifting of the South China Sea new perspectives. Petroleum Geoscience, 16(3): 273-282. DOI:10.1144/1354-079309-908
Ding W W, Li J B. 2011. Seismic stratigraphy, tectonic structure and extension factors across the southern margin of the South China Sea:evidence from two regional multi-channel seismic profiles. Chinese Journal of Geophysics (in Chinese), 54(12): 3038-3056. DOI:10.3969/j.issn.0001-5733.2011.12.006
Escartín J, Hirth G, Evans B. 1997. Nondilatant brittle deformation of serpentinites:implications for Mohr-Coulomb theory and the strength of faults. Journal of Geophysical Research:Solid Earth, 102(B2): 2897-2913. DOI:10.1029/96JB02792
Feng X L, Zhang G C, Wang W Y, et al. 2018. An integrated study on distribution of Cenozoic basins in the South China Sea based on gravity, magnetic and seismic data. Chinese Journal of Geophysics (in Chinese), 61(10): 4242-4254. DOI:10.6038/cjg2018L0567
Ferré E C, Friedman S A, Martín-Hernández F, et al. 2013. The magnetism of mantle xenoliths and potential implications for sub-moho magnetic sources. Geophysical Research Letters, 40(1): 105-110. DOI:10.1029/2012GL054100
Ferré E C, Friedman S A, Martin-Hernández F, et al. 2014. Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics, 624-625: 3-14. DOI:10.1016/j.tecto.2014.01.004
Flower M, Tamaki K, Hoang N. 1998. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific.//Flower M F J, Chun S L, Lo C H, et al eds. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics 27, Washington, D C: AGU, 67-88. http://www.researchgate.net/publication/284417178_Mantle_extrusion_A_model_for_dispersed_volcanism_and_DUPAL-like_asthenosphere_in_East_Asia_and_the_western_Pacific
Griffin W L, O'Reilly S Y. 1987. Is the continental Moho the crust-mantle boundary?. Geology, 15(3): 241-244. DOI:10.1130/0091-7613(1987)15<241:ITCMTC>2.0.CO;2
Guan D L, Ke X P, Wang Y. 2016. Basement structures of East and South China Seas and adjacent regions from gravity inversion. Journal of Asian Earth Sciences, 117: 242-255. DOI:10.1016/j.jseaes.2015.12.017
Guimarães S N P, Ravat D, Hamza V M. 2014. Combined use of the centroid and matched filtering spectral magnetic methods in determining thermomagnetic characteristics of the crust in the structural provinces of Central Brazil. Tectonophysics, 624-625: 87-99. DOI:10.1016/j.tecto.2014.01.025
Hall R. 1996. Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106(1): 153-184. DOI:10.1144/GSL.SP.1996.106.01.11
Hao T Y, Huang S, Xu Y, et al. 2008. Comprehensive geophysical research on the deepstructure of Northeastern South China Sea. Chinese Journal of Geophysics (in Chinese), 51(6): 1785-1796.
He L S, Chen B Y. 1987. Atlas of Geology and Geophysics of South China Sea (in Chinese). Guangzhou: Guangdong Map Publishing House.
Holloway N H. 1982. North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9): 1355-1383.
Hsu S K, Yeh Y C, Doo W B, et al. 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1-2): 29-44. DOI:10.1007/s11001-005-0731-7
Hu L T, Hao T Y, Xing J, et al. 2016. The Moho depth in the China Sea-West Pacific and its geological implications. Chinese Journal of Geophysics (in Chinese), 59(3): 871-883. DOI:10.6038/cjg20160310
Iyer K. 2007. Mechanisms of serpentinization and some geochemical effects[Ph. D. Thesis]. Oslo: University of Oslo, 2007. https://core.ac.uk/display/30842062
Iyer K, Austrheim H, John T, et al. 2008. Serpentinization of the oceanic lithosphere and some geochemical consequences:Constraints from the Leka Ophiolite Complex, Norway. Chemical Geology, 249(1-2): 66-90. DOI:10.1016/j.chemgeo.2007.12.005
Ji X L, Wang W Y, Qiu Z Y. 2015. The research to the minimum curvature technique for potential field data separation. Chinese Journal of Geophysics (in Chinese), 58(3): 1042-1058. DOI:10.6038/cjg20150329
Karig D E. 1971. Origin and development of marginal basins in the western Pacific. Journal of Geophysical Research, 76(11): 2542-2561. DOI:10.1029/JB076i011p02542
Leloup P H, Arnaud N, Lacassin R, et al. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research:Solid Earth, 66(B4): 1083-6732.
Li C F, Shi X B, Zhou Z Y, et al. 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophysical Journal International, 182(3): 1229-1247. DOI:10.1111/j.1365-246X.2010.04702.x
Li C F, Song T R. 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chinese Science Bulletin, 57(24): 3165-3181.
Li C F, Xu X, Lin J, et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. DOI:10.1002/2014GC005567
Li J B, Ding W W, Gao J Y, et al. 2011. Cenozoic evolution model of the sea-floor spreading in South China Sea:new constraints from high resolution geophysical data. Chinese Journal of Geophysics (in Chinese), 54(12): 3004-3015. DOI:10.3969/j.issn.0001-5733.2011.12.003
Lowrie W. 2007. Fundamentals of Geophysics. 2nd ed. Cambridge: Cambridge University Press: 381.
Lv W Z, Ke C Z, Wu S D, et al. 1987. Central Basin strip magnetic anomalies and tectonic evolution of the South China Sea. Acta Oceanologica Sinica (in Chinese), 9(1): 69-78.
Ma C Q. 1998. The Moho, lower continental crust and magmatism. Earth Science Frontiers (in Chinese), 5(4): 201-208.
Ma J, Wang W Y, Luo X G, et al. 2018. The magnetic basement and Curie surface depth in the South China Sea and adjacent areas derived from magnetic data. Chinese J. Geophys. (in Chinese), 61(10): 4269-4280. DOI:10.6038/cjg2018L0574
Martin-Hernandez F, Ferré E C, Friedman S A. 2014. Remanent magnetization in fresh xenoliths derived from combined demagnetization experiments:magnetic mineralogy, origin and implications for mantle sources of magnetic anomalies. Tectonophysics, 624-625: 24-31. DOI:10.1016/j.tecto.2014.04.006
McIntosh K, Lavier L, Van Avendonk H, et al. 2014. Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 58: 612-626. DOI:10.1016/j.marpetgeo.2014.03.012
Meissner R, Werer T, Fluck E R. 1987. The Moho in Europe-implications for crustal development. Annales Geophysicae, 5B: 357-364.
Morley C K. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189-215. DOI:10.1016/S0040-1951(02)00061-6
Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research, 100(B11): 22407-22433. DOI:10.1029/95JB01866
Oufi O, Cannat M, Horen H. 2002. Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research:Solid Earth, 107(B5): 2095. DOI:10.1029/2001JB000549
Pichot T, Delescluse M, Chamot-Rooke N, et al. 2014. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data. Marine and Petroleum Geology, 58: 627-643. DOI:10.1016/j.marpetgeo.2013.10.008
Qin J X, Hao T Y, Xu Y, et al. 2011. The distribution characteristics and the relationship between the tectonic units of the Moho Depth in South China Sea and Adjacent Areas. Chinese Journal of Geophysics (in Chinese), 54(12): 3171-3183. DOI:10.3969/j.issn.0001-5733.2011.12.017
Qiu X L, Zhao M H, Ao W, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3117-3128. DOI:10.3969/j.issn.0001-5733.2011.12.012
Ranero C R, Morgan J P, Mcintosh K, et al. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956): 367-373. DOI:10.1038/nature01961
Ross H E, Blakely R J, Zoback M D. 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5): 51-59.
Ru K, Pigott J D. 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70(9): 1136-1155.
Ruan A G, Niu X W, Qiu X L, et al. 2011. A wide angle ocean bottom seismometer profile across Liyue Bank, the southern margin of South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 319-3149. DOI:10.3969/j.issn.0001-5733.2011.12.014
Salem A, Green C, Ravat D, et al. 2014. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics, 624-625: 75-86. DOI:10.1016/j.tecto.2014.04.027
Sandwell D T, Garcia E, Soofi K, et al. 2013. Towards 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8): 892-899. DOI:10.1190/tle32080892.1
Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65-67. DOI:10.1126/science.1258213
Schroeder T, John B, Frost B R. 2002. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology, 30(4): 367-370. DOI:10.1130/0091-7613(2002)030<0367:GIOSCT>2.0.CO;2
Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1957-1962.
Song H B, Hao T Y, Jiang W W, et al. 2002. Researches on geophysical field characteristics and basement fault system of South China Sea. Progress in Geophysics (in Chinese), 17(1): 24-34.
Sun Z, Zhou D, Wu S M, et al. 2009. Patterns and dynamics of rifting on passive continental margin from shelf to slope of the northern South China Sea:evidence from 3D analogue modeling. Journal of Earth Science, 20(1): 136-146. DOI:10.1007/s12583-009-0011-6
Tamaki K. 1995. Upper mantle extrusion tectonics of Southeast Asia and formation of the western Pacific back-arc basins. Workshop: Cenozoic Evolution of the Indochina Peninsula, Hanoi/Do son, Abstract with Program, 89.
Tanaka A, Okubo Y, Matsubayashi O. 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3-4): 461-470. DOI:10.1016/S0040-1951(99)00072-4
Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt:Tertiary leftlateral shear between Indochina and South China. Nature, 243(6257): 431-437.
Taylor B, Hayes D E. 1980. The tectonic evolution of the South China Sea.//Hay D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington D C: AGU, 89-104.
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin.//Hay D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington D C: AGU, 23-56. http://www.researchgate.net/publication/258928283_Origin_and_history_of_the_South_China_Sea_basin
Wang T K, Chen M K, Lee C S, et al. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. DOI:10.1016/j.tecto.2005.10.039
Wang W Y, Pan Z S. 1993. Fast solution of forward and inverse problems for Gravity field in a dual interface model. Geophysical Prospecting for Petroleum (in Chinese), 32(2): 81-87.
Wasilewski P J, Mayhew M A. 1992. The Moho as a magnetic boundary revisited. Geophysical Research Letters, 19(22): 2259-2262. DOI:10.1029/92GL01997
Wasilewski P J, Thomas H H, Mayhew M A. 1979. The Moho as a magnetic boundary. Geophysical Research Letters, 6: 541-544. DOI:10.1029/GL006i007p00541
Wei X D, Ruan A G, Zhao M H, et al. 2011a. A wide-angle OBS profile across Dongsha Uplift and Chaoshan Depression in the mid-northern South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3325-3335. DOI:10.3969/j.issn.0001-5733.2011.12.030
Wei X D, Ruan A G, Zhao M H, et al. 2015. Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea. Tectonophysics, 644-645: 151-160. DOI:10.1016/j.tecto.2015.01.006
Wei X D, Zhao M H, Ruan A G, et al. 2011b. Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3150-3160. DOI:10.3969/j.issn.0001-5733.2011.12.015
Wu Z C, Gao J Y, Zhao L H, et al. 2010. Characteristic of magnetic anomalies and Curie point depth at northern continental margin of the South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 35(6): 1060-1068. DOI:10.3799/dqkx.2010.120
Wu Z C, Gao J Y, Ding W W. 2017. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points. Chinese Journal of Geophysics (in Chinese), 60(7): 2599-2613. DOI:10.6038/cjg20170709
Wu Z L, Li J B, Ruan A G, et al. 2011. Crustal structure of the northwestern sub-basin, South China Sea:Results from a wide-angle seismic experiment. Science China Earth Sciences, 55(1): 159-172. DOI:10.1007/s11430-011-4324-9
Yan P, Zhou D, Liu Z S. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1): 1-21. DOI:10.1016/S0040-1951(01)00062-2
Yao B C. 1995. Characteristics and tectonic meaning of Zhongnan-Liyue fault. Geological Research of South China Sea (in Chinese), (7): 1-14.
Yao B C, Wan L, Wu N Y. 2004. Cenozoic plate tectonic activities in the Great South China Sea area. Chinese Geology (in Chinese), 31(2): 113-122.
Yao B C, Wan L, Zeng W J, et al. 2006. The Three-Dimensional Structure of Lithosphere and Its Evolution in the South China Sea (in Chinese). Beijing: Geological Publishing House.
Zhang G C, Zhu W L, Mi L J, et al. 2010. The theory of hydrocarbon genernation controlled by source rock and heat from circle distribution of outside-oil field and inside-gas field in South China Sea. Acta Sedimentologica Sinica (in Chinese), 28(5): 987-1005.
Zhang J, Li J B. 2011. Gravity inversion and thermal modeling about the crust-mantle structure of Southwest basin in the South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3026-3037. DOI:10.3969/j.issn.0001-5733.2011.12.005
Zhao M H, Qiu X L, Xia S H, et al. 2010. Seismic structure in the northeastern South China Sea:S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 480(1-4): 183-197. DOI:10.1016/j.tecto.2009.10.004
Zhou D, Chen H Z, Wu S M, et al. 2002. Opening of the South China Sea by dextral splitting of the east Asian continental margin. Acta Geologica Sinica (in Chinese), 76(2): 180-190.
陈洁, 高德章, 温宁, 等. 2010. 南海磁场特征研究. 地球物理学进展, 25(2): 376-388. DOI:10.3969/j.issn.1004-2903.2010.02.002
丁巍伟, 李家彪. 2011. 南海南部陆缘构造变形特征及伸展作用:来自两条973多道地震测线的证据. 地球物理学报, 54(12): 3038-3056. DOI:10.3969/j.issn.0001-5733.2011.12.006
冯旭亮, 张功成, 王万银, 等. 2018. 基于重磁震资料的南海新生代盆地分布综合研究. 地球物理学报, 61(10): 4242-4254. DOI:10.6038/cjg2018L0567
郝天珧, 黄松, 徐亚, 等. 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6): 1785-1796. DOI:10.3321/j.issn:0001-5733.2008.06.019
何廉声, 陈邦彦. 1987. 南海地质地球物理图集. 广州: 广东省地图出版社.
胡立天, 郝天珧, 邢健, 等. 2016. 中国海-西太平洋莫霍面深度分布特征及其地质意义. 地球物理学报, 59(3): 871-883. DOI:10.6038/cjg20160310
纪晓琳, 王万银, 邱之云. 2015. 最小曲率位场分离方法研究. 地球物理学报, 58(3): 1042-1058. DOI:10.6038/cjg20150329
李家彪, 丁巍伟, 高金耀, 等. 2011. 南海新生代海底扩张的构造演化模式:来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. DOI:10.3969/j.issn.0001-5733.2011.12.003
吕文正, 柯长志, 吴声迪, 等. 1987. 南海中央海盆条带磁异常特征及构造演化. 海洋学报, 9(1): 69-78.
马昌前. 1998. 莫霍面, 下地壳与岩浆作用. 地学前缘, 5(4): 201-208. DOI:10.3321/j.issn:1005-2321.1998.04.003
马杰, 王万银, 罗新刚, 等. 2018. 基于磁力资料的南海及邻区磁性基底和居里面深度特征研究. 地球物理学报, 61(10): 4269-4280. DOI:10.6038/cjg2018L0574
秦静欣, 郝天珧, 徐亚, 等. 2011. 南海及邻区莫霍面深度分布特征及其与各构造单元的关系. 地球物理学报, 54(12): 3171-3183. DOI:10.3969/j.issn.0001-5733.2011.12.017
丘学林, 赵明辉, 敖威, 等. 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12): 3117-3128. DOI:10.3969/j.issn.0001-5733.2011.12.012
阮爱国, 牛雄伟, 丘学林, 等. 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12): 319-3149. DOI:10.3969/j.issn.0001-5733.2011.12.014
宋海斌, 郝天珧, 江为为, 等. 2002. 南海地球物理场特征与基底断裂体系研究. 地球物理学进展, 17(1): 24-34. DOI:10.3969/j.issn.1004-2903.2002.01.003
王万银, 潘作枢. 1993. 双界面模型重力场快速正反演问题. 石油物探, 32(2): 81-87.
卫小冬, 阮爱国, 赵明辉, 等. 2011a. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12): 3325-3335. DOI:10.3969/j.issn.0001-5733.2011.12.030
卫小冬, 赵明辉, 阮爱国, 等. 2011b. 南海中北部陆缘横波速度结构及其构造意义. 地球物理学报, 54(12): 3150-3160. DOI:10.3969/j.issn.0001-5733.2011.12.015
吴招才, 高金耀, 赵俐红, 等. 2010. 南海北部陆缘的磁异常特征及居里面深度. 地球科学——中国地质大学学报, 35(6): 1060-1068.
吴招才, 高金耀, 丁巍伟, 等. 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7): 2599-2613. DOI:10.6038/cjg20170709
姚伯初. 1995. 中南-礼乐断裂的特征及其构造意义. 南海地质研究, (7): 1-14.
姚伯初, 万玲, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113-122. DOI:10.3969/j.issn.1000-3657.2004.02.001
姚伯初, 万玲, 曾维军, 等. 2006. 中国南海海域岩石圈三维结构及演化. 北京: 地质出版社: 2006.
张功成, 朱伟林, 米立军, 等. 2010. "源热共控论":来自南海海域油气田"外油内气"环带有序分布的新认识. 沉积学报, 28(5): 987-1005.
张健, 李家彪. 2011. 南海西南海盆壳幔结构重力反演与热模拟分析. 地球物理学报, 54(12): 3026-3037. DOI:10.3969/j.issn.0001-5733.2011.12.005
周蒂, 陈汉宗, 吴世敏, 等. 2002. 南海的右行陆缘裂解成因. 地质学报, 76(2): 180-190.