地球物理学报  2015, Vol. 58 Issue (4): 1462-1465   PDF    
答“评'紫坪铺水库造成孔隙弹性耦合变化及其对2008年汶川地震触发作用'二维模拟的局限性”
陶玮1, 沈正康2,3, 张永1    
1. 中国地震局地质研究所地震动力学国家重点实验室, 北京 100029;
2. 北京大学地球与空间科学学院地球物理学系, 北京 100871;
3. Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA
摘要:程惠红等(2015)在"评'紫坪铺水库造成孔隙弹性耦合变化及其对2008年汶川地震触发作用'二维模拟的局限性"一文中提出,陶玮等(2014)采用二维模型模拟紫坪铺水库造成孔隙弹性耦合变化是一个不足,夸大了汶川地震震源处库仑应力增长值.我们认为采用二维模型模拟水库造成汶川地震震源处库仑应力变化确实可能存在一定偏差,但不会如程惠红等认为的"与三维模型相比夸大三倍".这是因为在程惠红等引用的论证中,二维模型计算中选取了接近水库最大剖面宽度而不是水库平均剖面宽度作为加载量参数,造成计算得到震源处库仑应力明显夸大.此外,陶玮等(2014)提出论断的主要依据不是"震源处"库仑应力值的大小,而是紫坪铺水库蓄水"由浅入深影响到整条断层,尤其对浅层范围的加载作用明显,达上百千帕,为整个断层面的失稳提供了基础".初始破裂的发生既可能是由水库蓄水引起,也可能是并非水库蓄水造成的一次普通构造小震,但其发生引发断层面上部已被水库蓄水弱化部分的连锁失稳而发生大震.即汶川地震既可能为直接触发也可能为间接触发,而我们的研究结果认为地震的发生完全可能由间接触发产生.若仅纠结于"震源处"的库仑应力变化,则忽视了水库蓄水影响的主体.水库蓄水对地震触发作用是一个复杂问题,相对这一问题所涉及的一系列不确定性因素来说,二维模拟的局限性所造成的影响并不很大也不是最大的,也不妨碍我们据此得出紫坪铺水库蓄水促进汶川地震发生的结论.
关键词紫坪铺水库     二维模型     汶川地震     断层弱化     整体影响    
Reply to "The 2D limitation of ‘Triggering effect of the Zipingpu Reservoir on the 2008 Mw7.9 Wenchuan, China, Earthquake due to poroelastic coupling’"
TAO Wei1, SHEN Zheng-Kang2,3, ZHANG Yong1    
1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China;
2. Department of Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China;
3. Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA
Abstract: In the comments Cheng et al. (2015) made on our paper (Tao et al., 2014) they claim that by using a 2D instead of a 3D finite element model to simulate the impoundment effect of the Zipingpu Reservoir, we exaggerated by about 3 times the pore pressure and the Coulomb stress changes at the hypocenter of the 2008 Wenchuan Earthquake. We agree that there would be some deviations between the results of a 2D model and a 3D model simulation, but the difference would not be as large as they claimed. This is because that in the 2D simulation that Cheng et al. cited, a section profile close to the maximum width (much greater than the average width) of the Zipingpu Reservoir was chosen as the representative section profile in the computation of reservoir loading, causing exaggerated estimations of the pore pressure and Coulomb stress changes at the hypocenter in the 2D modeling. Furthermore, Tao et al. (2014) drew their conclusions based mainly on that "the impoundment of the Zipingpu Reservoir increased the Coulomb stress loading of the Longmenshan Fault on the whole", especially "increased the Coulomb stress at the shallow part of the Longmenshan Fault up to hundreds of kPa, significantly in favor of the failure of the fault". This major conclusion is not based on the calculated Coulomb stress changes at the reported hypocenters. The initial rupture of Wenchuan Earthquake could be a small event which might or might not be induced by the impoundment of the reservoir, but its rupture could trigger cascade failures at the upper part of the fault system that had been significantly weakened by the reservoir impoundment already. Therefore, the Wenchuan Earthquake could be directly or indirectly triggered by the impoundment of the Zipingpu Reservoir. If only focusing on the triggering effect at the "hypocenter", it would be easy to miss the much greater effect that the reservoir imposed on the upper part of the fault system. Reservoir triggering of earthquake is a complex problem, with many uncertainties involved in the model. Among these uncertainties, the one resulted from using a 2D simulation is neither the most significant nor the largest, and would not affect the major conclusions that we drew about triggering of the Wenchuan Earthquake by the impoundment of the Zipingpu Reservoir.
Key words: Zipingpu Reservoir     2D model     Wenchuan Earthquake     Fault weaken     Main effect    


我们利用二维有限元模型(FEM)、模拟水库蓄水造成的区域孔隙压力场和应力场的演化过程,探讨其对龙门山断裂带活动的影响.“模拟结果显示,紫坪铺水库蓄水打破了原来的区域孔隙压力平衡,形成孔隙压力梯度源,向周围地壳传播;进而造成龙门山断裂带上库仑应力(ΔCFS)正值范围不断扩大,由浅入深影响到整条断层,尤其对浅层范围的加载作用明显,达上百千帕,为整个断层面的失稳提供了基础”.从而提出,“若初始破裂位于主震断层面上,则可直接触发断层上更大范围的活动,引发汶川地震;若初始破裂不发生在主震断层面上,仅为常规区域构造小震,则此小震的发生通过改变局部应力场,也可能触发附近断层面上失稳,导致大震发生”(陶玮等,2014).

程惠红等(2015)在“评‘紫坪铺水库造成孔隙弹性耦合变化及其对2008年汶川地震触发作用’二维模拟的局限性”一文中提出,陶玮等(2014)采用二维模型模拟紫坪铺水库造成孔隙弹性耦合变化是一个不足,夸大了汶川地震震源处库仑应力增长值.关于二维模型的局限性是确实存在的,我们感谢程惠红等指出这一局限.事实上我们这一文章的研究结果只是本研究组关于紫坪铺水库问题的一个阶段性研究成果,更为完备的模型研究成果(包括考虑三维介质模型)已经在2014年美国地球物理年会上报告(Tao et al., 2014),详细内容已于2014年11月投稿到JGR期刊,新模型获得主要结论与二维模型研究结果一致.

应用二维模型可能造成系统偏差,但是偏差效应的大小我们与程惠红等的认识不一致.程惠红等(2015)引用郑亮等(2013)文章的结论:汶川地震震源处(13 km)二维模型计算结果比三维模型夸大约三倍.我们认为这一估计夸大了二者的差异.郑亮等(2013)在其三维模型中以紫坪埔水库附近地形资料为依据,期望使得水库加载模拟尽量真实.其二维模型中选取一条过水库且与龙门山断层垂直的剖面,库区范围根据实际地形给出,由此向二侧延伸获得二维模型.但紫坪埔水库是一个狭长的不规则体,其二维剖面的位置选取对于结果有较大影响.郑亮等(2013)选取了水库较宽且距离震源较远处的剖面,其二维剖面全长约123.29 km,但并未明确给出水 库加载宽度.由其文中图 4可知,其二维水库加载宽度约为10 km左右.模型中水库加载范围会直接影响孔隙压力计算值,例如,若选择扩散系数为5 m2·s-1,当水库加载宽度分别为5 km和2 km时,在地壳内13 km深度震源处相对于倾角为35°的断层,计算得到的库仑应力分别为10.1 kPa和5.9 kPa.郑亮等如果选取更能代表水库平均宽度的数值(如陶玮等(2014)选取的2 km),作为二维模型中的水库加载范围,相应计算得到的震源处库仑应力会明显减小.如此,将不会得到“二维模型计算结果比三维的夸大约三倍”的结论.

相对三维模型而言,利用二维模型计算紫坪铺水库蓄水造成汶川地震 “震源处”的孔隙压力及库仑应力存在一定偏差.但水库蓄水对地震触发作用是一个复杂问题,相对这一问题所涉及的一系列不确定性因素来说,二维模拟的局限性所造成的影响并不很大也不是最大的.其中一个主要问题是,若仅以“震源处”库仑应力变化为准则判断是否触发汶川地震,则会忽略了更重要因素,即:水库蓄水对龙门山断层整体的影响.水库蓄水由浅入深影响到龙门山断裂带,对10 km以上龙门山断层的加载量达几百千帕(雷兴林等,2008Lei, 2011陶玮等,2014; Tao et al., 2014),相当于60~450年的平均构造加载(Tao et al,2014).而紫坪铺水库附近在水库蓄水前后都是构造小震频发的地区,震源处的初始破裂可以是由水库蓄水造成,也可能是非水库蓄水造成的普通构造小震;其发生引发上部已经被严重弱化的断层的连锁反应,产生大震,即汶川大震可能为直接触发也可能为间接触发.这是我们文章的主要结论.虽然二维模型对“震源处”库仑应力的计算有一定局限性,但“震源处”库仑应力大小并不是陶玮等(2014)据以判断是否促进地震发生的充分必要论据,并不会影响主要结论的得出.
程惠红等(2015)认为:“目前各个研究组估计的库仑应力变化的范围,恰好处在是否可以触发的边缘,因此,既不能肯定地断言没有触发作用,也不能肯定地断言有触发作用,只有进一步获得更精确的地下结构物性资料才能取得深入研究的突破”.然而,水库蓄水对附近断层影响的关键是对断层整体的影响,当断层从浅到深被严重弱化处于失稳的边缘,则大震可被间接或直接触发.如果仅仅纠结于地壳十几公里深处的某点的ΔCFS,则忽视了水库影响的主体.当然,对地下结构物性的深入研究,总会对具体计算有所帮助.而目前在地下结构物性 方面的研究(如Domenico and Schwartz, 1998Ingebritsen and Mannning, 19992010Shmonov et al., 2002王惠琳等,2012刘远征等,2014),已对水库蓄水效应的计算起到了有效的限定作用.

我们很高兴有这样的机会,更深入、详细地讨论有关紫坪铺水库蓄水与汶川地震发生关系的问题.

参考文献
[1] Cheng H H,Zheng L,Zhang B, et al. 2015. The 2D limitation of "Triggering effect of the Zipingpu Reservoir on the 2008 Mw7.9 Wenchuan, China, Earthquake due to poroelastic coupling". Chinese J. Geophys. (in Chinese), 58(4):1458-1461.
[2] Domenico P A, Schwartz F W. 1998. Physical and Chemical Hydrogeology. 2nd ed. New York: John Wiley & Sons, 171.
[3] Ingebritsen S E, Manning C E. 1999. Geological implications of a permeability-depth curve for the continental crust. Geology, 27(12): 1107-1110.
[4] Ingebritsen S E, Manning C E. 2010. Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids, 10(1-2): 193-205, doi: 10.1111/j.1468-8123.2010.00278.x.
[5] Lei X L, Ma S L, Wen X Z, et al. 2008. Integrated analysis of stress and regional seismicity by surface loading—A case study of Zipingpu reservoir. Seismology and Geology (in Chinese), 30(4): 1046-1064.
[6] Lei X L. 2011. Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake. Journal of Asian Earth Sciences, 40(4): 844-854, doi: 10.1016/j.jseaes.2010.05.004.
[7] Liu Y Z, Ma J, Ma W T. 2014. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. Earth Science Frontiers, 21(1):150-160.
[8] Shmonov V M, Vitiovtova V M, Zharikov A V, et al. 2002. Fluid permeability of the continental crust: estimation from experimental data. Geochemistry International, 40(S1): S3-S13.
[9] Tao W, Masterlark T, Shen Z K, et al. 2014. Triggering effect of the Zipingpu Reservoir on the 2008 Mw7.9 Wenchuan, China, earthquake due to poroelastic coupling. Chinese J. Geophys. (in Chinese), 57(10): 3318-3331, doi: 10.6038/cjg20141019.
[10] Tao W, Shen Z K, Masterlark T, et al. 2014. The Zipingpu Reservoir triggering of the 2008 Mw7.9 Wenchuan earthquake, China, due to poroelastic coupling. AGU Fall Meeting, S51A-4405.
[11] Wang H L, Zhang X D, Zhou L Q, et al. 2012. Study on the relationship between fluid infiltration and Qs tomography of the crust in Zipingpu reservoir area. Chinese J. Geophys. (in Chinese), 55(2): 526-537, doi: 10.6038/j.issn.0001-5733.2012.02.015.
[12] Zheng L, Zhang H, Sun Y J, et al. 2013. Comparison of 2D and 3D finite element simulations in the research of reservoir induced earthquakes. Earthquake (in Chinese), 33(4): 162-171.
[13] 程惠红,郑亮,张贝等. 2015. 评"紫坪铺水库造成孔隙弹性耦合变化及其对2008年汶川地震触发作用"二维模拟的局限性. 地球物理学报,58(4):1458-1461.
[14] 雷兴林, 马胜利, 闻学泽等. 2008. 地表水体对断层应力与地震时空分布影响的综合分析——以紫坪铺水库为例. 地震地质, 30(4): 1046-1064.
[15] 刘远征, 马瑾, 马文涛. 2014. 探讨紫坪铺水库在汶川地震发生中的作用. 地学前缘, 21(1): 150-160.
[16] 陶玮, Masterlark T, 沈正康等. 2014. 紫坪铺水库造成孔隙弹性耦合变化及其对2008年汶川地震触发作用. 地球物理学报, 57(10): 3318-3331, doi: 10.6038/cjg20141019.
[17] 王惠琳, 张晓东, 周龙泉等. 2012. 紫坪铺水库区域地壳Qs成像及其与渗透关系研究. 地球物理学报, 55(2): 526-537, doi: 10.6038/j. issn.0001-5733.2012.02.015.
[18] 郑亮, 张怀, 孙玉军等. 2013. 水库触发地震研究中二维与三维有限元模拟结果比较. 地震, 33(4): 162-171.