地球物理学报  2015, Vol. 58 Issue (2): 589-600   PDF    
塔里木陆块在Rodinia超大陆中位置的新认识——来自地层对比和古地磁的制约
王洪浩, 李江海, 周肖贝, 李维波, 王杰琼    
造山带与地壳演化教育部重点实验室, 北京大学, 北京 100871
摘要:塔里木周缘的新元古代地层中均记录了涉及Rodinia聚合和裂解的构造热事件,但塔里木在Rodinia超大陆中位置尚存争议.本文综合地层对比以及古地磁的研究方法,将塔里木陆块在Rodinia超大陆中置于澳洲板块的西北缘,并且塔里木的西南缘(现今位置)和澳洲的西北缘(现今位置)相连.基于塔里木周缘的构造热事件和塔里木、澳洲运动学特征分析,认为塔里木陆块周缘在约800~700 Ma中发生了强烈的裂谷事件,导致塔里木从Rodinia超大陆中裂解,但塔里木并没有完全从澳洲裂离,而是随澳洲一起,加入冈瓦纳大陆.在约450 Ma左右,塔里木与澳洲发生分离,其原因为古特提斯洋的扩张.
关键词Rodinia     塔里木     地层对比     古地磁    
New opinion on the position of the Tarim block in the Rodinia supercontinent: Constraints from stratigraphic correlation and paleomagnetism
WANG Hong-Hao, LI Jiang-Hai, ZHOU Xiao-Bei, LI Wei-Bo, WANG Jie-Qiong    
The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University, Beijing 100871, China
Abstract: The Tarim block is one of the most important blocks of China. The Neoproterozoic strata which are distributed on the periphery of the Tarim block record lots of tectonothermal events related to the assembly and breakup of the Rodinia supercontinent. But the position of the Tarim block in Rodinia, the relationship between the Tarim block and Australia plate and the movement pattern of the Tarim block from Neoproterozoic to early Paleozoic remain controversial. Based on the method of stratigraphic correlation and paleomagnetism, we discuss these questions.
The Neoproterozoic strata of Tarim are mainly distributed along its periphery. Based on the field work, we analyze the stratigraphic correlation of Neoproterozoic strata in Tarim (including the Aksu area in northwest, Quruqtagh area in northeast and Tiekelike area in southwest) and corresponding strata in Australia to discuss the relationship between the Tarim block and Australia plate in Rodinia. Besides, we collect and select the published paleomagnetic data (Q≥4) of Tarim and Australia plate from Neoproterozoic to early Paleozoic, and build the APWP(apparent polar wander path)and reconstruct the paleolatitude of Tarim and Australia Plate from Neoproterozoic to early Paleozoic, so that we can estimate the separation time of Tarim block and Australia plate and the drift path of Tarim.
From the stratigraphic correlation of the Tarim block and Australia plate, the Neoproterozoic strata in the northwest, northeast and southwest of Tarim are very similar, so are the strata in Australia. They are all characterized by continental rift-littoral and neritic facies sediments, which all have several layers of tillite. So the Tarim block might be close to the Australia plate in Rodinia, but the relative orientation between Tarim and Australia need to be constrained by the paleomagnetic method. The APWP of the Tarim block and Australia plate from Neoproterozoic to early Paleozoic are similar. In the reconstruction map,the paleolatitudes of Tarim and Australia from Neoproterozoic to Ordovician are also similar. After 450 Ma,the Tarim block drifted northward rapidly, while Australia plate drifted southward slowly.
Based on the method of stratigraphic correlation and paleomagnetism, we reconstruct the Tarim block on the northwest edge of the Australia plate and the southwest edge of Tarim (the present position) connects with the northwest edge of Australia (the present position) in Rodinia. There was a strong rifting event surrounding Tarim during 800~700 Ma, which caused Tarim to break off the Rodinia supercontinent. However, the separation was not complete, Tarim joined Gondwana along with Australia. At the time of about 450 Ma, Tarim was totally separated from Australia as a result of the expansion of the Paleo-Tethys ocean.
Key words: Rodinia     Tarim     Stratigraphic correlation     Paleomagnetism    
1 引言

Rodinia超大陆的最终形成和裂解以及冈瓦纳超大陆的汇聚是新元古代时期最重要的超级大陆事件(陆松年等,2004Li et al., 2008).Rodinia是由于格林威尔造山运动及与其时代相近的造山运动将全球分散的大陆块聚合而成的一个超级大陆,劳伦大陆位于Rodinia的中心,东冈瓦纳、西伯利亚、波罗的等多个大陆块拼贴在劳伦大陆的周缘 或分布在其临近位置(McMenamin and McMenamin, 1990Hoffman,1991Dalziel,1997)(图 1,图中塔里木位置为本文观点).超大陆的解体发生在新元古代早期(距今900—700 Ma)(郝杰和翟明国,2004).劳伦与东冈瓦纳裂解形成的原太平洋和与波罗的板块之间裂解形成的原大西洋则标志着Rodinia超大陆的解体(陆松年等,2004).

图 1 Rodinia超大陆约1Ga主要板块再造图(据Li et al., 2008修改)Fig. 1 Reconstruction of the Rodinia supercontinent at about 1Ga(modified after Li et al., 2008)

塔里木陆块作为中国最重要的陆块之一,其前寒武纪地层主要分布在塔里木周缘地区,主要包括塔里木西北缘的阿克苏地区、东北缘的库鲁克塔格地区、西南缘的铁克里克地区以及东南缘的阿尔金地区.周缘的新元古代地层中均记录了涉及Rodinia聚合和裂解的构造热事件(王飞等,2010杨树锋等,1998展新忠等,2010张传林等, 2003a2003b王爱国等,2004胡霭琴等,2001郭召杰等,2000陆松年等,2006).但塔里木陆块在Rodinia中的位置,以及其从Rodinia裂解的时限至今尚存较大争议.

王鸿祯等(1997)认为新元古代中国古陆块与劳伦大陆西部(现代方位)关系密切;Chen等(2004)重建800 Ma时塔里木地块的古纬度于45°N左右;Huang等(2005)重建740 Ma时塔里木陆块于近赤道地区,且邻近澳大利亚西南边 缘(现代方位)和南极洲;Macouin 等(2004)在600 Ma的板块恢复图上将塔里木地块置于30°N左右;贾承造等(2007)认为在塔里木陆块在震旦纪-中石炭世期间处于20°S左右;李永安等(1984)认为塔里木陆块西南缘在震旦纪(700—600 Ma)的纬度分别为9.7°N(克孜苏胡木组)和2.3°N(恰克马克力克群);Fortey和Cocks(2003)认为在早古生代早期塔里木陆块与东冈瓦纳大陆距离非常近,至少到奥陶纪时仍然如此.Li等(2008)从造山带年代学和地层学资料对比出发,将塔里木陆块在新元古代置于北半球中高纬度的地区,并将塔里木的北缘(现代方位)与澳大利亚西北部(现代方位)相连.

本文在前人的基础上,通过收集和筛选发表的古地磁数据,利用GMAP和Gplate软件对塔里木陆块新元古代到早古生代的古板块位置进行再造,并结合对塔里木陆块周缘新元古代-早古生代的地层研究,来对塔里木陆块在Rodinia超大陆中的位置,塔里木陆块从Rodinia超大陆中裂解的时限以及塔里木在从Rodinia裂解后如何运动给出新的见解.

2 地层对比对于塔里木陆块古位置的制约

李正祥对于塔里木陆块在Rodinia超大陆中古位置的恢复主要是基于地层对比的证据,而引用的古地磁数据较少(Li et al., 2008).其观点认为在塔里木北缘广泛发育的南华-震旦系冰碛岩以及裂谷相沉积与澳大利亚西北缘的新元古界地层可以很好地对应(Turner,2010),故将塔里木北缘与澳洲西北缘相连(Li and Powell, 2001).此外,塔西北缘阿克苏地区存在一系列的岩墙,岩墙在年龄和地球化学特征与澳大利亚金伯利地块的岩墙存在一定的相似性(Chen et al., 2004)

但综合对比塔里木西北缘的阿克苏地区、东北缘的库鲁克塔格地区以及西南缘的铁克里克地区的新元古代的地层可以看出(图 2),三个地区的新元古界地层具有很大的相似性.首先,在塔里木西北缘的阿克苏地区,其南华系发育有两套冰碛岩,分别为下统的尤尔美那克组和上统的巧恩布拉克组的冰碛岩(图 3a),可分别与塔里木东北缘库鲁克塔格地区南华系的贝义西组以及特瑞艾肯组的冰碛岩(图 3b)相对应,并可与塔里木西南缘特克里克地区南华系恰克马克力克群的两套冰碛岩相对应(图 3c图 2).同时三个地区均可见南华系-震旦系的裂谷相沉积,在塔里木的西北缘的阿克苏地区,基性岩墙侵入到青白口系阿克苏群的蓝片岩中,二者均被下震旦统苏盖特布拉克组的红色砂岩和玄武岩夹层不整合覆盖.基性岩墙和玄武岩夹层均可看作是超大陆裂解的证据(王飞等,2010杨树峰等,1998)(图 3e,3f).在塔里木东北缘的库鲁克塔格地区,新元古代火山岩十分发育,从早南华世到晚震旦世均有分布,火山岩从老到新可以分为贝义西、扎摩克提、水泉3个喷发期(图 3g).Xu等(20052009)通过SHRIMP U-Pb法对3个喷发期的火山岩时限进行了限定,年 龄分别为(755±15)Ma、(615±4)Ma和(607±18)Ma. 地球化学的研究表明,各期火山岩均形成于大陆裂谷环境(展新忠等,2010).在塔里木西南缘的西昆仑造山带,发现了具有幔源组分参与的A型花岗岩,花岗岩的年龄约在815 Ma(张传林等,2003a).同时在莎车、泽浦南部,发育有大量的辉绿岩墙,岩墙侵入到青白口系岩层,而被具有大陆裂解沉积特征的南华系超覆,并在南华系下部发育有玄武岩层(王爱国等,2004).岩石地球化学研究表明,辉绿岩及玄武岩形成于大陆板内裂解背景(张传林等,2003b).塔西南的岩墙群也可以和上述澳大利亚的岩墙群相对应.

图 2 塔里木及澳洲周缘新元古代露头区地层对比图Fig. 2 Straigraphic correlation of Neoproterozic strata in Tarim and Australia

图 3 塔里木周缘新元古界地层野外图片
(a)塔里木西北缘阿克苏地区尤尔美那克组冰碛岩;(b)塔里木东北缘库鲁克塔格地区贝义西组冰碛岩;(c)塔里木西南缘铁克里克地区恰克马克力克群冰碛岩;(d)和(e)塔里木西北缘阿克苏地区苏盖特布拉克组中大套溢流玄武岩;(f)塔里木东北缘库鲁克塔格地区贝义西组流纹岩.
Fig. 3 Some field photos of Neoproterozoic strata in Tarim
(a)Tillite in Youermeinake Formation in Aksu area of northwest Tarim;(b)Tillite in Beiyixi Formationin in Quruqtagh area of northeast Tarim;(c)Tillite in Qiakemakelike Group in Tiekelike area of southwest Tarim;(d) and (e)Flood basalt in Sugaitebulake Formation in Aksu area of northwest Tarim;(f)Rhyolite in Beiyixi Formation in Quruqtagh area of northeast Tarim.

图 2可以看出,塔里木周缘新元古界地层相似性很大,均发育有裂谷相-滨浅海相的沉积,在此过程中均发育有至少两套冰碛岩,而澳洲西部的新元古代阿马迪厄斯盆地以及阿德雷德盆地的沉积相也显示出了类似的特征,故可以看出,塔里木和澳洲在新元古代具有亲缘性,但是在考虑塔里木与澳大利亚的相对方位时,仅仅通过地层对比的方法是不够的,还需要更多其他条件的制约.

3 古地磁对塔里木陆块古位置的制约

古大陆再造是全球构造研究的重要内容之一,古板块位置的恢复是古大陆再造的重要环节.古地磁方法的突破为古大陆位置恢复提供了更可靠的依据,使古大陆位置恢复由定性研究转变为定量—半定量研究.

从大量数据中遴选有意义的数据是古地磁学的一项很有技术性且很繁琐的工作.目前,大多数研究人员所采用的基本遴选原则是根据van der Voo(1990)所总结的七条判据(V90判据)(①取样的地层有很好的年代限定;②有足够多的独立样品数,即样品数N≥24,95%置信圆半径A95<16°;③有证据表明一致的特征剩磁分量是在退磁之后获得的,并且有合理的主成分分析;④磁化的年龄应该有野外检验(褶皱检验、砾石检验等)限定;⑤获得的古地磁数据与相应的克拉通或板块具有构造一致性;⑥古地磁数据具有双极性,正、负极性数据相互对应;⑦古地磁极位置应该与年代较新的古地磁极相区别,即要排除重磁化的嫌疑).

本文筛选数据的过程中,参照黄宝春等(2008)的方法,认为上述判据中②③⑦条必须满足,并在此基础上要求古地磁数据的质量因子Q≥4.对于塔里木陆块的古地磁数据,黄宝春等(2008)筛选并拟合了2008年之前发表的塔里木显生宙的古地磁数据(Zhao et al,1996Zhu et al,1998方大钧等,2001黄宝春等,2008),在此基础上,本文补充了符合标准的塔里木新元古代数据(Chen et al., 2004Huang et al., 2005Wen et al., 2013Zhao et al., 2014)及近年来发表的塔里木显生宙数据(孙丽莎和黄宝春,2009).澳大利亚板块的古板块再造研究相对深入,Li等(2008)Torsvik等(2012)均对发表过的澳大利亚古地磁数据进行过筛选,本文在上述研究的基础上,选取符合上述要求的数据.筛选出的塔里木陆块及澳大利亚板块的新元古代-早 古生代古地磁数据及相关数据的品质因子可见表 1.

表 1中可以看出,塔里木730 Ma、740 Ma的两组数据(Huang et al., 2005Wen et al., 2013)年代很近,但古地磁极位置差别很大,无法拟合.Zhao等(2014)分析认为730 Ma的数据采自塔里木西北缘的巧恩布拉克组冰碛岩,磁化率各向异性的分析中显示了不正常的沉积结构,与此同时,磁性线理方向与剩磁方向高度一致,该剩磁的方向可能受控于区域构造变形或/和冰川沉积作用而不是当时地磁场的作用.此外,该组数据与上下两组数据在古地磁位置上跳跃太大,故本文中建立塔里木陆块新元古代-早古生代的视极移曲线时未采用本组数据.

表 1 塔里木、澳洲新元古代-早古生代古地磁数据表Table 1 Paleomagnetic data of Tarim and Australia from Neoproterozoic to early Paleozoic

基于上述数据,通过GMAP软件(Torsvik and Smethurst, 1999),用“球面样条法”(Spherical Spline Method)对塔里木陆块及澳大利亚板块新元古代-早古生代的视极移曲线进行拟合.所谓球面样条法,是一种在球面距离最小二乘的基础上计算加权平均的方法(Buss and Fillmore, 2001),可以对原始的视极移曲线进行平滑处理(Jupp and Kent, 1987Torsvik and Smethurst, 1996).本文拟合所用到的加权值为古地磁数据的A95(A95值越小,真实古地磁极的位置靠近实验获得古地磁极点的可能性越大,该数据获得的拟合权重就越大,得到的视极移曲线就越精确),样条的参数为300(300为适中值,若样条参数较小,对视极移曲线的平滑效果不强;若样条参数较大,则会损失数据本身的信息)(Torsvik et al., 2012;Metelkin et al., 2011).通过拟合得出塔里木、澳大利亚板块新元古代-早古生代的视极移曲线及板块位置模式图如图 4.

图 4 澳大利亚、塔里木新元古代-早古生代视极移曲线及古板块再造图
(a)塔里木陆块新元古代-早古生代原始数据的视极移曲线;(b)塔里木陆块和澳大利亚板块经过“球面样条法”平滑处理后的视极移曲线,其中塔里木陆块的视极移曲线进行了欧拉旋转,欧拉极为25°N,100°E,欧拉旋转角为67°;(c)澳大利亚板块和塔里木陆块新元古代-早古生代古板块再造图.
Fig. 4 APWPs and reconstruction of Australia plate and Tarim block from Neoproterozoic to early Paleozoic
(a)APWPs of Australia plate and Tarim block from Neoproterozoic to early Paleozoic based on original paleomagnetic data;(b)APWPs of Australia Plate and Tarim block from Neoproterozoic to early Paleozoic after the processing of “Spherical Spline Method” transforming. The APWP of Tarim was rotated to the Australian coordinates around an Euler pole at 25°N,100°E with an angle of 67°;(c)Reconstruction of Australia plate and Tarim block from Neoproterozoic to early Paleozoic.

塔里木陆块在800 Ma左右处于北纬较高纬度,将塔里木陆块的西南缘(现今位置)和澳洲板块的西北缘(现今位置)相连更符合古地磁数据的结果,并且与地层对比结果不矛盾.若将塔里木北缘与澳洲相接,在随后的100~200 Ma内塔里木将发生将近180°的旋转,而这在地质上是无法解释的.

800~750 Ma中,塔里木陆块和澳洲板块均向南漂移,这与整个Rodinia超大陆整体向南漂移的趋势是一致的(Li et al., 2008).在约750 Ma左右,塔里木陆块及澳洲板块到达赤道附近,在此时期,澳洲及塔里木周缘均可见大量的冰川沉积(Li and Powell, 2001Xu et al., 20052009),而此时塔里木周缘沉积环境为滨浅海,这也从另一个角度证实了雪球事件的存在(Hoffman et al., 1998).从图 4可以看出,塔里木陆块和澳洲板块的视极移曲线在 800~700 Ma拟合较差,二者的位置在800~700 Ma 发生了相对的运动,这很可能与上述讨论的塔里木周缘南华纪-震旦纪的裂谷事件有关.大量的裂谷事件导致塔里木从Rodinia中裂解,但裂解事件并没有导致塔里木陆块从澳洲板块裂离(图 5),塔里木西南缘至今未有新元古代MORB型蛇绿岩的报道.

图 5 塔里木陆块和澳洲板块新元古代-早古生代运动学特征分析图Fig. 5 Drifting characteristics of Tarim block and Australia plate from Neoproterozic to early Palaeozoic

750~650 Ma期间,原太平洋张开,东冈瓦纳和劳伦大陆分离(陆松年等,2004),导致塔里木和澳洲板块作为一个整体向北快速移动.约600 Ma之后,东西冈瓦纳之间莫桑比克洋开始消减,塔里木随澳洲板块向南纬漂移.塔里木北缘以及塔里木北部的中天山地体、伊犁地体的寒武系底部,恒定的发育有一套含磷岩层(高振家,1990).由于磷矿多与热液流体以及生物因素有关,且多形成于温暖的环境,故塔里木陆块在早寒武世位于南半球低纬度的结论是可信的.并且通过连井以及周缘露头对比可以看出,在中寒武世,塔里木西北缘,康2、方1和4以及塔参1井均可见大套的蒸发膏盐层,这也与塔里木处于较低纬度相一致.在约520~510 Ma,在塔里木北缘,帖尔斯克依古洋张开(高俊等,2009),在塔里木西南缘,库地洋张开(Mattern and Schneider, 2000),导致塔里木与澳洲位置发生相对变化(图 4c).

随后,莫桑比克洋关闭,冈瓦纳大陆拼合,塔里木陆块随澳洲板块加入冈瓦纳大陆,塔里木位于冈 瓦纳大陆的外缘,在480~450 Ma期间,处于相对 稳定的状态,在约450 Ma左右,塔里木南缘的古特提斯洋盆开始发育,洋盆的扩张导致塔里木陆块快速北漂,并在石炭-二叠纪与北方的劳亚大陆完成拼合(图 5).

4 运动学特征分析

基于上述的通过球面样条法得到的数据,可对塔里木陆块和澳洲板块新元古代-早古生代的运动 学特征进行分析(图 5).其中塔里木陆块选择的参考点为40°N、80°E,澳洲板块选择的参考点为20°S、130°E.

通过对比二者的运动学特征可以看出,在800~ 450 Ma 之间,塔里木陆块和澳洲板块的漂移轨迹在很大程度上相似,均经历了一个向南—向北—向南的运动过程.在约450 Ma之后,澳洲板块向南运动,但古纬度整体变化不大,而塔里木陆块则呈现出一个向北纬快速回返的过程,这种现象是古特提斯洋盆在塔里木和澳洲板块之间发育的结果.

同时对比二者的纬向漂移速率以及板块的旋转速率,也可以看出在450 Ma之前,二者的纬向漂移速率及板块的旋转速率差异不大,仅在部分时间点上存在较小差异,但在约450 Ma之后,二者的纬向漂移速率及板块的旋转速率开始产生分异.在奥陶纪塔里木快速回返的过程中,其纬向速率最大可达到10 cm·a-1,经向速率未知,而现今板块扩张的最大速率约为16 cm·a-1(复活节岛附近的东太平洋洋隆)(DeMets et al., 2010),故塔里木在奥陶纪的快速回返是完全有可能发生的.

5 结论

(1)基于野外观测、地层对比以及古地磁学的研究,将塔里木陆块在Rodinia超大陆中置于澳洲板块的西北缘,并且塔里木的西南缘(现今位置)和澳洲的西北缘(现今位置)相连.

(2)塔里木陆块周缘在约800~700 Ma中发生了强烈的裂谷事件,导致塔里木从Rodinia超大陆中裂解,但塔里木并没有完全从澳洲裂离,而是随澳洲一起,加入冈瓦纳大陆.

(3)塔里木新元古代-早古生代的构造演化涉及Rodinia以及冈瓦纳大陆聚合和裂解事件的影响,在800~450 Ma之间,其漂移轨迹整体上经历 了一个向南—向北—向南的震荡的过程,在约450 Ma 左右,塔里木与澳洲发生分离,其原因为古特提斯洋的扩张.

致谢 本文在野外和现场得到了北京大学地球与空间科学学院的关平教授、侯贵廷教授、刘波研究员的帮助和指导,在后期文章修改的过程中得到了北京大学黄宝春教授和美国佛罗里达大学Joseph G Meert教授的帮助,在此表示诚挚的感谢.

参考文献
[1] Buss S R, Fillmore J P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph., 20: 95-126.
[2] Chen Y, Xu B, Zhan S, et al. 2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 2004, 133(3-4): 271-281.
[3] Dalziel I W D. 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 109(1): 16-42.
[4] DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1-80.
[5] Embleton B J J, Giddings J W. 1974. Late Precambrian and Lower Palaeozoic palaeomagnetic results from South Australia and Western Australia. Earth and Planetary Science Letters, 22(4): 355-365.
[6] Fang D J, Shen Z Y, Wang P Y. 2001. Paleomagnetic data of Tarim Block. Journal of Zhejiang University (Sciences Edition) (in Chinese), 28(1): 92-99.
[7] Fortey R A, Cocks L R M. 2003. Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth-Science Reviews, 61(3-4): 245-307.
[8] Gao J, Qian Q, Long L L, et al. 2009. Accretionary orogenic process of Western Tianshan, China. Geological Bulletin of China (in Chinese), 28(12): 1804-1816.
[9] Gao Z J. 1990. Second discussion about stratigraphy problems of the Precambrian of Tianshan Region. Xinjiang Geology (in Chinese), 8(1): 80-90.
[10] Guo Z J, Zhang Z C, Jia C Z, et al. 2000. Basement tectonic framework of Tarim Craton in precambrain. Science in China (Series D: Earth Sciences) (in Chinese), 30(6): 568-575.
[11] Hao J, Zhai M G. 2004. Jinning movement and Sinian system in China: their relationship with Rodinia supercontinent. Chinese Journal of Geology (in Chinese), 39(1): 139-152.
[12] Hoffman P F. 1991. Did the breakout of laurentia turn gondwanaland inside-out? Science, 252(5011): 1409-1412.
[13] Hoffman P F, Kaufman A J, Halverson G P, et al. 1998. A neoproterozoic snowball Earth. Science, 281(5381): 1342-1346.
[14] Hu A Q, Zhang G X, Chen Y B, et al. 2001. A model of division of the continental crus basement and the time scales of the major geological events in the Xinjiang-Based on studies of isotopic Geochronology and Geochemistry. Xinjiang Geology (in Chinese), 19(1): 12-19.
[15] Huang B C, Xu B, Zhang C X, et al. 2005. Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, Northwest China: A continental fragment of Neoproterozoic Western Australia? Precambrian Research, 142(3-4): 83-92.
[16] Huang B C, Zhou Y X, Zhu R X. 2008. Discussions on Phanerozoic evolution and formation of continental China, based on paleomagnetic studies. Earth Science Frontiers (in Chinese), 15(3): 348-359.
[17] Hurley N F, Van Der Voo R. 1987. Paleomagnetism of Upper Devonian reefal limestones, Canning basin, Western Australia. Geological Society of America Bulletin, 98(2): 138-146.
[18] Jia C Z, Li B L, Zhang X Y, et al. 2007. Formation and evolution of the Chinese marine basins. Chinese Science Bulletin, 52(S1): 1-11.
[19] Jupp P E, Kent J T. 1987. Fitting smooth paths to speherical data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(1): 34-46.
[20] Kirschvink J L. 1978. The Precambrian-Cambrian boundary problem: paleomagnetic directions from the Amadeus Basin, Central Australia. Earth and Planetary Science Letters, 40(1): 91-100.
[21] Klootwijk C T. 1980. Early palaeozoic palaeomagnetism in Australia Ⅰ. Cambrian results from the Flinders Ranges, South Australia Ⅱ. Late Early Cambrian results from Kangaroo Island, South Australia Ⅲ. Middle to early-late Cambrian results from the Amadeus Basin, Northern Territory. Tectonophysics, 64(3-4): 249-332.
[22] Li Y A, Gao Z J, Wang J H. 1984. Preliminary paleomagnetic study of Tarim late Precambrian paleo-block. Xinjiang Geology (in Chinese), 2(2): 81-93.
[23] Li Z X, Powell C M. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews, 53(3-4): 237-277.
[24] Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210.
[25] Lu S N, Li H K, Chen Z H, et al. 2004. Relationship between Neoproterozoic cratons of China and the Rodinia. Earth Science Frontiers (in Chinese), 11(2): 515-523.
[26] Lu S N, Yu H F, Li H K, et al. 2006. Early Paleozoic suture zones and tectonic divisions in the "Central China Orogen". Geological Bulletin of China (in Chinese), 25(12): 1368-1380.
[27] Luck G R. 1972. Palaeomagnetic results from palaeozoic sediments of Northern Australia. Geophysical Journal International, 28(5): 475-487.
[28] Macouin M, Besse J, Ader M, et al. 2004. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the "snowball Earth" hypothesis. Earth and Planetary Science Letters, 224(3-4): 387-398.
[29] Mattern F, Schneider W. 2000. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637-650.
[30] McMenamin M A S, McMenamin D L S. 1990. The Emergence of Animals: The Cambrian Breakthrough. New York: Columbia University Press, 206.
[31] McWilliams M O, McElhinny M W. 1980. Late precambrian paleomagnetism of Australia: the adelaide geosyncline. The Journal of Geology, 88(1): 1-26.
[32] Metelkin D V, Vernikovsky V A, Kazansky A Y. 2011. Siberia-from Rodinia to Eurasia. Tectonics. -Sn: InTech, 5: 103-136.
[33] Mitchell R N, Hoffman P F, Evans D A D. 2010. Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05-1.8 Ga) paleomagnetic poles from Slave craton. Precambrian Research, 179(1-4): 121-134.
[34] Pisarevsky S A, Wingate M T D, Stevens M K, et al. 2007. Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions. Australian Journal of Earth Sciences, 54(4): 561-572.
[35] Schmidt P W, Williams G E, Embleton B J J. 1991. Low palaeolatitude of Late Proterozoic glaciation: early timing of remanence in haematite of the Elatina Formation, South Australia. Earth and Planetary Science Letters, 105(4): 355-367.
[36] Schmidt P W, Williams G E. 1995. The Neoproterozoic climatic paradox: Equatorial palaeolatitude for Marinoan glaciation near sea level in South Australia. Earth and Planetary Science Letters, 134(1): 107-124.
[37] Sohl L E, Christie-Blick N, Kent D V. 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciation in Neoproterozoic time. Geological Society of America Bulletin, 111(8): 1120-1139.
[38] Sun L S, Huang B C. 2009. New paleomagnetic result for Ordovician rocks from the Tarim Block, Northwest China and its tectonic implications. Chinese J. Geophys. (in Chinese), 52(7): 1836-1848, doi: 10.3969/j.issn.0001-5733.2009.07.018.
[39] Tohver E, Cawood P A, Rossello E A, et al. 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Research, 21(2-3): 394-405.
[40] Torsvik T H, Smethurst M A, Meert J G, et al. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic—A tale of Baltica and Laurentia. Earth-Science Reviews, 40(3-4): 229-258.
[41] Torsvik T H, Smethurst M A. 1999. Plate tectonic modelling: virtual reality with GMAP. Computers & Geosciences, 25(4): 395-402.
[42] Torsvik T H, Van der Voo R, Preeden U, et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114(3-4): 325-368.
[43] Turner S A. 2010. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research, 181(1-4): 85-96.
[44] Van der Voo R. 1990. The reliability of paleomagnetic data. Tectonophysics, 184(1): 1-9.
[45] Wang A G, Zhang C L, Zhao Y, et al. 2004. Depositional types of Lower part of Nanhua System on the northern margin of southwest Tarim and their tectonic significance. Journal of Stratigraphy (in Chinese), 28(3): 248-256.
[46] Wang F, Wang B, Shu L S. 2010. Continental tholeiitic basalt of the Akesu aera (NW China) and its implication for the Neoproterozoic rifting in the northern Tarim. Acta Petrologica Sinica (in Chinese), 26(2): 547-558.
[47] Wang H Z. 1997. Speculations on Earth’s rhythms and continental dynamics. Earth Science Frontiers (in Chinese), 4(3-4): 1-12.
[48] Wen B, Li Y X, Zhu W B. 2013. Paleomagnetism of the Neoproterozoic diamictites of the Qiaoenbrak formation in the Aksu area, NW China: Constraints on the paleogeographic position of the Tarim Block. Precambrian Research, 226: 75-90.
[49] Xu B, Jian P, Zheng H F, et al. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136(2): 107-123.
[50] Xu B, Xiao S H, Zou H B, et al. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtaghdiamictites in NW China. Precambrian Research, 168(3-4): 247-258.
[51] Yang S F, Chen H L, Dong C W, et al. 1998. Geochemical properties of late Sinian basalt in the northwestern boundary of Tarim basin and its tectonic setting. Journal of Zhenjiang University (Natural Science) (in Chinese), 32(6): 753-740.
[52] Zhan S, Chen Y, Xu B, et al. 2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154(3-4): 143-158.
[53] Zhan X Z, Guo R Q, Zhang X F, et al. 2010. Geology-Geochemistry characteristics and its tectonic significane of the Neoproterozic volcanic in Quruqtagh, Xinjiang. Xinjiang Geology (in Chinese), 28(1): 22-27.
[54] Zhang C L, Yang C, Shen J L, et al. 2003a. Zircon SHRIMP age of neoproterozoic gneissoid granites in the west Kunlun and its significance. Geological Review (in Chinese), 19(3): 239-244.
[55] Zhang C L, Zhao Y, Guo K Y, et al. 2003b. Geochemistry characteristics of the proterozoic meta-basalt in southern TarimPlate: evidence for the meso-proterozoic breakup of paleo-tarim plate. Earth Science (in Chinese), 28(1): 47-53.
[56] Zhao P, Chen Y, Zhan S, et al. 2014. The Apparent Polar Wander Path of the Tarim block (NW China) since the Neoproterozoic and its implications for a long-term Tarim-Australia connection. Precambrian Research, 242: 39-57.
[57] Zhao X, Coe R S, Gilder S A, et al. 1996. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwanaland. Australian Journal of Earth Sciences, 43(6): 643-672.
[58] Zhu R X, Yang Z Y, Wu H N, et al. 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic. Science in China Series D: Earth Sciences, 41(2): 1-19.
[59] 方大钧, 沈忠悦, 王朋岩. 2001. 塔里木地块古地磁数据表. 浙江大学学报(理学版), 28(1): 92-99.
[60] 高俊, 钱青, 龙灵利等. 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804-1816.
[61] 高振家. 1990. 再论天山地区前寒武纪地层问题. 新疆地质, 8(1): 80-90.
[62] 郭召杰, 张志诚, 贾承造等. 2000. 塔里木克拉通前寒武纪基底构造格架. 中国科学(D辑: 地球科学), 30(6): 568-575.
[63] 郝杰, 翟明国. 2004. 罗迪尼亚超大陆与晋宁运动和震旦系. 地质科学, 39(1): 139-152.
[64] 胡霭琴, 张国新, 陈义兵等. 2001. 新疆大陆基底分区模式和主要地质事件的划分. 新疆地质, 19(1): 12-19.
[65] 黄宝春, 周姚秀, 朱日祥. 2008. 从古地磁研究看中国大陆形成与演化过程. 地学前缘, 15(3): 348-359.
[66] 贾承造, 李本亮, 张兴阳等. 2007. 中国海相盆地的形成与演化. 科学通报, 52(增刊1): 1-8.
[67] 李永安, 高振家, 王景河. 1984. 古塔里木地块晚前寒武纪古地磁特征的初步探讨. 新疆地质, 2(2): 81-93.
[68] 陆松年, 李怀坤, 陈志宏等. 2004. 新元古时期中国古大陆与罗迪尼亚超大陆的关系. 地学前缘, 11(2): 515-523.
[69] 陆松年, 于海峰, 李怀坤等. 2006. “中央造山带”早古生代缝合带及构造分区概述. 地质通报, 25(12): 1368-1380.
[70] 孙丽莎, 黄宝春. 2009. 塔里木地块奥陶纪古地磁新结果及其构造意义. 地球物理学报, 52(7): 1836-1848, doi: 10.3969/j.issn.0001-5733.2009.07.018.
[71] 王爱国, 张传林, 赵宇等. 2004. 塔里木西南缘南华系下部沉积作用及其构造意义. 地层学杂志, 28(3): 248-256.
[72] 王飞, 王博, 舒良树. 2010. 塔里木西北缘阿克苏地区大陆拉斑玄武岩对新元古代裂解事件的制约. 岩石学报, 26(2): 547-558.
[73] 王鸿祯. 1997. 地球的节律与大陆动力学的思考. 地学前缘, 4(3-4):1-12.
[74] 杨树锋, 陈汉林, 董传万等. 1998. 塔里木盆地西北缘晚震旦世玄武岩地球化学特征及大地构造背景. 浙江大学学报 (自然科学版), 32(6): 753-740.
[75] 展新忠, 郭瑞清, 张晓帆等. 2010. 新疆库鲁克塔格新元古代火山岩地质-地球化学特征及构造意义. 新疆地质, 28(1): 22-27.
[76] 张传林, 杨淳, 沈加林等. 2003a. 西昆仑北缘新元古代片麻状花岗岩锆石SHRIMP年龄及其意义. 地质论评, 19(3): 239-244.
[77] 张传林, 赵宇, 郭坤一等. 2003b. 塔里木南缘元古代变质基性火山岩地球化学特征——古塔里木板块中元古代裂解的证据. 地球科学, 28(1): 47-53.