地球物理学报  2015, Vol. 58 Issue (3): 953-970   PDF    
秦岭造山带晚三叠世糜署岭岩体的岩石磁学及磁组构可靠性约束
梁文天1, 靳春胜2, Prayath Nantasin3, 张国伟1    
1. 西北大学大陆动力学国家重点实验室, 西安 710069;
2. 中国科学院地质与地球物理研究所, 北京 100029;
3. 格拉茨大学地球科学系, 奥地利格拉茨 Graz A-8010
摘要:近年来,针对秦岭造山带晚三叠世花岗岩体侵位机制的巨大争议,一些研究采用磁组构方法分析了岩体的内部组构特征及其与区域构造的关系,提出了具有重要意义的新认识.然而,目前这些研究均缺乏对岩体磁组构本质意义的分析,利用该方法约束岩体内部组构的可靠性并不十分清晰.针对这一问题,本文以秦岭造山带内具典型代表性意义的晚三叠世糜署岭花岗岩体为例,开展了该岩体的磁组构、岩石磁学、矿物形态组构和显微构造的综合研究.结果表明,糜署岭岩体的磁化率总体较低,属钛铁矿系列花岗岩.绝大部分样品的磁化率受控于顺磁性的黑云母等铁镁硅酸盐矿物,部分高磁化率样品包含了少量多畴磁铁矿等铁磁性组分的贡献,且随磁化率增大,铁磁性组分的贡献更为明显.样品的磁组构也主要是黑云母组构或由黑云母与磁铁矿的亚组构复合而成.由于样品中磁铁矿含量较低且与黑云母密切共生,磁组构与黑云母形态组构基本一致,因此,黑云母与磁铁矿的亚组构基本共轴.糜署岭岩体的磁组构本质上等同于黑云母组构,反映了黑云母等页硅酸盐矿物在岩体中的分布,可以有效的指示岩体的内部构造特征.宏观和显微构造观察还显示,糜署岭岩体的内部组构形成于岩浆侵位的晚期阶段,叠加了同岩浆期区域构造的关键信息,是从岩体构造角度开展区域构造演化的良好载体.
关键词磁滞回线     热磁曲线     等温剩磁     形态优选方位     晚三叠世花岗岩     秦岭造山带    
Magnetic mineralogy and the reliability of AMS in the Late Triassic Mishuling pluton, Qinling orogen
LIANG Wen-Tian1, JIN Chun-Sheng2, Prayath Nantasin3, ZHANG Guo-Wei1    
1. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Department for Earth Sciences, University of Graz, Graz A-8010, Austria
Abstract: The emplacement mechanism of the Late Triassic granite plutons in the Qinling orogen remains controversial to date. Several recent studies had placed some new constraints on this problem based on the magnetic fabrics of these granite plutons. These studies have successfully elucidated the correlation between regional tectonics and granite emplacement. However, in these studies, the nature and reliability of the magnetic fabrics are not specifically studied. We thus conducted a combined magnetic fabric and rock magnetism study of the Mishuling granite pluton, one of the typical Late Triassic plutons in the Qinling orogen, to address this issue.
Several methods including magnetic fabric, rock magnetism, mineral shape preferred orientation (SPO of biotite) and microstructures were used to identify the magnetic susceptibility carrier and its AMS of the Mishuling pluton. The magnetic fabrics were measured under low applied filed at room temperature. Rock magnetism studies include the temperature-dependent susceptibility curve (χ-T curve), magnetic hysteresis loops, stepwise acquisition curve of the isothermal remanent magnetization (IRM) and stepwise back-field demagnetization curve of the saturation IRM (SIRM). Further mineral identification was conducted by the microscopic observations of thin sections and electron probe microanalysis (EPMA). SPO of biotites in the pluton were measured to determine whether differences exist between magnetic fabric and mineral fabric. Microstructural characteristics of the pluton were observed to assess when the magnetic fabrics were acquired during the magma emplacement.
Magnetic fabrics of the Mishuling pluton are well grouped. The contours of magnetic foliations in stereonets show a small circle girdle pattern, indicating that magnetic foliations within the pluton are concentric. Dip angles of the foliations are moderate to steep. Magnetic lineations form two subgroups that strike NW-SE and NE-SW respectively with low to moderate dip angle. Several sites show N-S striking lineations with shallow plunge angles. The mean magnetic susceptibility (κm) of most samples from the Mishuling pluton is lower than 500 μSI, which indicates this pluton is ilmenite-series granite. Corrected anisotropy degree (PJ) values of Mishuling pluton samples vary from 1.004 to 1.403, with an average of 1.042. Most samples have PJ values lower than 1.08, predominantly between 1.02 to 1.06, and only four sites have values above 1.10. Shape parameter T varies greatly, and all three ellipsoid types (prolate, neutral and oblate) can be observed. The oblate ellipsoids are predominant. However, no reliable correlations can be established among κm, PJ and T in the pluton. Rock magnetism studies show that both the paramagnetic and ferromagnetic minerals contribute to the magnetic susceptibility and AMS of the Mishuling pluton. Magnetic susceptibility carrier of most samples is biotite, whereas few samples of high κm have multi domain (MD) magnetite carriers. The contributions of magnetite to the magnetic susceptibility increase along with the κm value. SPO measurement of biotites shows that there is no difference of orientation between mineral (biotite) and magnetic fabrics. The magnetic fabrics are mainly biotite fabric or composite fabrics of biotite and magnetite subfabrics. Because i) the magnetites are rare in the samples, ii) magnetite occurs mainly mimetically along biotite cleavage planes, iii) the AMS result closely approximates the biotite preferred orientations, the biotite and magnetite subfabrics should therefore be coaxial. Field and microstructural observations identify two types of fabric, magmatic and submagmatic flow, within the Mishuling pluton, indicating that the internal fabrics in Mishuling pluton are acquired at the late stage of magma emplacement, and recorded the influence of regional tectonics, which can be confidently employed to discuss regional tectonic evolution.
The carrier of magnetic susceptibility and AMS of the Mishuling pluton is mainly biotite. For some samples with high κm values, contribution from the magnetite increases. The biotite and magnetite subfabrics of the Mishuling pluton are coaxial; magnetite generally occurs mimetically along the biotite cleavage planes. The magnetic fabric of the Mishuling pluton can therefore be regarded as the biotite fabric, and can be confidently used to delineate the internal fabrics of the Mishuling pluton. Moreover, microstructural characteristics show that the magnetic fabrics of the pluton were acquired during the late stage of magma emplacement.
Key words: Hysterisis loop     Thermomagnetic curve     Isothermal remanent magnetization (IRM)     Shape preferred orientation (SPO)     Late Triassic granite     Qinling orogen    
1 引言

同构造花岗岩的内部组构特征大多受区域构造场控制(Castro,1987; Huttton,1988; Petford et al., 2000),记录了岩体侵位过程中区域构造演化的关键信息.然而,由于花岗岩表面上各向同性的外貌特征,使得岩体内部组构的测量成为难点.传统的野外和室内岩石组构测量方法费时费力且误差较大,效果并不理想.近年来,利用岩石低场磁化率各向异性方法(磁组构)来约束花岗岩体的内部组构特征取得了重要进展,其基础理论和测试分析方法逐步成熟,并获得了广泛应用(Bouchez,1997; Castro et al., 1999; Borradaile and Jackson, 2010). 世界范围内不同造山带的众多花岗岩的实例研究均证实了该方法的有效性,且取得了一系列与传统观点不同的新认识,为约束花岗质岩浆侵位的区域构造背景,并以此为基础探讨造山带的构造演化提供了新的研究途径(Benn et al., 2001; Román-Berdiel et al., 2004; Talbot et al., 2004; Zák et al., 2005; Sen and Mamtani, 2006; Kratinová et al., 2007; Turrillot et al., 2011; Lin et al., 2013).

与传统的岩石组构测量方法相比,磁组构方法的采样、测量更为精确,工作效率更高,对花岗岩等各向异性很弱的岩石也具有非常高的灵敏度(Tarling and Hrouda, 1993).然而,作为一种物理组构,磁组构并不能直接等同于岩石组构.尽管针对不同类型岩石的大量研究表明,磁组构数据在主轴方向甚至量值上大致可与传统的岩组分析结果相对应(Kligfield et al., 1977,1981; Rathore,1979; Lüneburg et al., 1999; Borradaile and Alford, 1988),但由于磁组构反映的是岩石样品中所有矿物磁化率各向异性的综合特征,受载磁矿物磁晶、形态各向异性及其空间分布特征差异等不同因素的影响(Tarling and Hrouda, 1993),磁组构的真实物理意义实际上更为复杂.花岗岩样品通常由长英质矿物、铁镁硅酸盐矿物及少量副矿物组成,其磁化率主要受控于铁镁 硅酸盐矿物及副矿物中铁的化合物(Borradaile and Jackson, 2010).而这两类矿物的磁学性质、含量及其在岩体内的分布等都具有非常大的差异,尤其是花岗岩中铁的化合物(如磁铁矿、赤铁矿),尽管其含量很低,但由于这些矿物较高的磁化率或磁晶各向异性,其矿物类型、特征和分布等往往对磁组构 有非常大的影响(Tarling and Hrouda, 1993; Borradaile and Henry, 1997).因此,查明花岗岩样品中磁化率及其各向异性的来源以及磁组构的本质物理意义是运用磁组构方法开展花岗岩体内部组构研究的关键和前提.

秦岭造山带自晚三叠世碰撞造山以来发育了大量的花岗岩及花岗闪长岩类(严阵,1985; 张国伟等,2001).针对这些花岗质岩体,目前已开展了大量的年代学和地球化学工作,深入探讨了岩浆作用与秦岭造山带自晚三叠世以来造山作用的关系,但对于岩体的侵位机制和区域构造背景却出现了较大的争议,提出了俯冲、碰撞挤压和碰撞后伸展等众多成因机制(张成立等,2008; 王晓霞等,2011; 刘树文等,2011; Dong et al., 2011; Wang et al., 2013).因此,一些研究工作尝试从岩体构造角度,运用磁组构方法开展了岩体的内部组构研究,并结合区域构造特征,探索了岩体的侵位机制及晚三叠世花岗岩的侵位构造背景,取得了具有重要意义的新认识,认为这些岩体主要侵位于碰撞造山作用的晚期阶段(郭秀峰等,2009; 谢晋强等,2010; 陶威等,2014). 然而到目前为止,此类工作大多聚焦于磁组构数据对岩体侵位过程的约束上,缺乏对花岗岩磁组构的复杂性和可靠性的系统分析,磁组构数据的物理意义并不十分清晰.因此,为了进一步精确查明秦岭造山带晚三叠世花岗岩的磁化率及其各向异性本质,本文以研究程度较高的西秦岭糜署岭花岗岩体为例,开展了该岩体的岩石磁学、显微构造、磁组构和矿物形态组构的综合研究,以期约束岩体磁组构的可靠性,为合理解释岩体内部组构的构造意义奠定基础.

2 地质背景

华南和华北板块于晚三叠世的全面碰撞造山在秦岭造山带内引起了强烈的岩浆作用(张国伟等,2001).岩浆作用的产物主要为花岗岩和花岗闪长岩类,并普遍含有闪长质暗色微粒包体(张成立等,2008; Wang et al., 2011).这些花岗质岩体广泛分布于秦岭造山带的各个构造单元内,且多呈岩体群形态展布,群内不同岩体的年龄、地球化学特征和成因机制大致类似.大量的年代学研究表明,这些岩体的年龄主要集中在晚三叠世的较短时间段内(225~205 Ma)(张成立等,2008).岩石学和地球化学分析表明,岩体是基性和酸性两端元岩浆混合的产物(Qin et al., 2009; Dong et al., 2011; Wang et al., 2011).关于岩体的岩石学成因机制和过程,通常认为:秦岭造山带晚三叠世时加厚岩石圈的拆沉或者俯冲板片的断离所产生的基性岩浆上升至下地壳,使下地壳熔融,之后壳、幔源岩浆混合,并侵位于地壳中浅部层次(张成立,2008; Wang et al., 2013),形成了这些花岗岩类.近年来,从岩体构造角度开展的初步研究工作表明,秦岭造山带晚三叠世花岗岩体主要侵位于碰撞造山作用的晚期阶段,岩体的内部组构特征与这一时期的区域构造特征相一 致(郭秀峰等,2009; 谢晋强等,2010; 陶威等,2014).

糜署岭岩体位于东西秦岭的交接转换部位,出露面积约为480 km2(图 1).针对糜署岭岩体,目前已开展了大量的年代学、岩石学和地球化学工作(李永军等,2004; 李注苍等,2005; Qin et al., 2009; 李佐臣等,2013).研究表明,糜署岭岩体大致呈东西走向的泪滴形,西宽东窄,向东尖灭,长轴方向与区域构造线走向一致.岩体主体岩性为黑云母石英二长闪长岩-黑云母石英二长岩,并含有暗色微粒包体,包体成分主要为二长闪长岩.已有的年代学分析表明,暗色微粒包体和寄主岩体的年龄相同,均为晚三叠世晚期产物(Qin et al., 2009; 李佐臣等,2013).岩体为灰白色,似斑状及中粗粒花岗结构,块状构造,局部可见条纹条带构造.岩体中部为二长花岗岩,向边部逐渐过渡为二长闪长岩,主要由斜长石(35%)、钾长石(25%)、石英(15%)、黑云母(15%)及少量角闪石组成,副矿物可见磁铁矿、榍石、锆石与磷灰石等,暗色包体中角闪石含量较高.斑晶含量不均匀,约为5%~10%,主要为钾长石,长约1~2 cm.此外,糜署岭岩体的包体及斑晶在岩体边缘含量较高,岩体中心部位的含量较低.

图 1 秦岭造山带晚三叠世岩体分布(a)及糜署岭岩体采样位置(b)Fig. 1 Distribution of the Late Triassic granite plutons in Qinling orogen(a) and the sampling sites within Mishuling pluton(b)
3 样品采集与测试

此次工作共布置采样点87个,每个采样点最少钻取6个样品(最高达12个),共得589个有效样品.常温下的低场磁组构(Anisotropy of low-field Magnetic Susceptibility,AMS)测试、矿物形态优选方位(Shape Preferred Orientation,SPO)分析和矿物显微构造特征观察在西北大学大陆动力学国家 重点实验室完成.AMS测试使用Kappabridge磁化率仪(KLY-4S,精度1×10-8 SI,测试场强300 m·A-1,AGICO,捷克)完成,测试结果见表 1.SPO分析使用高分辨率照相机完成图像采集,并采用Intercept方法(Launeau et al., 2010)完成数据分析.代表性 样品的岩石磁学测试在中国科学院地质与地球物 理研究所古地磁实验室完成:热磁分析使用Kappabridge MFK1-FA系统(精度1×10-8 SI,测试频率967 Hz,AGICO,捷克)完成,样品在氩气环境下由室温加热到700 ℃并再次降至室温;磁滞回线在室温下使用振动样品磁强计(MicroMag VSM 3900)完成,外加场最高达±1.5 T,经顺磁校正后得到饱和磁感应强度(Ms)、剩磁感应强度(Mrs)和矫顽力(Hc)参数等;等温剩磁(Isothermal Remanent Magnetization,IRM)获得曲线测试中外加场最高为2.0 T,之后进行分步饱和等温剩磁(Saturation IRM,SIRM)反向场退磁曲线测试,并得到剩磁矫顽力(Hcr)参数.此外,代表性样品经显微镜透、反射光观察后进一步开展了矿物类型的识别分析工作.该工作在奥地利格拉茨大学使用电子探针(配置JEOL 6310 SEM扫描电镜)和西北大学大陆动力学国家重点实验室使用显微激光拉曼光谱仪(inVia,Renshaw,英国)完成.

4 岩石磁学和磁组构 4.1 平均磁化率

平均磁化率κm反映了样品中矿物磁化率的综合特征,与磁性矿物类型、含量、粒径和分布等密切相关.糜署岭岩体平均磁化率介于101~594 μSI之间,κm的平均值大约为271 μSI,有7个采点的κm值高于400 μSI(占样品总数的8%),但其中仅有2个采点(17和11)的κm值略高于500 μSI(表 1).κm值直方图显示,其值大致呈单峰分布,并集中在 175~325 μSI(图 2a).磁化率值分布曲线显示,样品的磁化率值可大致划分为I,II和III区段,其中介于 175~325 μSI之间(区段II)的样品约占样品总 数的70%,其κm值基本呈连续分布,变化相对较小;而其他具有较低和较高κm值的样品,其κm值变幅相对较大(图 2b).糜署岭岩体总体显示了较低的κm值特征,这与多数花岗岩低κm值的总体特征相一致(Tarling and Hrouda, 1993).为进一步查明不同类型磁性矿物对糜署岭岩体磁化率的贡献,在κm值分布曲线的三个区段中分别选择了一些特征样品开展岩石磁学工作,下文仅列出各区段代表性样品的测试结果(图 2b).

表 1 糜署岭岩体磁组构参数表Table 1 Anisotropy of magnetic susceptibility data of the Mishuling pluton

图 2 糜署岭岩体平均磁化率直方图(a)及磁化率值分布曲线(b)
图a,b中灰色区域表示磁化率优势区间,图b中空心圆及数字为代表性样品.
Fig. 2 Histogram of mean susceptibility(a)its distribution curve of the Mishuling pluton
Gray areas in Fig. 2a—2b show the dominant range of susceptibility values. Open circles with numbers in Fig. 2b are the representative samples.
4.2 磁滞回线

磁滞回线的形状及所获取的磁性参数常用来判断样品中磁性矿物的类型与大小.用于测试的单个花岗岩粉末样品质量大约为250 mg,所有测试数据均进行质量归一化(图 3).测试结果表明,在低磁化率的I段(样品25),样品磁感应强度随外场增减呈明显的线性变化(图 3a),为典型的顺磁性磁滞回线(Taxue et al., 2010).在占样品绝大部分的II段,磁化率相对较低的样品(样品46),磁滞回线依然表现为顺磁性特征(图 3b);而该段内磁化率相对较高的样品(样品62和112),虽然磁感应强度随外磁场增、减仍呈线性变化特征,但在斜线中部出现了极为轻微的弯曲(图 3c—d),显示了磁滞现象.相对较高磁化率的III段(样品17和71),磁滞回线中部则出现了较为明显的弯曲(图 3e—f),显示了铁磁性组分的存在.经顺磁性校正后,表现为较陡且紧闭的磁滞回线(图 3g—h),在外加场约为0.2 T时即达到饱和.这些特征表明了样品内铁磁性组分主要为单一的低矫顽力磁性矿物.样品磁滞参数的Day图显示(Day et al., 1977; Dunlop et al., 2002),这些磁铁矿主要为多畴(multidomain,MD型)磁铁矿(图 4).

图 3 糜署岭岩体样品磁滞回线特征
(a—f)为初始磁滞回线;(g—h)经顺磁性矫正.
Fig. 3 Hysteresis loops of representative samples of Mishuling granite pluton
(a—f)are initial hysteresis loops for the samples;(g—h)are loops with paramagnetic susceptibility subtracted.

图 4 糜署岭岩体磁滞参数的Day图
图中磁滞参数的含义见正文;SD,PSD和MD分别代表单畴、假单畴和多畴磁铁矿.
Fig. 4 Hysteresis ratios on Day plot of the Mishuling pluton
Find the details of the hysteresis ratios in text; SD,PSD and MD represent respectively the single-domain,pseudo-single-domain and multi-domain magnetites.
4.3 等温剩磁及反向场退磁曲线

为了进一步确定样品中的载磁矿物,针对代表性样品开展了等温剩磁获得曲线和反向场退磁曲线分析(图 5).IRM获得曲线表明:几乎所有样品的IRM在外加场小于100 mT时均迅速升高,并达到SIRM的约80%~90%;在100 mT之后缓慢增加,并在300 mT前基本达到饱和;之后随着外场继续增加直至2 T,IRM几乎不再继续升高.这些特征表明,样品中以低矫顽力的软磁性组分(如磁铁矿、磁赤铁矿)为主,几乎不存在硬磁性组分(如赤铁矿、针 铁矿等).所有样品的SIRM值均较低,不超过1.5×10-3 Am2·kg-1. 其中,磁滞回线显示为顺磁性的样品(样品25和46),IRM值随外加场变化出现了明显的跳跃,SIRM值也极低,不超过1.5×10-5 Am2·kg-1(图 5a—b).表明样品中铁磁性组分的含量极低.SIRM的分步反向退磁曲线表明,所有样品的剩磁矫顽力也较小,不超过40 mT.

图 5 糜署岭岩体代表性样品的IRM曲线和反向场退磁曲线Fig. 5 Isothermal remanent magnetization(IRM)acquisition curves and back-field demagnetization of SIRM for representative sample
4.4 磁化率-温度曲线

不同的磁性矿物,其磁化率随温度的升高和降低表现出不同的变化特征(磁化率-温度曲线,χ-T曲线).这一特征常被用来识别样品中磁性矿物的类型、大小及随温度升降而出现的矿物相转变. χ-T 升温曲线特征显示(图 6),样品的磁化率在约400 ℃ 之前,出现较为明显的下降,表现出顺磁性组分的磁化率变化特征.从400 ℃开始,磁化率随温度升高出现不同程度的增加,约550 ℃时达到最大,可能生成了新的强磁性矿物.从约 550 ℃开始,磁化率随温度升高迅速降低,在约 580 ℃降至最低值,显示了磁铁矿的居里温度.值得注意的是,除样品71外,其余样品的磁化率值在约 550 ℃升至最高时等于或略小于该样品在室温下的磁化率.表明新生的强磁性矿物应该较少.尤其是低磁化率的I段(样品25和46),若不考虑400~580 ℃之间的磁化率升降,样品磁化率随温度升高呈线性的单调下降.所有样品的降温曲线在约580 ℃均开始出现明显的磁化率升高,且磁化率值均高于该点处升温曲线的值.所有样品的降温曲线均不与升温曲线重合.其中,磁化率较低的样品(如25,46和62),当温度低于580 ℃以后,其磁化率随温度降低大致呈线性升高.

图 6 糜署岭岩体代表性样品的热磁曲线特征(黑色为升温曲线,灰色为降温曲线)Fig. 6 Temperature dependence of magnetic susceptibility(Dark lines show heating,whereas grey lines show cooling)
4.5 磁组构特征

糜署岭岩体的磁组构显示出较为明显的规律性(表 1图 7).磁面理极点等密度图总体呈围绕基圆 圆心展布的一个小圆环带,表明糜署岭岩体的磁面理倾角总体中等至偏高,且在岩体内呈同心圆状分布.磁线理可分为两个亚组,分别呈NW-SE和NE-SW走向,倾角中等或较高.一些采样点表现出走向南北的磁线理,但倾伏角普遍较低.

图 7 糜署岭岩体磁面(a)、线理(b)的极点等密度图Fig. 7 Density diagrams of magnetic foliation(a) and lineation(b)
5 显微分析与矿物组构 5.1 显微构造

岩石薄片的显微构造观察表明,糜署岭岩体的主要造岩矿物表现出无晶内变形(类型I)和有晶内变形(类型II)两类显著不同的构造特征.

类型I:主要的造岩矿物如石英、长石和云母等均未表现出明显的变形特征.石英颗粒呈它型或者等粒集合体形态,无任何晶内变形(图 8a),石英集合体也非重结晶颗粒.大的云母颗粒多为半自形.长石以斑晶或者基质的形式存在,种类繁多,但均成良好的自形、半自形存在,一些切面上可以看到斜长石清晰的环带结构(图 8b),未见布丁和斑块状消光、机械双晶等晶内变形标志.

图 8 糜署岭岩体显微构造及不透明矿物特征
缩写符号Qtz,Bt,Pl,Mg,Ilm分别代表石英,黑云母,斜长石,磁铁矿,钛铁矿.
Fig. 8 Microstructural and opaque mineral characteristics of the Mishuling pluton
Qtz,Bt,Pl,Mg and Ilm represents Quartz,Biotite,Plagioclase,Magnetite and Ilmenite,respectively.

类型II:一些主要的造岩矿物如石英和云母等出现较为明显的晶内变形特征.部分石英颗粒出现较为明显的波状消光,毫米级石英颗粒甚至出现棋盘格式消光(图 8c),但并未见明显的动态重结晶的石英集合体.此外,一些云母明显沿(001)面扭折(图 8d),但扭折程度有限,且扭折带较宽,显示了高温变形的特征.但长石未见明显的晶内变形,仍具有较好的自形或者半自形特征.

5.2 不透明矿物

岩石薄片观察表明,糜署岭岩体样品中含有少量的不透明矿物(<1%).进一步的反射光、电子探针和拉曼光谱分析表明(图 8,9),这些不透明矿物主要为磁铁矿,偶见黄铁矿与磁铁矿颗粒共生(图 8a).此外,也可见少量的钛铁矿及零星的黄铜矿.反 射光下,磁铁矿主要为灰色;钛铁矿主要为灰黑色;黄铁矿为浅黄色,但极为少见.样品中的磁铁矿颗粒边界清晰,截面多呈长方形(图 8g—i),表现出一定的形态各向异性,长介于282~609 μm(平均值约为466 μm),宽介于56~105 μm(平均值约为75 μm),平均轴比约为2.4.此外,少量的钛铁矿颗粒主要为不规则的它形形态(图 8e—f),表现出较为明显的形 态各向异性,长介于80~204 μm(平均值约为155 μm),宽介于52~96 μm(平均值约为67 μm),平均轴比约为6.3.

图 9 糜署岭岩体不透明矿物的电子探针和拉曼光谱分析
Mg,Pyr和Hm分别代表磁铁矿,黄铁矿和钛铁矿.
Fig. 9 Electron microprobe and Raman spectrum analyses of opaque minerals of the Mishuling pluton
Mg,Pyr and Hm are Magnetite,Pyrite and Hmenite respectively

磁铁矿在样品中的分布并不均匀,每个普通薄片中通常仅可观察到数个或十余个矿物颗粒.一些低磁化率样品中,如25和46,几乎未见到磁铁矿的存在.但几乎所有已观察到的磁铁矿颗粒均与样品中的云母类矿物(也包括少量角闪石)密切相关.不规则它形形态的钛铁矿和相对自形形态的磁铁矿颗粒均沿黑云母的解理面分布,且其长轴方向往往与其所在的黑云母的长轴方向(解理面延伸方向)表现出极好的一致性(图 8e—i).在一些情况下,磁铁矿颗粒的长轴方向与视域中几乎所有的黑云母的优势延伸方向近于一致(图 8h).

5.3 矿物形态组构

矿物形态优选方位(SPO)分析是最为重要的岩石应变分析手段之一,可以直观的揭示出岩石的内部组构特征.对花岗岩等表面上各向同性的岩石,该方法也能较好的分析出不同类别矿物的形态组构,尤其是其中的长石、云母等具有形态各向异性的矿 物.在花岗岩体中,形态优选方位往往在较大范围内具有较好的一致性,可以用来约束岩体的内部组构特征(Bouchez,1997).由于磁组构实际上反映的是岩石中所有矿物磁化率各向异性的综合特征,其物理意义并不十分清晰,且存在“反组构”、铁磁性组分 相互影响及其分布各向异性等不确定性因素(Tarling and Hrouda, 1993; Grégoire et al,1995),因此,开展矿物组构与磁组构的对比分析有助于约束花岗岩磁组构的本质物理意义.

黑云母是开展花岗岩样品形态优选方位分析过程中最容易单独提取出的矿物,且前述显微观察表明,糜署岭岩体样品的黑云母与磁铁矿等铁磁性组 分密切共生,因此,本文采用Intercept方法(Launeau et al., 2010)分析了岩体中不同磁化率样品的形态优选方位,并与常温下的磁组构结果进行对比.以样品46为例,首先计算出三个互相垂直的二维平面的最优拟合椭圆,之后计算三维椭球的主轴方位及大小(图 10).结果表明,不同磁化率样品的黑云母组构与磁组构的主轴方位基本一致,一些样品(如25-5,112-3和17-6)的SPO和AMS稍有差异,但其误差均较小(图 10).

图 10 糜署岭岩体样品的黑云母形态组构特征
XY、XZ和YZ为三个互相垂直的切面;赤平投影中方格、圆和三角形分别代表SPO和AMS椭球的最大、中间和最小轴.
Fig. 10 Shape Preferred Orientations(SPO)of biotites in the Mishuling pluton
XY、XZ and YZ are orthogonal sections for SPO analysis; Square,circle and triangle in the stereonet diagrams represent the maximum,medium and minimum axes of SPO and magnetic ellipsoids respectively.
6 讨论及结论 6.1 岩体的磁化率特征及载磁矿物

花岗岩类具有较大的磁化率变化范围(Tarling and Hrouda, 1993),最大差距可达几个数量级.这种变化主要由岩体中载磁矿物的类型、含量和粒径等的差异引起的.糜署岭岩体的平均磁化率(κm)值约为271 μSI,磁化率相对较低.岩相学观察表明,该岩体主要造岩矿物包括长石、石英等长英质矿物和黑云母、少量角闪石等铁镁硅酸盐矿物,并含有磁铁矿、锆石等极少量的副矿物.长石、石英等长英质矿 物占造岩矿物的绝大部分(>75%),但这些矿物均 为抗磁性矿物,且野外和显微观察均未见到这些矿物中有明显的铁镁矿物包体存在,因此,其对样品磁化率的贡献基本可以忽略.磁化率值较高的顺磁性矿物黑云母及少量角闪石等铁镁矿物是糜署岭岩体的主要载磁矿物,但因含量较低而导致岩体磁化率总体偏低.

按照花岗岩磁化率及铁磁性矿物(特别是磁铁矿)的丰度高低,可将花岗岩分为磁铁矿型和钛铁矿型两个系列(Kanaya and Ishihara, 1973; Ishihara,1979).二者大致以平均磁化率3000 μSI为界,高于此值者为磁铁矿系列,低于此值者为钛铁矿系列(Ishihara,1981).其中,钛铁矿系列花岗岩主要包含钛铁矿、黄铁矿和磁铁矿等不透明矿物.糜署岭花岗岩体的平均磁化率最大值仅为594μSI,样品中含有少量钛铁矿、磁铁矿和黄铁矿、黄铜矿等不透明矿物,应属钛铁矿系列花岗岩.这一系列的花岗岩的磁化率及其各向异性一般能较好的记录岩体的内部组构特征(Antolín et al., 2009; Oliva-Urcia et al., 2012).

一般情况下,κm值低于500 μSI的样品,其磁化率主要来自于顺磁性矿物组分的贡献(Tarling and Hrouda, 1993).依据这一总体规律,糜署岭岩体样品的磁化率应主要来自黑云母(包括少量角闪石)等铁镁硅酸盐矿物的贡献.岩石磁学和显微观察证实了这一结论,并且进一步揭示了不同磁化率值样品的载磁矿物特征及其差异.糜署岭岩体中低κm值的样品,如样品25和46等,其磁滞回线表现 出明显的顺磁性特征.尽管这些样品的 -T曲线显示出磁铁矿的存在,但这些磁铁矿极有可能是由样品中少量的黄铁矿在加热过程中与其表面吸附氧反应而生成的(李海燕等,2005).因此,低κm值样品中由结晶作用形成的原生磁铁矿的含量几乎可以忽略,样品IRM获得曲线的不稳定性可能也与此有关.岩石磁学特征和薄片显微观察结果表明,糜署岭岩体中高κm值的样品(如17和71等),其磁化率明显包含了来自磁铁矿的贡献.而占样品绝大多数的II段(图 2)中磁化率稍高的样品(如62和112),其磁化率也显示了少量磁铁矿的存在.

综合上述,糜署岭岩体样品的磁化率主要来自黑云母(包括少量角闪石)等铁镁硅酸盐矿物的贡献,但随着κm值的升高,样品中铁磁性组分磁铁矿对样品磁化率的贡献更为明显.需要指出的是,尽管多数样品中含有磁铁矿,但依据磁滞参数计算出的样品顺、铁磁性组分对样品磁化率相对贡献的百分比(Borradaile and Werner, 1994)显示,在高κm值样品,如样品17和71中,顺磁性组分的贡献依然高达约52%和80%.这也与显微观察结果相一致,即作为副矿物存在的磁铁矿在样品中的含量较低.因此,糜署岭岩体绝大多数样品的磁化率受顺磁性的黑云母等铁镁硅酸盐矿物的控制.

6.2 岩体磁化率各向异性的本质

通常情况下,花岗质岩浆中的含铁矿物在岩浆冷却过程中相对较早结晶.因此,在岩浆侵位的晚期阶段,这些矿物在富硅熔浆体系中旋转定向,形成统计意义上的微弱优选方位,构成花岗岩的基本岩石组构(Bouchez,1997; Marsh,2007).糜署岭花岗岩体内主要的含铁矿物为黑云母及少量的角闪石.除少量的节理及脆性断层外,岩体基本没有受到明显的后期透入性构造改造(如形成花岗片麻岩等),因此,岩体的岩石组构应主要起源于黑云母(少量角闪石)及一些较早结晶的长石等主要造岩矿物的优选定向.但这种岩石组构较为微弱,除极个别露头可见较为明显的云母及钾长石斑晶的优选定向外,多数采样点没有明显可见的宏观线面理.

岩石磁学和岩相学观察表明,糜署岭岩体多数样品的磁化率载体为黑云母(少量角闪石),而少部分高磁化率样品则明显包含了磁铁矿的贡献.因此,其磁组构也应主要由这两类矿物的亚组构组成.黑云母的平均磁化率较高,具有磁晶各向异性,其磁化率各向异性(AMS)与矿物的晶格对称性直接相关(Nye,1985),也与单个矿物晶体的形态各向异性(SPO)大致对应(Tarling and Hrouda, 1993).磁化率最小轴(κmin)近平行于黑云母结晶轴的c轴,也即磁面理大致平行于晶体底面([001]面);而磁化率最大轴(κmax)与结晶轴的a或b轴基本重合,沿这两轴的矿物生长或定向排列构成磁线理(Borradaile and Jacson, 2004).此外,对角闪石来说,κmax往往平行于其矿物晶体的长边,构成角闪石线理(Pearce and Fueten, 1989).多畴磁铁矿的磁化率各向异性多由矿物的形态和分布各向异性控制(Hargraves et al., 1991; Archanjo et al., 1995).显微观察表明,磁化率较高的样品中的磁铁矿颗粒具有较为明显的形态各向异性,但其长轴方向大致平行于黑云母颗粒的长边且主要沿黑云母解理面分布.因此,磁铁矿亚组构与黑云母亚组构应基本共轴.岩体低场磁组构和黑云母形态组构(SPO)的一致性也说明磁铁矿的存在并未引起样品磁组构的异常.此外,由于样品中的磁铁矿含量较低,磁铁矿间距远大于矿物颗粒的大小,因此,也不存在磁铁矿颗粒间的相互作用引起的磁组构异常(Grégoire et al, 19951998).综合上述,糜署岭岩体的磁组构数据本质上为岩体的黑云母组构,反映了黑云母等页硅酸盐类矿物在岩体内部的分布特征.而黑云母作为糜署岭岩体的主要造岩矿物之一,其矿物组构可以有效的指示岩体的原生或次生构造特征,这已为众多花岗岩的磁组构研究结果所证实(Talbot et al., 2004; Román-Berdiel et al., 2004; Turrillot et al., 2011).

此外,磁组构其他标量参数(PJT等)也可以用来约束岩体的内部组构特征(图 11).其中,PJ是校正磁化率各向异性度,是对样品各向异性大小的度量,多数情况下对应岩石的应变强度(Borradaile,1998).糜署岭岩体的PJ值介于1.004和1.403 之间(表 1),平均值约为1.042,绝大多数样品的值小于1.08,只有少数几个样品的值较高.这与顺磁性花岗岩较弱的磁化率各向异性特征基本一致(Tarling and Hrouda, 1993).T值是样品的磁化率椭球形态参数,往往作为岩石应变体制的指示标志(Rathore,1979; Jelinek,1981).T=0为平面应变状态,0<T<1为压扁应变状态,而-1<T<0为拉伸应变状态.由于磁铁矿单矿物的T值往往较小(-0.30),而黑云母单矿物的T值(0.95)显示为压扁应变状态,因此,糜署岭岩体绝大部分样品表现出明显的压扁椭球更多的反映了黑云母所构成的岩体矿物组构的特征,这也与上述岩石磁学和岩相学结果一致.此外,κm-PJ-T图解显示三者之间并没有明 显的协变关系,因此,岩性差异对岩体组构参数的影响较小.

图 11 κm-PJκm-TPJ-T图解Fig. 11 κm-PJκm-T and PJ-T diagram
6.3 岩体组构的形成机制与意义

近年来,对花岗岩体内部构造特征,尤其是岩体内部组构的形成机制与岩浆冷却、结晶演化过程的相互关系的研究取得了显著进展,大致划分出了岩浆流动组构、固态流动组构两个端元组分及介于二者之间的次岩浆流动组构三个组构类型(Vernon,2000),并逐步建立和完善了不同组构所对应的显微 构造识别标志(Paterson et al., 19891998; Vernon,2000; Smith et al., 2002).其中,岩浆和次岩浆流动组构是在熔体存在的情况下,由已结晶的矿物沿优势方向排列而形成的(Hutton,1988; Vernon,2000).岩浆流动组构是在熔体较多的情况下由岩浆流动作用形成,造岩矿物基本无晶内变形;而次岩浆组构是在熔体较少的情况下形成的,往往受同岩浆期区域构造应力的影响,主要造岩矿物常表现出明显的晶内变形特征(Vernon,2000).糜署岭花岗岩体的显微构造特征显然属于岩浆(类型I)和次岩浆(类型II)流动组构.其中,具有棋盘格式消光的石英和较宽扭折带黑云母的出现表明,次岩浆组构是在较高温度下形成的(大于450~600 ℃)且叠加了区域构造的影响.此外,岩浆、次岩浆组构一般形成于岩浆侵位的晚期阶段,在岩体完全冷却结晶之前(Crudent et al., 1995; Paterson et al., 1998).因此,糜署岭岩体的内部组构特征可以用来约束岩体的侵位机制,尤其是岩浆侵位与同岩浆期区域构造的关系.

综合上述分析表明,西秦岭晚三叠世糜署岭岩体绝大部分样品的磁化率及其各向异性受控于岩体中的铁镁硅酸盐矿物(主要是黑云母),少部分高磁化率样品包含了少量磁铁矿的贡献.糜署岭岩体的磁组构本质上反映了岩体中黑云母的矿物组构特征.岩体中存在少量的多畴磁铁矿,但其与黑云母密切共生,二者的亚组构大致共轴.因此,岩体的磁组构真实可靠的反映了其内部组构特征.糜署岭岩体的宏观和显微构造特征表明,其内部组构形成于岩浆侵位的晚期阶段,叠加了同岩浆期区域构造的关键信息,是依托岩体构造开展区域构造演化的良好载体.

秦岭造山带内的其他晚三叠世花岗岩体在成分上与糜署岭岩体基本一致,野外观察表明这些岩体没有受到明显的岩浆期后透入性构造改造(张成立等,2008),且已经开展的一些初步的岩体磁组构研究也表明(郭秀峰等,2009; 谢晋强等,2010; 陶威等,2014),多数样品的平均磁化率偏低.因此,这些样品的磁组构分析结果应能真实的反映岩体内部组构特征,记录了碰撞造山构造对岩浆侵位的影响.但对一些高磁化率样品,仍需开展进一步的岩石磁学与矿物组构分析工作,以确认其组构可靠性.结合岩体的三维形态、内部组构特征及其与区域构造关系的解析,将为解决秦岭造山带晚三叠世花岗岩侵位构造背景提供最直接的构造地质学证据,也是探索造山带内花岗质岩浆作用过程的一个重要研究方向.

致谢 感谢研究生李阳、陶威和姚娇等在样品采集和测试分析过程中给与的大力帮助.

参考文献
[1] Antolín-Tomás B, Román-Berdiel T, Casas-Sains A, et al. 2009. Structural and magnetic fabric study of the Marimanha granite (Axial Zone of the Pyrenees). International Journal of Earth Sciences, 98(2): 427-441.
[2] Archanjo C J, Launeau P, Bouchez J L. 1995. Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Braizl). Physics of the Earth and Planetary Interiors, 89(1-2): 63-75.
[3] Benn K, Paterson S R, Lund S P, et al. 2001. Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: Example of the Cretaceous Mt. Stuart Batholith. Physics and Chemistry of the Earth, 26(4-5): 343-354.
[4] Borradaile G J, Alford C. 1998. Experimental shear zones and magnetic fabrics. Journal of Structure Geology, 10(8): 895-904.
[5] Borradaile G J, Jackson M. 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. // Martín-Hernádez F ed. Magnetic fabric methods and applications. Geological Society, Special Publications, 238: 299-360.
[6] Borradaile G J, Jackson M. 2010. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Journal of Structure Geology, 32(10): 1519-1551.
[7] Borradaile G J, Werner T. 1994. Magnetic anisotropy of some phyllosilicates. Tectonophysics, 235(3): 223-248.
[8] Borradiale G J, Henry B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Review, 42(1-2): 49-93.
[9] Bouchez J L, Hutton D H W, Stephens W E. 1997. Granite: From segregation of melt to emplacement fabrics. Dordrecht: Kluwer Academic Publishers, 1-358.
[10] Castro A. 1987. On granitoid emplacement and related structures. A review. Geologische Rundschau, 76(1): 101-124.
[11] Castro A, Fernández C, Vigneresse J L. 1999. Understanding granites: Integrating new and classical techniques. Geological Society, London, Special Publications, 168: 1-278.
[12] Cruden A R, Koyi H, Schmeling H. 1995. Diapiric basal entrainment of mafic into felsic magma. Earth and Planetary Science Letters, 131(3-4): 321-340.
[13] Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys. Earth Planet. Inter., 13(4): 260-266.
[14] Dong Y P, Liu X M, Chen Q, et al. 2011. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 47: 123-142.
[15] Dunlop D J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107(B3): EPM 4-1-EPM 4-22, doi: 10.1029/2001JB000486.
[16] Grégoire V, de Saint Blanquat M, Nédélec A, et al. 1995. Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophysical Research Letters, 22(20): 2765-2768.
[17] Grégoire V, Darrozes J, Gaillot P, et al. 1998. Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study. Journal of Structural Geology, 20(7): 937-944.
[18] Guo X F, Zhang G W, Liang W T. 2009. Magnetic fabrics and tectonic implications of Jinchiyuan and Zhangjiaba plutons in southern Qinling mountains. Geological Review (in Chinese), 55(3): 435-443.
[19] Hargraves R B, Johnson D, Chan C Y. 1991. Distribution anisotropy: the cause of AMS in igneous rocks? Geophysical Research Letters, 18(12): 2193-2196.
[20] Hutton D H W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79(2-3): 245-255.
[21] Ishihara S. 1979. Lateral variation of magnetic susceptibility of the Japanese granitoids. The Journal of the Geological Society of Japan, 85(8): 509-523.
[22] Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75th anniversary volume: 458-484.
[23] Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79(3-4): T63-T67.
[24] Kanaya H, Ishihara S. 1973. Regional variation of magnetic susceptibility of the granitic rocks in Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 68(7): 219-224.
[25] Kligfield R, Lowrie W, Dalziel I. 1977. Magnetic susceptibility anisotropy as a strain indicator in the Sudbury Basin, Ontario. Tectonophysics, 40(3-4): 287-308.
[26] Kratinová Z, Schulmann K, Edel J B, et al. 2007. Model of successive granite sheet emplacement in transtensional setting: Integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics, 26(6), doi: 10.1029/2006TC002035.
[27] Lüneburg C M, Lampert S A, Lebit H D, et al. 1999. Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307(1-2): 51-74.
[28] Launeau P, Archanjo C J, Picard D, et al. 2010. Two- and three-dimensional shape fabric analysis by the intercept method in grey levels. Tectonophysics, 492(1-4): 230-239.
[29] Li H Y, Zhang S H. 2005. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Chinese Journal of Geophysics (in Chinese), 48(6): 1384-1391.
[30] Li Y J, Xie Q S, Luan X D, et al. 2004. The origins and tectonic significance of the Mishuling magma zone in West Qinling. Xinjiang Geology (in Chinese), 22(4): 374-377.
[31] Li Z C, Li Y J, Zeng J J, et al. 2005. Geochemical features of Mishuling hybrid magma granite and its tectonic significance in Western Qinling. Journal of Earth Sciences and Environment (in Chinese), 27(2): 12-16.
[32] Li Z C, Pei X Z, Li R B, et al. 2013. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance. Acta Petrologica Sinica (in Chinese), 29(8): 2617-2634.
[33] Lin W, Charles N, Chen Y, et al. 2013. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and their bearing on the Yinshan-Yanshan orogenic belt: Part II: Anisotropy of magnetic susceptibility and gravity modeling. Gondwana Research, 23(1): 78-94.
[34] Liu S W, Yang P T, Li Q G, et al. 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China. Journal of Jilin University (Earth Science Edition) (in Chinese), 41(6): 1928-1943.
[35] Marsh B D. 2007. Magmatism, magma, and magma chambers. //Watts A B ed. Treatise on Geophysics. Amsterdam: Elsevier, 6: 276-332.
[36] Nye J F. 1985. Physical Properties of Crystals. New York: Oxford University Press, 1-329.
[37] Oliva-Urcia B, Casaa A M, Ramón M J, et al. 2012. On the reliability of AMS in ilmenite-type granites: an insight from the Marimanha pluton, central Pyrenees. Geophysical Research Letters, 189(1): 187-203.
[38] Paterson S R, Vernon R H, Tobisch O T. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology, 11(3): 349-363.
[39] Paterson S R, Fowler T K Jr, Schmidt K L, et al. 1998. Interpreting magmatic fabric patterns in plutons. Lithos, 44(1-2): 53-82.
[40] Pearce G W, Fueten F. 1989. An intensive study of magnetic susceptibility anisotropy of amphibolite layers of the Thompson belt, North Manitoba. Tectonophysics, 162(3-4): 315-329.
[41] Petford N, Cruden A R, McCaffrey K J W, et al. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813): 669-673.
[42] Qin J F, Lai S C, Grapes R, et al. 2009. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos, 112(3-4): 259-276.
[43] Rathore J S. 1979. Magnetic susceptibility anisotropy in the Cambrian slate belt of North Wales and correlation with strain. Tectonophysics, 53(1-2): 83-97.
[44] Román-Berdiel T, Casas A M, Oliva-Urcia B, et al. 2004. The main Variscan deformation event in the Pyrenees: new data from the structural study of the Bielsa granite. Journal of Structural Geology, 26(4): 659-677.
[45] Sen K, Mamtani M A. 2006. Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Journal of Structural Geology, 28(10): 1870-1882.
[46] Smith J V. 2002. Structural analysis of flow-related textures in lavas. Earth-Science Review, 57(3-4): 279-297.
[47] Talbot J Y, Martelet G, Courrious G, et al. 2004. Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, Structural and gravity studies. Journal of Structural Geology, 26(1): 11-28.
[48] Tao W, Liang W T, Zhang G W. 2014. Magnetic fabric features and its significance of the Late Triassic Yanzhiba pluton, South Qinling. Journal of Jilin University: Earth Science Edition (in Chinese), 44(5): 1575-1586.
[49] Tarling D H, Hrouda F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 1-217.
[50] Tauxe L. 2010. Essentials of Paleomagnetism. Berkeley: University of California Press, 1-512.
[51] Turrillot P, Faure M, Martelet G, et al. 2011. Pluton-dyke relationships in a Variscan granitic complex from AMS and gravity modelling. Inception of the extensional tectonics in the South Armorican Domain (France). Journal of Structural Geology, 33(11): 1681-1698.
[52] Vernon R H. 2000. Review of microstructural evidence of magmatic and solid-state flow. Visual Geosciences, 5(2): 1-23
[53] Wang X X, Wang T, Castro A, et al. 2011. Triassic granitoids of the Qinling orogen, central China: Genetic relationship of enclaves and rapakivi-textured rocks. Lithos, 126(3-4): 369-387.
[54] Wang X X, Wang T, Qi Q J, et al. 2011. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China. Acta Petrologica Sinica (in Chinese), 27(6): 1573-1593.
[55] Wang X X, Wang T, Zhang C L. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151.
[56] Xie J Q, Zhang G W, Lu R K, et al. 2010. Magnetic fabric studies of Wenquan granite pluton in Western Qinling mountains and implications for emplacement mechanism. Chinese J. Geophys. (in Chinese), 53(5): 1187-1195, doi: 10.3969/j.issn.0001-5733.2010.05.021.
[57] Yan Z. 1985. Granitoids in Qinling (in Chinese). Xi'an: Xi'an Jiaotong University Press: 53-173.
[58] Źák J, Schulmann K, Hrouda F. 2005. Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. Journal of Structural Geology, 27(5): 805-822.
[59] Zhang C L, Wang T, Wang X X. 2008. Origin and tectonic setting of the early Mesozoic granitoids in Qinling Orogenic Belt. Geological Journal of China Universities (in Chinese), 14(3): 304-316.
[60] Zhang G W, Zhang B R, Yuan X C. 2001. Qinling Orogenic Belt and Continental Dynamcis (in Chinese). Beijing: Science Press: 3-69.
[61] 郭秀峰, 张国伟, 梁文天. 2009. 南秦岭金池院与张家坝岩体磁组构特征和构造意义. 地质论评, 55(3): 435-443.
[62] 李海燕, 张世红. 2005. 黄铁矿加热过程中的矿相变化研究-基于磁化率随温度变化特征分析. 地球物理学报, 48(6): 1384-1391.
[63] 李永军, 谢其山, 栾新东等. 2004. 西秦岭糜署岭岩浆带成因及构造意义. 新疆地质, 22(4): 374-377.
[64] 李注苍, 李永军, 曾俊杰等. 2005. 西秦岭糜署岭岩浆混合花岗岩地球化学特征及构造意义. 地球科学与环境学报, 27(2): 12-16.
[65] 李佐臣, 裴先治, 李瑞保等. 2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义. 岩石学报, 29(8): 2617-2634.
[66] 刘树文, 杨鹏涛, 刘秋根等. 2011. 秦岭中段印支期花岗质岩浆作用与造山过程. 吉林大学学报, 41(6): 1928-1943.
[67] 陶威, 梁文天, 张国伟. 2014. 南秦岭晚三叠世胭脂坝岩体的磁组构特征及意义. 吉林大学学报(地球科学版), 44(5): 1575-1586.
[68] 王晓霞, 王涛, 齐秋菊等. 2011. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义. 岩石学报, 27(6): 1573-1593.
[69] 谢晋强, 张国伟, 鲁如魁等. 2010. 西秦岭温泉岩体的磁组构特征及其侵位机制意义. 地球物理学报, 53(5): 1187-1195, doi: 10.3969/j.issn.0001-5733.2010.05.021.
[70] 严阵. 1985. 秦岭花岗岩. 西安: 西安交通大学出版社, 53-173.
[71] 张成立, 王涛, 王晓霞. 2008. 秦岭造山带早中生代花岗岩成因及其构造环境. 高校地质学报, 14(3): 304-316.
[72] 张国伟, 张本仁, 袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 3-69.