地球物理学报  2015, Vol. 58 Issue (11): 4298-4304   PDF    
2015尼泊尔MS8.1地震中等余震震源机制研究
张广伟, 雷建设    
中国地震局地壳应力研究所(地壳动力学重点实验室), 北京 100085
摘要: 本研究利用西藏台网记录的波形数据,采用gCAP方法反演了2015年4月25日尼泊尔MS8.1大震5次中等余震(5.0≤MS≤6.5)及西藏定日MS5.9地震震源机制解.结果显示,6次地震包含2个正断、2个走滑及2个逆冲型地震.其中2个正断型地震位于主震的东北方向,即发震断层的上盘,表明该区域受到主震同震位移的影响,表现出应力拉张的变化特征;2个走滑型地震在主震破裂的东南方向上,说明随着破裂往东南方向延伸,余震的走滑分量增强;另外2个逆冲型地震位于5月12日MS7.5强余震区域,与MS7.5地震的滑移状态一致,可能与主震同震位移引起该区域处于应力挤压状态密切相关.这些结果表明,尼泊尔MS8.1主震发生后,由于同震位移的影响,不同区域处于不同的应力状态,从而使中等余震表现出不同的震源类型.
关键词: 震源机制解     中等地震     尼泊尔MS8.1地震     gCAP方法    
Focal mechanism solutions of moderate-sized aftershocks of the 2015 MS8.1 Nepal earthquake
ZHANG Guang-Wei, LEI Jian-She    
Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
Abstract: On April 25, 2015, an earthquakes with magnitude 8.1(MS) occurred in Nepal, which killed more than 7566 people and caused more than 14500 injures. Its epicentre is located at about 20 km depth, and it is considered as a shallow earthquake with tremendous damages. The earthquake also triggered an avalanche on the Himalaya mountain, and buried parts of the base camp. It is the worst natural disaster to strike Nepal since the 1934 Nepal-Bihar earthquake in the region. There were three strong aftershocks (MS≥7.0) and some moderate aftershocks (5.0≤MS≤6.5) that occurred on the same fault. In this paper, we determined the focal mechanism solutions of six moderate-sized aftershocks having better recordings at the seismic stations in order to better understand the rupture characteristics of this large earthquake.
Using the digitally broadband seismic data recorded by the Xizang network stations, we obtained focal mechanisms of six moderate-sized earthquakes with the generalized Cut and Paste (gCAP) inversion method. This method divides three-componental waveforms into Pnl and surface wave segments, and allows adjustable time shifts between observed and synthetic waveforms, which reduce the influence of uncertainties in the 1-D velocity model used.
Our results show that the six moderate-sized earthquakes present different source types, two events for normal types, two events for strike-slip types, while the rest two events for thrust-fault types. The six earthquakes with different types are located at different regions, respectively. The two normal-fault earthquakes are distributed to the northeast of the mainshock and they are situated in the hanging wall of the fault. These normal-fault sources may be due to the tension stress change caused by the coseismic slip. The two strike-slip sources are located between the mainshock and the May 12 MS7.5 strong aftershocks, suggesting that the strike-slip component is getting larger with the southeast extension of the fault. The two thrust-fault earthquakes are also interpreted as a compressional stress change due to the mainshock coseismic slip. Intergrating these focal mechanism solutions with the aftershock distribution, we conclude that different source types of these moderate-sized earthquakes in different regions all might be due to different stress regime caused by the coseismic displacement.
Key words: Focal mechanism     Moderate-sized earthquake     Nepal MS8.1 earthquake     gCAP method    
1 引言

据中国地震台网中心测定,北京时间2015年4月25日14时11分26秒,尼泊尔发生MS8.1大地震,震中位置28.2°N、84.7°E,震源深度20 km.截至5月6日,尼泊尔境内已经造成至少7566人丧生,超过14500人受伤(中国地震局,2015).强震还引发珠穆朗玛峰雪崩,部分基地大本营被掩埋.此次地震震中距离尼泊尔首都加德满都约80 km,其余震由近西北向近东南方向迁移,震源深度多集中在20 km以上(图 1),属于浅源型地震,因此造成地表建筑破坏严重.

图 1 本研究震源机制反演所用台站(蓝色三角)及尼泊尔MS8.1地震序列分布.地震序列数据来自USGS. 星号代表大于7级地震震中,小圆圈代表7级以下余震震中,填充的颜色代表震源深度,色标位于图底 Fig. 1 Distribution of the seismic stations (blue triangles) used in focal mechanism inversion in the present study and the Nepal MS8.1 earthquake sequences. The earthquake sequence data are from USGS. Stars denote the epicenters of the earthquakes with magnitude greater than 7.0, whereas small circles denote the epicenters of events with magnitude smaller than 7.0, the color filled in which represents the focal depth. The scale for focal depth is shown at the bottom

此次尼泊尔MS8.1地震引发多次中强余震,精确的震源参数,如发震断层面、震源质心深度、矩震级等是地震学研究中重要的基础资料,因此快速求取可靠的震源机制解对后续研究非常重要.对于MS≥7.0强震,其破裂过程具有一定的尺度,点源模型不适应于描述震源破裂的真实情况,故通常采用非点源模型,比如有限断层破裂模型(Chen et al.,2005; Zhang et al.,2009; 王卫民等,2013; 张勇等,2015).而对于中等地震,其破裂尺度小,将震源简化为点源可以很好地反映震源破裂特征(郑勇等,2009陈伟文等,2012Chen et al.,2015).本研究就针对尼泊尔MS8.1主震后发生的中等地震,求取震源机制解,探讨震源破裂的变化特征,讨论尼泊尔MS8.1地震对青藏高原及中国西南地区的影响作用.

2 资料与方法

本研究采用国家数据备份中心提供的西藏台网波形资料(郑秀芬等,2009),选择4月25日—5月16日尼泊尔MS8.1地震5次余震(5.0≤MS≤6.5)及西藏定日MS5.9地震,总共6次中等地震事件.通过波形筛选,挑选震中距6°以内共11个台站的三分量记录(图 1).速度模型采用基于人工源地震剖面结果给出的平均速度结构分层模型(滕吉文等,2015).

震源机制解采用gCAP(generalized Cut and Paste)方法求取(Zhu and Ben-Zion,2013).该方法是在CAP法(Zhu and Helmberger,1996)的基础上增加各向同性源(ISO)和补偿线性偶极子(CLVD)两个分量,求解地震全矩张量解(李圣强等,2013; 张广伟和雷建设,2015).本研究将非双力偶分量ISO和CLVD约束为0,求解地震的最佳双力偶节面解.与CAP方法相同,gCAP法在反演过程中将三分量全波形分为Pnl和面波两部分,对Pnl和面波两部分赋予不同权重,采用不同频段滤波后参与反演,通过计算理论和实际波形的拟合误差函数,利用网格搜索得到最小误差的最优解.该方法允许每个时间窗理论波形和实际观测波形相对时移拟合,大大减少了速度模型不精确及地壳速度横向不均匀性的影响(Zhu and Helmberger,1996郑勇等,2009),并且前人研究表明,仅使用二个台站记录的区域波形资料也可以得到较好的震源机制结果(Tan et al.,2006).本研究反演过程中,Pnl和面波滤波范围分别为0.05~0.2 Hz和0.02~0.1 Hz,走向、倾角和滑动角的搜索间隔均为5°,深度为2 km.格林函数采用频率-波数法(FK)计算(Zhu and Rivera,2002),采样间隔设为0.1 s,采样点2048个.

3 结果

表 1给出6次地震事件最佳双力偶节面解及震源质心深度,图 2详细展示事件1、2、3和6理论与实际波形拟合图以及震源机制解(下半球投影),整体上波形拟合效果较好.每个事件至少有7个台站参与反演(表 1),我们依据波形平均拟合相关系数对震源机制结果质量进行分类,如果平均拟合相关系数>65%则为A,在60%~65%之间为B,小于60%则为C.由表 1可以看出,6次地震事件震源机制解的质量均在B及以上,说明我们所获得的震源参数较为可靠.

表 1 中等地震震源机制解 Table 1 Focal mechanism solutions of the moderate-sized earthquakes

图 2 表1中事件1、2、3和6地震震源机制解及理论(红色)和实际(黑色或蓝色)波形对比图,拟合较好观测波形用黑色表示,拟合较差用蓝色表示;波形下方数字表示理论相对实际波形的相对移动时间和二者的相关系数;左侧大写字母表示台站名,台站下方数字为震中距(km)和相对偏移时间(s) Fig. 2 The focal mechanisms and the comparison between synthetic (red) and observed (black for better fits or green for bad fits) waveforms of the events 1、2、3 and 6 in Table 1. The numbers below each traces are relative time shifts and cross-correlation coefficients. The station names are given on the left and the numbers below each station are epicentral distances (km) and relative time shifts (s)

事件1西藏定日地震表现为正断型,质心深度6 km,与韩立波反演得到结果(中国地震局地球物理研究所,2015)较为一致.事件2也为正断型地震,但与事件1有所区别,其不仅兼有少量走滑分量,且质心深度也较深,为16 km.事件1和2位于发震断层的上盘区域(图 3),表明该区域受到主震同震位移的影响,表现出应力拉张的变化特征.事件3和4在MS8.1主震后2天内发生,均表现为走滑型地震(表 1),震中位于主震的东南向,其他余震也多位于主震的东南方向,说明主震破裂可能是东南向为主的单侧破裂.事件5和6发生于5月12日MS7.5强余震之后,表现为逆冲类型(图 3),与MS7.5强余震的逆冲破裂机制相同;另外,事件5和6在全球矩张量解中也给出结果(www.globalcmt.com,简写为GCMT)(图 3),我们将这两次事件与GCMT结果进行对比,均为逆冲性质,也证实了本研究结果的可靠性.

图 3 本研究获得的中等地震震源机制解(黑色震源球)和事件5、6的全球矩张量解(红色震源球,由GCMT下载).星号代表大于7级地震,小圆圈代表7级以下余震,填充的颜色代表震源深度,色标位于图底 Fig. 3 Focal mechanism solutions of the moderate-sized earthquakes obtained by present study (black focal sphere) and downloaded from global central moment tensor (red focal sphere from GCMT).Stars denote the earthquakes with magnitude greater than 7.0, whereas small circles denote the events with magnitude smaller than 7.0, the color filled in which represents the focal depth. The scale for focal depth is shown at the bottom
4 讨论与结论

尼泊尔位于印度和欧亚板块交界处,北部为喜马拉雅山,地形起伏明显,在其境内分布有多条逆冲断裂,分别有喜马拉雅主前锋断裂(MFT)、主边冲断裂(MBT)和主中冲断裂(MCT)(许志琴等,2013).尼泊尔近代地震活动频繁,比如1934年1月15日发生的MS8.4尼泊尔—比哈尔邦地震,造成约10600人死亡,而近期发生的地震主要集中在尼泊尔东部和西部,中部地区不太活跃,这次MS8.1地震就发生在该地区,说明此次地震是印度板块北向俯冲挤压欧亚板块(Huang and Zhao,2006; Li et al.,2008; Lei et al.,2014)应力长期积累的结果.

我们获取的6个中等地震震源机制解,分别有2个正断类型、2个走滑类型和2个逆冲类型(表 1).其中,2个正断类型地震(事件1和2)位于主震的东北方向,即发震断层的上盘(图 3),这与2011年日本9级大地震上盘主要分布正断型地震非常类似(Asano et al.,2011),主要受到主震同震位移的影响,上盘表现出应力拉张的特征.但事件1与事件2有所不同,事件1与尼泊尔MS8.1主震相距较远,约250 km,位于中国境内的西藏定日县,震源机制解显示发震断层面近南北向(表 1);静态应力触发研究表明,尼泊尔地震产生的应力加载在中国大陆主要集中在本次地震邻近的西藏及新疆地区部分断层上(盛书中等,2015);同震位移结果也显示,主震对雅鲁藏布江地区和拉萨块体南北走向的正断层影响较大(张贝等,2015);同时,从余震序列分布特征可以看出(图 3),余震主要沿东南向扩展,与事件1所处的东北方向不在一个方位.因此本研究认为事件1不是尼泊尔地震的余震,而是由于主震发生后引发邻近区域构造应力调整所造成的触发型地震.事件2虽然也为正断类型,但其包含一定的走滑分量,且其节面I走向(138°)与余震序列的走向也较为一致(图 3表 1),因此我们认为该地震为尼泊尔地震的余震,其正断型破裂机制是由于主震同震位移影响导致发震断层上盘应力拉张而引起.

事件3和4为走滑型地震,这2个地震位于主震破裂延展的东南方向上,震中处在主震与5月12日MS7.5强余震之间(图 3),可能表明随着破裂往东南方向延伸,断层的走滑特征愈加明显.这样的余震分布特征与2008年汶川MS8.0地震余震序列相类似(张勇等,2009),在主震处为逆冲型,沿破裂方向分布的余震其走滑分量逐渐增强.但与汶川MS8.0地震扩展约300 km不同(Zhang et al.,2009),此次尼泊尔MS8.1地震破裂长度相对较短,大约150 km(张勇等,2015),我们推测主震的东南向破裂并未扩展完全,可能受到了阻挡.5月12日在主震破裂的东南向边缘又发生了一个MS7.5强余震,我们反演的事件5和6也位于该区域,与MS7.5强余震破裂机制相同,均表现为逆冲类型地震(图 3).上述不同时间、不同空间分布的中等余震震源破裂机制表明,在尼泊尔MS8.1主震发生后,受到主震同震位移的影响,不同区域处于不同的应力状态,从而使中等余震表现出不同的震源类型.

此次尼泊尔MS8.1地震位于青藏高原的南边界,主震的破裂过程(张勇等,2015)以及余震序列分布特征(图 1)显示,破裂沿东南方向迁移,表明此次MS8.1地震对青藏高原及我国西南地区具有应力加载作用,建议应加强这些地区的地震监测预测工作.自2000年以来,在青藏高原及周边地区发生了一系列强震活动,如2001年昆仑山MS8.1地震、2010年玉树MS7.0地震、2008年汶川MS8.0地震和2013年芦山MS7.0、于田MS7.3地震(张广伟等,2014),说明印度板块与欧亚板块的持续碰撞对青藏高原及周边构造运动和地震活动的强烈影响作用(邓起东等,2010徐锡伟等,20082011闻学泽等,2011Jia et al.,2012).此次尼泊尔地震,更印证了印度板块与欧亚板块的持续碰撞作用,说明青藏高原仍处于强震活跃期(邓起东等,2014).

致谢 感谢中国地震局地球物理研究所国家数字测震台网数据备份中心(doi:10.7914/SN/CB)为本研究提供地震波形数据.

参考文献
[1] Asano Y, Saito T, Ito Y, et al. 2011. Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 669-673.
[2] Chen P, Jordan T H, Zhao L. 2005. Finite-moment tensor of the 3 September 2002 Yorba Linda earthquake. Bull. Seismol. Soc. Am.95(3): 1170-1180.
[3] Chen W W, Ni S D, Wang Z J, et al. 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake. Chinese J. Geophys. (in Chinese), 55(7): 2319-2328, doi: 10.6038/j.issn.0001-5733.2012.07.017.
[4] Chen W W, Ni S D, Kanamori H, et al. 2015. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Seismol. Res. Lett.86(2A): 432-441.
[5] China Earthquake Administration. 2015. Nepal earthquake killed 7566 people, and the difficulties in rescue due to the bad weather. http://www.cea.gov.cn/publish/dizhenj/468/553/101803/101809/20150506093147044205992/index.html.
[6] Deng Q D, Gao X, Chen G H, et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau. Earth Science Frontiers (in Chinese), (5): 163-178.
[7] Deng Q D, Cheng S P, Ma J, et al. 2014. Seismic activities and earthquake potential in the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 57(7): 2025-2042, doi: 10.6038/cjg20140701.
[8] Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res.111: B09305.
[9] Jia K, Zhou S Y, Wang R. 2012. Stress interactions within the strong earthquake sequence from 2001 to 2010 in the Bayankala Block of Eastern Tibet. , Bull. Seismol. Soc. Am.102(5): 2157-2164.
[10] Institute of Geophysics, CEA. 2015.《On 2015 April 25, MS5.9, Dingri, Tibet, earthquake》, http://www.cea-igp.ac.cn/tpxw/272116.shtml.
[11] Lei J S, Li Y, Xie F R, et al. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. J. Geophys. Res.119: 2174-2198.
[12] Li C, van der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett.274(1-2): 157-168.
[13] Li S Q, Chen Q F, Zhao L, et al. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in Northeastern China: regional waveform inversion and possible mechanism. Chinese J. Geophys (in Chinese), 56(9): 2959-2970, doi: 10.6038/cjg20130910.
[14] Sheng S Z, Wan Y G, Jiang C S, et al. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake. Chinese J. Geophys. (in Chinese), 58(5): 1834-1842, doi: 10.6038/cjg20150534.
[15] Tan Y, Zhu L P, Helmberger D V et al. 2006. Locating and modeling regional earthquakes with two stations. J. Geophys. Res.111: B01306.
[16] Teng J W, Si X, Wang Q S, et al. 2015. Collation and stipulation of the core science problems and theoretical concept in the geoscience study on the Tibetan plateau. Chinese J. Geophys. (in Chinese), 58(1): 103-124, doi: 10.6038/cjg20150109.
[17] Wang W M, Hao J L, Yao Z X. 2013. Preliminary result for rupture process of Apr. 20, 2013, Lushan earthquake, Sichuan, China. Chinese J. Geophys. (in Chinese), 54(4): 1412-1417, doi: 10.6038/cjg20130436.
[18] Wen X Z, Du F, Zhang P Z, et al. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 54(3): 706-716, doi: 10.3969/j.issn.0001-5733.2011.03.010.
[19] Xu X W, Yu G H, Ma W T, et a1. 2008. Rupture behavior and deformation localization of the Kunlunshan earthquake (MW7.8) and their tectonic implications. Science in China Series D: Earth Sciences, 51(10): 1361-1374.
[20] Xu X W, Tan X B, Wu G D, et al. 2011. Surface rupture features of the 2008 Yutian MS7.3 earthquake and its tectonic nature. Seismology and Geology (in Chinese), 33(2): 462-471.
[21] Xu Z Q, Wang Q, Zeng L S, et al. 2013. Three-dimensional extrusion model of the Great Himalaya slice. Geology in China (in Chinese), 40(3): 671-680.
[22] Zhang B, Cheng H H, Shi Y L. 2015. Calculation of the co-seismic effect of MS8.1 earthquake, April 25, 2015, Nepal. Chinese J. Geophys. (in Chinese), 58(5): 1794-1803, doi: 10.6038/cjg20150529.
[23] Zhang G W, Lei J S, Sun C Q. 2014. Relocation of the 12 February 2014 Yutian, Xinjiang, mainshock (MS7.3) and its aftershock sequence. Chinese J. Geophys. (in Chinese), 57(3): 1012-1020, doi: 10.6038/cjg20140330.
[24] Zhang G W, Lei J S. 2015. Mechanism of the 2011 Tengchong, Yunnan, MS5.2 double earthquake. Chinese J. Geophys. (in Chinese), 58(4): 1194-1204, doi: 10.6038/cjg20150409.
[25] Zhang Y, Feng W P, Xu L S, et al. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Science in China (Series D): Earth Sciences, 52(2): 145-154.
[26] Zhang Y, Xu L S, Chen Y T. 2009. Spatio-temporal variation of the source mechanism of the 2008 great Wenchuan earthquake. Chinese J. Geophys.(in Chinese), 52(2): 379-389.
[27] Zhang Y, Xu L S, Chen Y T. 2015. Rupture process of the 2015 Nepal MW7.9 earthquake: Fast inversion and preliminary joint inversion. Chinese J. Geophys. (in Chinese), 58(5): 1804-1811, doi: 10.6038/cjg20150530.
[28] Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[29] Zheng Y, Ma H S, LÜ J, et al. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China (Series D): Earth Science, 52(6): 739-753.
[30] Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bull. Seismol. Soc. Am.86(5): 1634-1641.
[31] Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int.148(3): 619-627.
[32] Zhu L P, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys. J. Int.194(2): 839-843.
[33] 陈伟文, 倪四道, 汪贞杰等. 2012. 2010年高雄地震震源参数的近远震波形联合反演. 地球物理学报, 55(7): 2319-2328, doi:

10.6038/j.issn.0001-5733.2012.07.017.

[34] 邓起东, 高翔, 陈桂华等. 2010. 青藏高原昆仑—汶川地震系列与巴颜喀喇断块的最新活动. 地学前缘, (5): 163-178.
[35] 邓起东, 程绍平, 马冀等. 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042, doi: 10.6038/cjg20140701.
[36] 李圣强,陈棋福,赵里等.2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制:区域波形反演与成因探讨.地球物理学报,56 (9): 2959-2970, doi: 10.6038/cjg20130910.
[37] 盛书中, 万永革, 蒋长胜等. 2015. 2015年尼泊尔MS8. 1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834-1842, doi: 10.6038/cjg20150534.
[38] 滕吉文, 司芗, 王谦身等. 2015. 青藏高原地球科学研究中的核心问题与理念的厘定. 地球物理学报, 58(1): 103-124, doi: 10.6038/cjg20150109.
[39] 王卫民, 郝金来, 姚振兴. 2013. 2013年4月20日四川芦山地震震源破裂过程反演初步结果. 地球物理学报, 56(4): 1412-1417, doi: 10.6038/cjg20130436.
[40] 闻学泽, 杜方, 张培震等. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震. 地球物理学报, 54(3): 706-716, doi: 10.3969/j.issn.0001-5733.2011.03.010.
[41] 徐锡伟, 于贵华, 马文涛等. 2008. 昆仑山地震(MW7.8)破裂行为、变形局部化特征及其构造内涵讨论. 中国科学D辑: 地球科学, 38(7): 785-796.
[42] 徐锡伟, 谭锡斌, 吴国栋等. 2011. 2008年于田MS7.3地震地表破裂带特征及其构造属性讨论. 地震地质, 33(2): 462-471.
[43] 许志琴, 王勤, 曾令森等. 2013. 高喜马拉雅的三维挤出模式. 中国地质, 40(3): 671-680.
[44] 张贝, 程惠红, 石耀霖. 2015. 2015年4月25日尼泊尔MS8.1大地震的同震效应. 地球物理学报, 58(5): 1794-1803, doi: 10.6038/cjg20150529.
[45] 张广伟, 雷建设, 孙长青. 2014. 2014年2月12日新疆于田MS7.3级地震主震及余震序列重定位研究. 地球物理学报, 57(3): 1012-1020, doi: 10.6038/cjg20140330.
[46] 张广伟, 雷建设. 2015. 2011年云南腾冲5.2级双震发震机理. 地球物理学报, 58(4): 1194-1204, doi: 10.6038/cjg20150409.
[47] 张勇, 许力生, 陈运泰. 2009. 2008年汶川大地震震源机制的时空变化. 地球物理学报, 52(2): 379-389.
[48] 张勇, 许力生, 陈运泰. 2015. 2015年尼泊尔MW7.9地震破裂过程: 快速反演与初步联合反演. 地球物理学报, 58(5): 1804-1811, doi: 10.6038/cjg20150530.
[49] 郑秀芬, 欧阳飚, 张东宁等. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[50] 郑勇, 马宏生, 吕坚等. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系. 中国科学D辑: 地球科学, 39(4): 413-426.
[51] 中国地震局. 2015. 《尼泊尔地震致7566人遇难, 天气恶劣救援进展困难》, http://www.cea.gov.cn/publish/dizhenj/468/553/101803/101809/20150506093147044205992/index.html.
[52] 中国地震局地球物理研究所. 2015.《2015年4月25日西藏定日5.9级地震》, http://www.cea-igp.ac.cn/tpxw/272116.shtml.