地球物理学报  2016, Vol. 59 Issue (12): 4560-4569   PDF    
柴达木盆地东部新生代盆地结构与演化
杜忠明1,2 , 樊龙刚1,2 , 武国利1,2 , 魏红红3 , 孟庆任1,2     
1. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029;
2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室, 北京 100101
摘要: 本文对柴达木盆地东部新生代盆地结构和构造演化进行了研究.地震剖面揭示柴达木盆地东部新生界分别向南、北盆地边缘变薄和尖灭,盆地北部被欧龙布鲁克山和埃姆尼克山隆起强烈改造.通过对新生代地层厚度横向变化以及地层剖面分析,确定欧北断裂自中新世晚期开始向北逆冲,导致欧龙布鲁克山发生隆升和德令哈凹陷的形成.埃北断裂从上新世开始活动,与欧北断裂同时向北逆冲,导致德令哈凹陷进一步沉降,形成厚度达2600 m的狮子沟组.埃南断裂在第四纪开始大规模向南逆冲,不仅造成其北侧的欧龙布鲁克山和埃姆尼克山隆起强烈抬升和向南推覆,而且导致南侧霍布逊凹陷的形成,成为柴达木盆地第四纪沉积中心.早期提出的前陆盆地和背驮式盆地模型显然不能解释柴达木盆地东部新生代构造格架和演化历史.本次研究认为柴达木盆地东部的形成是强烈的水平挤压作用导致地壳发生大规模褶皱的结果,即柴达木盆地东部新生代是一个大规模向斜.该向斜盆地模型很好地解释了新生代地层向盆地边缘减薄以及沉积中心主要位于盆地中部等现象.了解柴达木盆地东部构造发展对了解青藏高原侧向扩展具有重要意义.
关键词: 柴达木盆地      新生代      地震剖面      沉积盆地      青藏高原     
Cenozoic architecture and structural development of the eastern Qaidam basin
DU Zhong-Ming1,2, FAN Long-Gang1,2, WU Guo-Li1,2, WEI Hong-Hong3, MENG Qing-Ren1,2     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau, Chinese Academy of Sciences, Beijing 100101, China
Abstract: This study aims to reveal Cenozoic architecture and structural development of the eastern Qaidam basin. Seismic profiles show that Cenozoic strata become thinner and pinch out toward the northern and southern edges of the basin, and the northern basin has been greatly modified by the Oulongbulukshan and Aimunikshan uplifts. Based on the analysis of lateral variations of Cenozoic strata and stratigraphic sections, it is demonstrated that the Oubei fault initiated in the Late Miocene, leading to rising of the Oulongbulukshan uplift and formation of the Delingha depression. The Aibei fault became active in the Pliocene, and north-directed thrusting of both the Aibei and Oubei faults resulted in further subsidence of the Delingha depression and deposition of the Shizigou Formation up to 2600 m thick. The Quaternary witnessed large-scale thrusting of the Ai'nan fault, which not only caused uplifting and southerly displacement of the Oulongbuluk mountain and Aimunik mountain on the north but also the generation of the Hobuxun depression on the south. The Hobuxun depression then became the depocenter of the eastern Qaidam basin. Previous basin models, such as foreland basin or piggyback basin models, apparently failed to interpret both the Cenozoic architecture and structural development of the eastern Qaidam basin. It is proposed that the eastern Qaidam basin was formed as a result of crustal folding related to strong horizontal compression, i.e., the eastern Qaidam basin was a crustal-scale synclinal basin. The synclinal basin model can well account for the thinning of strata toward basin margins and localization of depocenters in the middle of the basin during the Cenozoic. Reconstruction of structural evolution of the eastern Qaidam basin will help understand lateral growth of the northeastern Tibetan plateau..
Key words: Qaidam basin      Cenozoic      Seismic profiles      Sedimentary basin      Tibetan plateau     
1 引言

柴达木盆地位于青藏高原的东北缘,周缘被东昆仑、祁连山和阿尔金等构造带所围限(图 1),其现今构造格架主要形成于晚新生代,基底为柴达木地块.柴达木地块早期经历了加里东期、印支期和燕山期多期构造演化(吴汉宁等,1997Yin and Harrison, 2000许志琴等,2007).李三忠等(2016)认为柴达木盆地的基底是在加里东期形成,所形成的山弯构造格局可能一直持续到中生代晚期.对柴达木盆地新生代构造演化已有许多研究(Meyer et al., 1998; Xia et al., 2001; Meng and Fang, 2008; Yin et al., 2008; 孟庆任,2009; Cheng et al., 2015),揭示了中生代之后的演化历程.Métivier等(1998)认为东昆仑构造带自始新世末开始形成,柴达木盆地是东昆仑构造带向北推覆导致前缘地块发生挠曲沉降的结果.Yin等(2008)认为柴达木盆地南缘的祁曼塔格构造带在渐新世向南逆冲,柴达木盆地位于该逆冲推覆断裂带的上盘,所以应为背驮式盆地;Meng和Fang (2008)提出柴达木盆地的形成是水平挤压导致地壳发生弯曲的结果,为一个地壳规模的向斜构造.孟庆任(2009)对柴达木盆地的成因模式进行了总结,提出柴达木盆地的地壳强烈缩短是青藏高原东北部岩石圈地幔与上覆地壳发生拆离和向南大规模俯冲的结果.已提出的柴达木盆地演化模型主要基于对柴达木盆地西部(柴西盆地)的研究,很少结合柴达木盆地东部(柴东盆地)的地质和地球物理资料揭示柴达木盆地的成因机制.

图 1 柴达木盆地及周缘山脉现今地貌图 Fig. 1 Present-day topographic map of the Qaidam basin and surrounding mountains

对柴达木盆地现今岩石圈和地壳结构已进行了各种地球物理探测,并取得了多方面进展(曾融生等,1961滕吉文,1974崔作舟等,1995卢占武等,2006Zhao et al., 2013).柴达木盆地的地壳厚度为55~63 km,可大致分为三层(赵俊猛等,2006):上地壳厚约20 km,中地壳为20~45 km,下地壳在盆地中部为7~8 km,向两侧明显增厚(赵俊猛等,2006).方向(2009)依据大地电磁测深资料将柴达木盆地地壳划分为上、下两部分,同样揭示了下地壳厚度向祁连山和东昆仑山明显增厚.Jiang等(2006)获取的柴东盆地广角反射折射地震资料显示其地壳结构与柴达木盆地地壳结构具有相似的特点,下地壳厚度也由盆地中心向盆地边缘方向明显增厚(Jiang et al., 2006; Shi et al., 2009).

柴东盆地的北、东、南边缘分别被宗务隆山、鄂拉山和东昆仑山构造带所限定(图 2).柴东盆地北部表现出明显的隆-凹相间的山-盆构造地貌,从北向南依次为宗务隆山、德令哈凹陷/欧北凹陷、欧龙布鲁克山隆起、欧南凹陷、埃姆尼克山隆起以及霍布逊凹陷.欧龙布鲁克山与埃姆尼克山的南、北两侧被反向逆冲断层所限定.埃姆尼克山向西北与锡铁山相接,构成一条向南逆冲的长条形推覆带.柴东盆地东侧为鄂拉山构造带(图 2).该构造带发育一系列指向西南的逆冲断层,其形成和发展与东侧温泉右旋走滑断裂有关(Wang and Burchfiel, 2004Lu et al., 2012).柴东盆地南缘断裂或柴达木南缘断裂以向南逆冲为特征,柴东盆地也因此被认为属于背驮式盆地(陈宣华等,2010).

图 2 柴达木盆地东部简化构造图及文中地震剖面位置 Fig. 2 Simplified tectonic map of the eastern Qaidam basin. Locations of geological and seismic sections in text are indicated

柴东盆地在第四纪演化成为柴达木盆地的沉降-沉积中心,因此早期对柴东盆地的研究多集中在恢复其第四纪沉积环境和构造作用等方面(朱筱敏等,2003党玉琪等,2004王永军等,2007郭泽清等,2012).相比而言,对柴东盆地第三纪构造格架、沉积过程以及盆地构造发展等还未开展深入研究.另外,目前对柴东盆地新生代构造演化的恢复主要是依据对盆地边缘山系构造变形和抬升历史的分析,很少涉及对盆地内部结构和构造发展的剖析.该研究通过对柴东盆地地震剖面的分析和地质解释,试图揭示盆地的基本结构以及恢复其构造发展过程,研究结果对重建整个柴达木盆地的构造演化具有十分重要的意义.

2 新生代地层

完整的新生代地层主要发育在柴达木盆地的西部,向东古近系则逐渐缺失(朱允铸等, 1994, 赵卫卫和计红,2011)(图 3).譬如,柴西盆地东北部大红沟背斜出露古近纪路乐河组-上干柴沟组地层(Lu and Xiong, 2009; Ke et al., 2013)(图 2),但到柴东盆地的欧龙布鲁克山东北侧,新生界最底部层位为中新世早期的下油砂山组,古近纪地层完全缺失(Fang et al., 2007).欧龙布鲁克山和埃姆尼克山的抬升导致柴东盆地北部第三系地层的出露,为研究盆地内部地层序列提供了机会.柴东盆地新近纪-第四纪地层自下而上分别为中新统下油砂山组和上油砂山组、上新统狮子沟组和第四系的七个泉组、柴达木组、三湖组和达布逊组(朱允铸等,1994).磁性地层学数据进一步限定了不同岩石地层单元的时代(Fang et al., 2007; 杨用彪,2009Lu and Xiong, 2009).

图 3 柴达木盆地东部和西部新生代地层序列和对比 Fig. 3 Sequences and correlation of Cenozoic stratigraphy of the western and eastern Qaidam basin
3 盆地结构与地质过程分析

柴东盆地大部分被第四系覆盖,盆地基底岩石以及第三系仅在北部欧龙布鲁克山、埃姆尼克山、布赫特山以及南山等隆起带和附近剥露于地表(图 2).对柴东盆地结构和地层格架的了解主要通过地球物理资料和野外地表断裂构造的分析.该研究首先对横穿柴东盆地南-北向的大地震剖面进行构造解释,然后详细分析盆地边缘二维地震剖面,最后对柴东盆地新生代结构进行地质分析.

3.1 盆地结构

图 4展示一条对横跨柴东盆地南-北向地震剖面的地质解释图.该剖面清晰地显示柴东盆地北部被逆冲断层和褶皱所改造,形成了埃姆尼克山和欧龙布鲁克山两个凸起.两个凸起将柴东盆地由北向南分隔为德令哈、欧南和霍布逊三个凹陷.通过分析新生代地层厚度的横向变化,可以清楚地发现:(1) 新生代地层总体向南、北两侧逐渐变薄和尖灭;(2) 下油砂山组和上油砂山组地层厚度在埃姆尼克山凸起两侧没有明显变化,只是上油砂山组在埃姆尼克山凸起相对变薄;(3) 埃姆尼克山凸起两侧的狮子沟组厚度出现明显差异变化,并且埃姆尼克山凸起之上的狮子沟组厚度明显减薄;(4) 埃姆尼克山凸起两侧和内部的下油砂山组和上油砂山组显示总体向北逐渐减薄和尖灭,凸起内部的上油砂山组由于后期变形和抬升受到剥蚀;(5) 狮子沟组在德令哈凹陷沉积厚度增大,但向北部仍然显示逐渐变薄的趋势;(6) 第四系沉积厚度在霍布逊凹陷北部最大,向南部边缘逐渐变薄.

图 4 贯穿柴东盆地南-北地震剖面的地质解释(剖面位置见图 2) Fig. 4 Geologic interpretation of a north to south seismic profile across the eastern Qaidam basin (refer to Fig. 2 for location of the profile)

图 5展示一条位于德令哈凹陷西部的地震剖面.该剖面不仅显示了柴东盆地北部新生代地层内部详细结构,而且揭示了盆地结构由东向西的变化.下油砂山组和上油砂山组虽被多个断裂错开或发生褶皱,但其厚度在断裂两侧没有出现明显的变化.特别值得注意的是,狮子沟组在欧龙布鲁克山凸起北侧的德令哈凹陷内沉积厚度明显增大,而在南侧欧南凹陷内的厚度向北逐渐变薄,并且欧南凹陷狮子沟组和第四系地层出现明显向南下超的现象(图 5).该剖面还显示欧龙布鲁克山凸起北缘的欧北断裂向北逆冲,而德令哈凹陷东部的欧龙布鲁克山凸起北缘的欧北断裂呈高角度向南逆冲(图 4).另外,德令哈凹陷西部的变形较强,发育断层相关褶皱,如怀头他拉背斜(图 5).

图 5 德令哈凹陷西部地震剖面,揭示欧龙布鲁克山凸起以及两侧新生代地层发育(剖面位置参见图 2) Fig. 5 A seismic profile in the western Delingha depression, showing the Oulongbulukshan uplift and occurrence of the Cenozoic strata (refer to Fig. 2 for location of the profile)

图 6是一条位于柴东盆地北缘的二维地震剖面.该剖面清晰地揭示了反射层的低角度上超趋势,指示上油砂山组和狮子沟组向盆地边缘逐渐超覆、减薄和尖灭.第四系地层也明显向北超覆,在盆地边缘不整合沉积于不同时代地层之上.盆地南缘虽被后期断裂改造,但二维地震剖面仍清晰地揭示下油砂山组、上油砂山组和狮子沟组反射层都明显地向盆地边缘低角度上超(图 7).

图 6 柴东盆地北缘地震剖面,揭示新生代地层向北上超减薄(剖面位置参见图 2) Fig. 6 A seismic section at the northern edge of the eastern Qaidam basin, showing onlap and northward thinning of Cenozoic strata (refer to Fig. 2 for location of the profile)
图 7 柴东盆地南缘地震剖面,揭示新生代地层向南上超减薄(剖面位置参见图 2) Fig. 7 A seismic section at the southern edge of the eastern Qaidam basin, showing onlap and southward thinning of Cenozoic strata (refer to Fig. 2 for location of the profile)
3.2 地质过程分析

依据上述地震剖面的解析,可以看出柴东盆地东部下油砂山组和上油砂山组在欧龙布鲁克山与埃姆尼克山凸起的两侧厚度没有明显变化(图 4),指示这两个地层单元形成时欧龙布鲁克山与埃姆尼克山凸起还未抬升.然而,在德令哈凹陷西部,欧龙布鲁克山凸起北侧上油砂山组的厚度明显大于欧龙布鲁克山凸起内部和其南侧的上油砂山组厚度(图 5),指示上油砂山组沉积时欧龙布鲁克山凸起已开始逐渐形成.实际上,该剖面西侧出露的上油砂山组底部砾岩基本皆由碳酸盐岩砾石组成,而这些碳酸盐岩砾石完全可与欧龙布鲁克山的石炭系岩性对比,因此其指示欧龙布鲁克山在上油砂山组沉积时已抬升至地表和遭受剥蚀.

狮子沟组沉积厚度在空间上出现很大变化.在柴东盆地西部,欧龙布鲁克山凸起北侧的狮子沟组厚度达2600 m,南侧被向北逆冲的欧北断层所限(图 5).与其相比,欧龙布鲁克山凸起南侧的狮子沟组厚度仅为1400 m,并且向凸起带方向逐渐减薄(图 5).在柴东盆地东部,狮子沟组厚度则在埃姆尼克山凸起的北侧明显增大,南缘被埃北断裂所限定(图 4).埃姆尼克山凸起内部的狮子沟组虽然较薄,但仍显示向北减薄的趋势.这一现象说明在狮子沟组沉积时埃北断裂已开始活动,其所造成的埃姆尼克山向北的逆冲导致北侧欧南凹陷发生沉降.

柴东盆地北部第四系厚度通常小于600 m,披覆在第三纪地层之上,而南部霍布逊凹陷第四系沉积厚度可达1500 m (图 4).这种现象指示第四纪沉降-沉积中心明显向南迁移.仔细分析新生代地层与断裂之间的时空关系,可以确定柴东盆地北部在第四纪发生了强烈变形.欧龙布鲁克山和埃姆尼克山凸起进一步抬升,并且由西向东不断扩展.德令哈凹陷内部第三系地层发生断裂和褶皱,形成了与断裂作用相关的怀头他拉背斜(图 5).欧南凹陷第四系地层明显向南下超(图 5),指示欧龙布鲁克山凸起已成为第四系的重要物源区.被抬升的上油砂山组和下油砂山组遭受剥蚀,沉积物向南搬运到欧南凹陷,形成下超地震反射结构.第四系明显向南扩展,超覆沉积在柴东盆地南缘下油砂山组和更古老地层之上(图 47).

4 盆地成因与构造演化

早期柴东盆地构造演化模型主要建立在对盆地周缘构造带或周缘出露地层的分析基础之上,没有充分考虑盆地内部实际资料.孟庆泉(2008)杨用彪(2009)认为柴东盆地属于受祁连山和东昆仑山构造抬升控制的再生前陆盆地,即柴东盆地的沉降和沉积过程是两侧造山带向盆地内部逆冲推覆的结果.按此模型推测,柴东盆地新生代的沉降-沉积中心应位于盆地的边缘或造山带的前缘带.陈宣华等(2011)提出柴东盆地属于背驮式盆地,其形成与东昆仑构造带向南逆冲过程有关.按此模型推测,随着东昆仑构造带持续向南推覆,位于其上盘的柴东盆地南部将被不断抬升和遭受剥蚀.然而,无论是前陆盆地模型还是背驮式盆地模型都与柴东盆地新生代构造格架和沉积地层时空发育的事实不符.首先,柴东盆地的南、北两侧并不存在大规模向盆地内部逆冲的断裂体系,新生代沉降-沉积中心并不位于盆地的南、北边缘(图 4).前陆盆地模型显然不能解释柴东盆地新生代实际的沉降和沉积过程.另外,柴东盆地南部在新生代一直处于沉降状态,第四纪更是作为盆地的沉积中心.然而,背驮式盆地模型则预测柴东盆地南部沉积环境应不断变浅或被不断抬升剥蚀.显然,背驮式盆地模型也无法解释柴东盆地新生代构造-沉积演化过程.

Meng和Fang (2008)提出新生代柴达木盆地是一个地壳规模的向斜盆地.该模型不仅很好揭示了柴西盆地的构造-沉积演化过程,而且可以用来解释柴东盆地的形成和发展.图 8是我们建立的柴东盆地构造演化模型.中新世早期(下油砂山组沉积期)柴东盆地开始形成,现为一个简单的向斜(图 8a).下油砂山组向南、北两侧超覆,沉积中心位于盆地的中部.向斜盆地的形成与区域性水平挤压有关.随着挤压作用进一步加强,盆地北缘在中新世晚期(上油砂山组沉积期)发生变形.欧北断裂向北逆冲导致欧龙布鲁克山凸起开始形成以及德令哈凹陷发生沉降(图 8b).柴东盆地南部继续沉降,并且沉积作用不断向南扩展.埃北断裂在上新世时期(狮子沟组沉积期)开始活动(图 8c).埃北和欧北断裂向北逆冲推覆作用造成德令哈凹陷强烈沉降,形成了巨厚的狮子沟组.柴东盆地北部在第四纪构造变形明显加强,特别是埃南断裂的活动造成埃姆尼克山凸起的最终形成.另外,在欧南和欧北反向逆冲断层的共同控制下,欧龙布鲁克山凸起也进一步抬升(图 8d).相对于柴东盆地北部的整体隆升,南部霍布逊凹陷在第四纪发生强烈沉降,其沉降机制可能与埃姆尼克山凸起向南逆冲导致其南侧发生挠曲沉降有关.

图 8 柴东盆地新生代构造演化模型 Fig. 8 Model for Cenozoic tectonic evolution of the eastern Qaidam basin

柴东盆地演化与青藏高原东北缘边界扩展过程密切相关.尹安等(2007)认为柴达木盆地复向斜的褶皱作用开始于23 Ma (下油砂山组沉积时期),并且复向斜一直向东扩展.通过锆石和磷灰石裂变径迹定年和热史模拟,对柴东盆地北侧祁连山和南侧东昆仑山构造带的抬升历史进行了限定.分析结果揭示祁连山在新生代经历了二次抬升:第一次快速抬升发生在24~20 Ma (George et al., 2001; Jolivet et al., 2001; Bovet et al., 2009; Pan et al., 2013),第二次隆升是在10~8 Ma (张培震等,2006).东昆仑山也经历了多期抬升:第一期开始于30 Ma (Mock et al., 1999; Wang et al., 2004),第二期为25~12 Ma (Yuan et al., 2006; 陈宣华等, 2010, 2011; Duvall et al., 2013),而第三期是在8~5 Ma (陈宣华等,2011; Duvall et al., 2013).祁连山和东昆仑山构造带新生代隆升被认为是挤压变形的结果,因此被用来限定柴达木盆地周缘构造带的变形时间和过程(Yuan et al., 2013).始于21 Ma的柴东盆地应是柴达木盆地西部复向斜在中新世向东扩展的结果,而中新世晚期-第四纪埃姆尼克山和欧龙布鲁克山的抬升以及柴东盆地南部沉降应归因于青藏高原东北缘地壳的持续挤压作用.

5 结论

地震剖面和区域地质分析揭示了柴东盆地新生代地层向边缘不断减薄、盆地沉降和沉积中心位于中部、以及盆地边缘不存在向盆地内部逆冲的边界断层.早期提出的前陆盆地和背驮式盆地模型无法解释柴东盆地新生代地层和构造格架.该研究提出柴东盆地的形成是地壳发生大规模褶皱的结果,即柴东盆地是一个大型向斜盆地.在地壳持续挤压作用影响下,柴东盆地北部发生变形,形成了欧龙布鲁克山和埃姆尼克山凸起以及德令哈、欧北和欧南凹陷.第四纪埃南大型逆冲断裂的形成以及向南强烈的推覆作用导致柴东盆地南部霍布逊凹陷的形成.柴东盆地新生代演化与青藏高原东北缘侧向生长直接相关.

参考文献
Bovet P M, Ritts B D, Gehrels G, et al. 2009. Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4): 290-329. DOI:10.2475/00.4009.02
Chen X H, Dang Y Q, Yin A, et al. Basin-Mountain Coupling and Tectonic Evolution of Qaidam Basin and its Adjacent Orogenic Belts.Beijing: Geological Publishing House, 2010: 147-285.
Chen X H, Mcrivette M W, Li L, et al. 2011. Thermochronological evidence for multi-phase uplifting of the East Kunlun Mountains, northern Tibetan Plateau. Geological Bulletin of China, 30(11): 1647-1660.
Cheng X, Fu S T, Wang H F, et al. 2015. Geometry and kinematics of the Arlar strike-slip fault, SW Qaidam basin, China: New insights from 3-D seismic data. Journal of Asian Earth Sciences, 98: 198-208. DOI:10.1016/j.jseaes.2014.09.039
Cui Z Z, Li Q S, Wu C D, et al. 1995. The crustal and deep structures in Golmud-Ejin Qi GGT. Acta Geophysica Sinica, 38(S1): 15-18.
Dang Y Q, Zhang D W, Xu Z Y, et al. 2004. Sedimentary facies and biogenic gas pool of the Quaternary of Sanhu area in Qaidam Basin. Journal of Palaeogeography, 6(1): 110-118.
Duvall A R, Clark M K, Kirby E, et al. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32(5): 1190-1211. DOI:10.1002/tect.v32.5
Fang X M, Zhang W L, Meng Q Q, et al. 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. DOI:10.1016/j.epsl.2007.03.042
Fang X. 2009.Cenozoic structure evolution of western Qaidam Basin[Ph. D. thesis](in Chinese). Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.
George A D, Marshallsea S J, Wyrwoll K H, et al. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29(10): 939-942. DOI:10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2
Guo Z Q, Sun P, Zhang S S, et al. 2012. Study on the Quaternary tectonic evolution and its significance for exploration in the Sanhu area, Qaidam Basin. Geological Journal of China Universities, 18(2): 372-378.
Jiang M, Galvé A, Hirn A, et al. 2006. Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North-Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 412(3-4): 121-140. DOI:10.1016/j.tecto.2005.09.011
Jolivet M, Brunel M, Seward D, et al. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints. Tectonophysics, 343(1-2): 111-134. DOI:10.1016/S0040-1951(01)00196-2
Ke X, Ji J J, Zhang K X, et al. 2013. Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe formation in the Northeastern Qaidam Basin. Acta Geologica Sinica (English Edition), 87(2): 576-587. DOI:10.1111/acgs.2013.87.issue-2
Li S Z, Yang Z, Zhao S J, et al. 2016. Global early Paleozoic orogens (Ⅱ): Subduction-Accretionary-Type orogeny. Journal of Jilin Unibersity (Earth Science Edition), 46(4). DOI:10.13278/j.cnki.jjuese.201604102
Lu H J, Xiong S F. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3-4): 539-550. DOI:10.1016/j.epsl.2009.10.016
Lu H J, Wang E, Shi X H, et al. 2012. Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses. Tectonophysics, 580: 150-161. DOI:10.1016/j.tecto.2012.09.013
Lu Z W, Gao R, Li Q S, et al. 2006. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958-2004). Chinese Journal of Geophysics, 49(3): 753-770.
Meng Q Q. 2008. High resolution magnetostratigraphy in the north of Qaidam Basin and the sedimentary response to tectonic since late Cenozoic[Ph. D. thesis](in Chinese). Lanzhou: Lanzhou University.
Meng Q R, Fang X. 2008. Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau. The Geological Society of America Special Papers, 444: 1-24.
Meng Q R. 2009. Some remarks on formation of the Qaidam Basin. Chinese Journal of Geology, 44(4): 1213-1226.
Métivier F, Gaudemer Y, Tapponnier P, et al. 1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17(6): 823-842. DOI:10.1029/98TC02764
Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1): 1-47. DOI:10.1046/j.1365-246X.1998.00567.x
Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. DOI:10.1016/S0012-821X(99)00133-8
Pan B T, Li Q Y, Hu X F, et al. 2013. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north-eastern margin of the Tibetan Plateau: evidence from apatite fission-track analysis. Terra Nova, 25(6): 431-438. DOI:10.1111/ter.12052
Shi D N, Shen Y, Zhao W J, et al. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth and Planetary Science Letters, 288(1-2): 329-334. DOI:10.1016/j.epsl.2009.09.036
Teng C W. 1974. Deep reflected waves and the structure of the earth crust of the eastern Part of Chaidam Basin. Acta Geophysica Sinica, 17(2): 122-135.
Teng J S, Kan Y C, Ho C D. 1961. The basement head waves and wide-angle reflected waves in Chai-Da-Mu Basin by low-frequency seismic refraction work. Diqiu Wuli Xuebao, 10(1): 54-66.
Wang E, Burchfiel B C. 2004. Late Cenozoic right-lateral movement along the Wenquan Fault and associated deformation: implications for the kinematic history of the Qaidam Basin, Northeastern Tibetan Plateau. International Geology Review, 46(10): 861-879. DOI:10.2747/0020-6814.46.10.861
Wang Y J, Guo Z Q, Liu W H, et al. 2007. Analysis of milankovitch cycles of quaternary in Sanhu area, eastern Qaidam basin. Progress in Geophysics, 22(2): 544-551.
Wu H N, Liu C Y, Zhang X H, et al. 1997. A study of evolution of Qaidam in the view of paleomagnetic. Science in China (Series D), 27(1): 9-14.
Xia W C, Zhang N, Yuan X P, et al. 2001. Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin. AAPG Bulletin, 85(4): 715-736.
Xu Z Q, Yang J S, Li H B, et al. Orogenic Plateaux-Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau.Beijing: Geological Publishing House, 2007: 3-244.
Yang Y B. 2009.Magnetostratigraphy chronology and sedimentary-tectonic evolution of the Neogene in the Northern Qaidam Basin[Master thesis](in Chinese). Lanzhou: Lanzhou University.
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. DOI:10.1146/annurev.earth.28.1.211
Yin A, Jiang R B, Dang Y Q, et al. 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam Basin: evidence from seismic profiles. Journal of Geomechanics, 13(3): 193-211.
Yin A, Dang Y Q, Zhang M, et al. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847-876. DOI:10.1130/B26232.1
Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics, 32(5): 1358-1370. DOI:10.1002/tect.v32.5
Yuan W M, Dong J Q, Wang S C, et al. 2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27(6): 847-856. DOI:10.1016/j.jseaes.2005.09.002
Zhang P Z, Zheng D W, Yin G M, et al. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13.
Zhao J M, Tang W, Li Y S, et al. 2006. Lithospheric density and geomagnetic intensity in northeastern margin of the Tibetan plateau and tectonic implications. Earth Science Frontiers, 13(5): 391-400.
Zhao J M, Jin Z J, Mooney W D, et al. 2013. Crustal structure of the central Qaidam basin imaged by seismic wide-angle reflection/refraction profiling. Tectonophysics, 584: 174-190. DOI:10.1016/j.tecto.2012.09.005
Zhao W W, Ji H. 2011. The unconformity type and distribution in eastern Qaidam Basin. Northwestern Geology, 44(4): 97-104.
Zhu X M, An K, Han D X, et al. 2003. Relation among Quaternary environmental evolution, tectonic deformation in the Qaidam Basin and uplifting of the Qinghai-Tibet Plateau. Chinese Journal of Geology, 38(3): 367-376.
Zhu Y Z, Zhong J H, Li W S. The New Tectonic Movement and Evolution of Saline Lake in the Qaidam Basin.Beijing: Geological Publishing House, 1994: 1-136.
陈宣华, 党玉琪, 尹安, 等. 柴达木盆地及其周缘山系盆山耦合与构造演化.北京: 地质出版社, 2010: 147-285.
陈宣华, McrivetteMW, 李丽, 等. 2011. 东昆仑造山带多期隆升历史的地质热年代学证据. 地质通报, 30(11): 1647–1660.
崔作舟, 李秋生, 吴朝东, 等. 1995. 格尔木-额济纳旗地学断面的地壳结构与深部构造. 地球物理学报, 38(S1): 15–18.
党玉琪, 张道伟, 徐子远, 等. 2004. 柴达木盆地三湖地区第四系沉积相与生物气成藏. 古地理学报, 6(1): 110–118.
方向. 2009.柴达木盆地西区新生代构造演化[博士论文].北京:中国科学院地质与地球物理研究所. http://www.irgrid.ac.cn/handle/1471x/174106?mode=full&submit_simple=show+full+item+record
郭泽清, 孙平, 张绍胜, 等. 2012. 柴达木盆地三湖地区第四系构造发育历史及其勘探意义. 高校地质学报, 18(2): 372–378.
李三忠, 杨朝, 赵淑娟, 等. 2016. 全球早古生代造山带(Ⅱ):俯冲-增生型造山. 吉林大学学报(地球科学版), 46(4). DOI:10.13278/j.cnki.jjuese.201604102
卢占武, 高锐, 李秋生, 等. 2006. 中国青藏高原深部地球物理探测与地球动力学研究(1958-2004). 地球物理学报, 49(3): 753–770.
孟庆泉. 2008.柴达木盆地北缘晚新生代精细磁性地层学与沉积对构造的响应[博士论文].兰州:兰州大学. http://www.oalib.com/references/19147011
孟庆任. 2009. 柴达木盆地成因分析. 地质科学, 44(4): 1213–1226.
滕吉文. 1974. 柴达木东盆地的深层地震反射波和地壳构造. 地球物理学报, 17(2): 122–135.
王永军, 郭泽清, 刘卫红, 等. 2007. 柴达木盆地东部三湖地区四系米兰柯维奇旋回分析. 地球物理学进展, 22(2): 544–551.
吴汉宁, 刘池阳, 张小会, 等. 1997. 用古地磁资料探讨柴达木地块构造演化. 中国科学(D辑), 27(1): 9–14.
许志琴, 杨经绥, 李海兵, 等. 造山的高原-青藏高原的地体拼合、碰撞造山及隆升机制.北京: 地质出版社, 2007: 3-244.
杨用彪. 2009.柴北缘新近纪磁性地层年代与沉积构造演化[硕士论文].兰州:兰州大学. http://cdmd.cnki.com.cn/Article/CDMD-10730-2009190700.htm
尹安, 蒋荣宝, 党玉琪, 等. 2007. 柴达木盆地新生代演化及其构造重建--基于地震剖面的解释. 地质力学学报, 13(3): 193–211.
曾融生, 阚荣举, 何傳大. 1961. 柴达木盆地低頻地震探測的基岩首波和大角度反射波. 地球物理学报, 10(1): 54–66.
张培震, 郑德文, 尹功明, 等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5–13.
赵俊猛, 唐伟, 黎益仕, 等. 2006. 青藏高原东北缘岩石圈密度与磁化强度及动力学含义. 地学前缘, 13(5): 391–400.
赵卫卫, 计红. 2011. 柴达木盆地东部地区不整合类型和分布规律. 西北地质, 44(4): 97–104.
朱筱敏, 康安, 韩德馨, 等. 2003. 柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系. 地质科学, 38(3): 367–376.
朱允铸, 钟坚华, 李文生. 柴达木盆地新构造运动及盐湖发展演化.北京: 地质出版社, 1994: 1-136.