地球物理学报  2013, Vol. 56 Issue (1): 150-158   PDF    
天山北麓黄土环境磁学特征及其古气候意义
魏海涛1,2 , SubirK.Banerjee2 , 夏敦胜1 , MichaelJ.Jackson2 , 贾佳1 , 陈发虎1     
1. 兰州大学西部环境教育部重点实验室, 兰州 730000;
2. Institute for Rock Magnetism, Department of Geology and Geophysics, University of Minnesota, 55455 USA
摘要: 新疆黄土-古土壤序列环境磁学参数的变化机理及其气候意义仍存在争议.本文选择天山北麓的中梁黄土剖面, 系统开展了低温和常温下环境磁学参数的测试与研究, 测量包括室温的磁化率与饱和磁化强度, 以及磁化率与饱和剩余磁化强度的低温变化.结果发现, 该剖面黄土和古土壤样品的磁性矿物主要由磁铁矿与磁赤铁矿组成, 不含任何粒级成壤形成的超顺磁矿物颗粒, 其磁化率信号主要记录了粉尘磁性矿物含量变化, 较高的磁化率指示较强的风动力状况或者较近的风尘源区, 新疆黄土的这种环境磁学"风尘输入模式"可用来重建干旱区的风动力强弱变化.
关键词: 新疆黄土      环境磁学      沉积通量      风动力     
Magnetic characteristics of loess-paleosol sequences on the north slope of the Tianshan Mountains, northwestern China and their paleoclimatic implications
WEI Hai-Tao1, Subir K. Banerjee2, XIA Dun-Sheng1, Michael J. Jackson2, JIA Jia1, CHEN Fa-Hu1     
1. MOE Key Laboratory of West China's Environmental System, Lanzhou University, Lanzhou 730000, China;
2. Institute for Rock Magnetism, Department of Geology and Geophysics, University of Minnesota, 55455 USA
Abstract: Controversy remains in decoding paleoclimatic information via environmental magnetic methods based on loess deposition in drylands of northwestern China. A systematic mineral magnetic investigation was carried out in the loess-paleosol sequence at Zhongliang, located on the north slope of the Tianshan Mountains. The results show that ferrimagnetic minerals are mainly comprised of magnetite and maghemite. Besides, no evidence for the existence of pedogenic superparamagnetic particles is found in this work, which indicates that magnetic variation was caused mainly by changes of input concentration of magnetic assemblages, thus the higher susceptibility reflects stronger wind intensity and/or closer dust source(s). This kind of "dust input mode" can be used to reconstruct paleo wind intensity in dry lands..
Key words: Xinjiang Loess      Environmental magnetism      Deposition flux      Wind intensity     
1 引言

中国黄土高原黄土对理解第四纪冰期-间冰期旋回变化[1-2]、新生代气候环境变化[3]和亚洲内陆干旱化[4]起到了巨大推动作用.环境磁学参数(如磁化率)在黄土古气候重建中发挥了重要作用,黄土高原地区成壤过程中形成的细粒磁铁矿和磁赤铁矿颗粒增加了磁性矿物含量[5-8],从而导致古土壤磁化率远高于黄土磁化率.环境磁学参数不但能够指示轨道尺度夏季风强弱旋回变化[9-10],而且也能够很好记录千年尺度气候快速变化[11-12].新疆地区是我国另一个风成黄土集中分布区[1, 13],集中分布于伊犁河谷[14]、天山北麓[15]和昆仑山北麓[16]图 1),多形成于中更新世以来[13, 17],一些剖面显示了清晰的黄土-古土壤序列[15, 18-19].然而,作为黄土高原地区黄土记录有效手段的环境磁学参数,在新疆黄土气候记录中存在较大不确定性,一些风成黄土剖面的环境磁学记录类似于黄土高原,古土壤层具有较高的磁化率[20],而更多的剖面则显示黄土层磁化率更高[19-23].以往的研究[19, 22-23]推断,新疆黄土中的磁性矿物以粗颗粒为主,较少成壤形成的细粒磁性矿物.然而,这些推论需要更多的岩石磁学实验支持.本文选择天山北麓的中梁典型风成黄土剖面,应用低温和常温环境磁学参数并结合粒度指标讨论干旱区黄土剖面磁化率的环境意义,为进一步发掘新疆黄土气候信息提供科学依据.

图 1 (a)新疆地区黄土分布(修改自Sun等[26]);(b)中梁黄土剖面照片 Fig. 1 (a)Distribution of Xinjiang Loess(modified from Sun et al.[26]); (b)Photo of Zhongliang loess-paleosol section
2 材料与方法

天山北麓是新疆黄土的集中分布区之一(图 1a),中梁黄土剖面位于天山北麓的乌鲁木齐县中梁村南缘(地理坐标:87.34°E,43.50°N,海拔:1668m).剖面附近达坂城气象站年均降水量仅71.8mm,年均温度为7℃,属于较典型的干旱区[24-25].剖面总厚度8.00m,自剖面顶部至底部存在四个层次(图 1b):顶部至深0.80m土壤呈淡黑色,有一定的粘粒含量,土质比较疏松,根孔丰富,是相对明显的土壤层;深0.80~3.00m黄土呈浅黄色,质地均匀,发现有碳酸盐菌丝体,整体有钙结核分布(直径约1~2cm),该层位根孔分布明显少于上一层;深3.00~6.90m黄土呈浅棕色,粉砂质,粘粒较多,土壤为次棱块状结构;深6.90~7.50m土层呈浅棕色,出现黑色小砾石,深7.50m以下砾石明显增加.就整个剖面而言,土壤发育较弱.根据该黄土剖面岩性特征,将其划分为四个地层单元:顶部0.80m为淡黑色全新世古土壤层和耕作层(S0),深0.80~3.00m为典型黄色风成黄土层(L1L1),深3.00~6.90m为弱发育土壤层(L1S1),深6.90m以下至剖面底部为山麓冲洪积砾石层(图 2).该剖面属于天山北麓的典型风成黄土剖面,本文以12cm间隔自顶部至深7.50m处采集样品计63个,在黄土和古土壤层共选择4个代表性样品开展低温磁学研究.释光测年结果显示底部7.5m处年代为43.25±4.59ka.

图 2 中梁剖面黄土-古土壤序列及其磁学参数与粒度参数随深度的变化 Fig. 2 Loess/paleosol stratigraphy at Zhongliang, and variations of magnetic parameters and grain size distribution

室温磁化率应用BartingtonMS2磁化率仪测量,按照Dearing等描述的方法准备样品和测量[27],获得低频质量磁化率χχlf、百分频率磁化率χfd%以及绝对频率磁化率χfd,磁滞回线采用振动样品磁力计(VSM)测量,并获得饱和磁化强度MS、亚铁磁性磁化率χf等参数[28].低温环境磁学参数按照Lascu等文献描述的方法测量[29].低温饱和等温剩磁采用MPMS2仪器测量,室温下获得剩磁的磁场强度为2.5T,而后在无磁场下先将样品冷却至10K,后以5K的步长增温至300K并同步测量其饱和剩余磁化强度,得到低温剩余磁化强度随温度变化的曲线(图 3).低温磁化率以10K的步长测量,每个温度点分别在1.0,5.6,31.6,117.6,997.3Hz不同频率下测量其磁化率.粒度参数按照鹿化煜等[30]描述的方法对样品进行预处理,使用Matersize 2000激光粒度仪测量.磁滞回线与低温环境磁学参数在美国明尼苏达大学岩石磁学研究中心完成,其余实验测试在兰州大学西部环境教育部重点实验室完成.

图 3 中梁剖面黄土-古土壤样品低温饱和剩磁随温度变化曲线,其中T为测试点温度,MSIRM为该测试温度点剩余磁化强度,MSIRM(10)是温度为10K时剩余磁化强度 Fig. 3 Zero-field warming of low temperature saturation isothermal remanent magnetization for representative samples, where T is the absolute temperature, MSIRM is the saturation isothermal remanent magnetization and MSIRM(10) is the saturation isothermal remanent magnetization at 10K
3 结果与讨论 3.1 磁性矿物的组成

中梁剖面黄土和古土壤样品的低温饱和剩余磁化强度随温度具有相近的变化特征(图 3).低温饱和剩余磁化强度先随温度的升高较快降低,在50~80K间缓慢降低,80~120K间出现快速降低,后又缓慢降低直到室温(300K),说明不论黄土样品还是古土壤样品均存在明显的Verwey转换[31],指示样品中的亚铁磁性矿物以磁铁矿为主.Verwey转换是由于低温时磁铁矿分子微结构的变化,从而导致一系列磁学性质的变化,该转换被广泛用来检测磁铁矿的存在情况[31].应用Verwey转换判断样品中磁铁矿存在和含量[32]比采用传统的居里温度判定磁铁矿的存在具有明显优势,避免了在加热样品过程中发生矿物氧化还原的问题[28],特别是在黄土和古土壤中有机质存在的情况下,加热导致的一系列氧化还原反应增加了对磁性矿物分析的不确定性[33].

然而,有别于标准磁铁矿在120K附近存在的Verwey转换,中梁剖面黄土和古土壤样品发生Verwey转换的温度稍低于标准温度,而且120K之后在加热过程中存在明显且稳定的剩磁缓慢递减,这与标准磁铁矿的Verwey转换形态[31]有明显不同,而与发生表面氧化的粗颗粒磁铁矿的样品表现一致[32].两种可能会导致Verwey转换比标准温度偏低,其一是铁离子被其他阳离子替代,但这会导致Verwey温度远低于120K[34],这与中梁剖面黄土和古土壤样品不同(图 3);其二是磁铁矿表面氧化形成磁赤铁矿,同样会导致该现象[31-32],并且后者在自然界中会普遍发生[35].值得注意的是,标准磁铁矿的颗粒大小对Verwey转换温度没有明显影响[31].因此,可以推断中梁剖面黄土和古土壤样品Verwey转换温度较标准磁铁矿的偏低是由于磁铁矿颗粒沉积之后的表面氧化造成的.对于样品在120K之后的加热过程中存在明显且稳定的剩磁缓慢递减现象,反映了磁赤铁矿或者针铁矿存在的可能[31-32, 35],而干旱区风尘源区干旱的气候环境不大可能形成针铁矿.综合所述,中梁剖面黄土和古土壤以磁铁矿为主,伴随有磁铁矿表面氧化形成的少量磁赤铁矿.

3.2 磁性矿物的粒径大小

中梁剖面黄土和古土壤样品在不同频率下磁化率随温度的变化形态相近(图 4),磁化率值在10K时最高,可达180×10-8m3/kg,并随着温度升高而显著降低.在100K时,磁化率值降低到约40×10-8m3/kg,而后随着温度升高出现微弱增加,到约120K增加结束,然后随温度升到300K其磁化率值缓慢降低(图 4).从图 4可见,同一温度不同频率的磁化率值没有出现明显差异,说明样品磁化率不存在频率依存性.

图 4 中梁剖面黄土和古土壤样品磁化率随温度和频率变化曲线,其中T为测试点温度,χ为该测试温度点磁化率,测量频率分别为1,5.6,31.6,117.6Hz和997.3Hz,样品磁化率未显示频率依存性 Fig. 4 Frequency and temperature dependence of susceptibility for representative samples of Zhongliang profile, where T is the absolute temperature, χ is the magnetic susceptibility which was measured at frequencies of 1, 5.6, 31.6, 117.6, and 997.3 Hz separately, showing no frequency-dependence of the these samples

中梁剖面样品的低温磁化率随温度的变化有两点值得注意.其一,除在Verwey转换前后(100~125K)磁化率值有微弱的增加外,磁化率值均随着温度升高表现为稳定的减小,这与中国黄土高原的黄土和古土壤样品明显不同[36].如果样品中存在明显的超顺磁颗粒,那么随着温度升高,热扰动增强,细颗粒的亚铁磁性矿物逐渐“解阻”成为超顺磁颗粒[37].由于超顺磁颗粒的磁化率值是其它粒级的数倍,会导致磁化率值显著升高[29, 38].中梁剖面黄土和古土壤样品磁化率随温度升高而稳定降低的现象说明,该剖面黄土和古土壤样品中在加热过程中没有出现超顺磁颗粒.其二,不同频率下测得的磁化率在各温度点都几乎一致,没有观测到差异.这也与前人报道的黄土[36]、现代土壤[39]甚至湖泊沉积样品的测量结果显著不同[29].超顺磁颗粒的磁化率具有明显的频率依存特性,在高频条件下测量时,部分超顺磁颗粒的磁化率信号不能被观测到,这样就使不同频率下的磁化率测量值出现差异[37, 40-41].中梁剖面样品在整个加热过程中任何温度点的磁化率值都未观测到频率差异,可以推断该剖面样品几乎没有任何粒级的次生超顺磁颗粒存在,可以忽略其对磁化率值的影响.粉尘沉积后经过黄土化和成壤过程[1]可以形成细颗粒的次生磁性矿物[6, 42],而最近的研究也进一步证明[43],尽管单畴颗粒同样可以经成壤作用生成,但黄土沉积后成壤作用形成的超顺磁颗粒与细单畴颗粒存在一个相对固定的粒径分布范围,且不随成壤强度改变而变化[44-47].中梁剖面黄土和古土壤样品中没有发现任何粒级的超顺磁矿物, 可以推论该区的黄土沉积和成壤过程没有发育到能够产生次生亚铁磁性矿物的成壤阶段,符合这一区域现代干旱的气候和环境条件.

3.3 环境磁学参数的控制因素及其意义

中梁剖面的质量磁化率(χχlf)变化在(28.5~57.8)×10-8m3/kg之间,平均值为43.2×10-8m3/kg(图 2).砾石层的χχlf值最低,L1S1古土壤层整体较低,χlf值位于(30.1~49.9)×10-8m3/kg之间,平均为39.8×10-8m3/kg;L1L1黄土层的χlf值整体较高,平均为51.4×10-8m3/kg,顶部古土壤层(S0)的χlf值稍低,平均值仅为47.2×10-8m3/kg;χf的变化趋势与χlf一致,只是值稍低于χlf,在L1S1古土壤层平均值为34.2×10-8m3/kg,在L1L1黄土层平均为46.3×10-8m3/kg,在顶部古土壤层(S0)平均值为42.1×10-8m3/kg.中梁剖面黄土层具有较高的磁化率值而古土壤具有较低的磁化率值代表了新疆黄土的一个普遍现象[19-23].饱和磁化强度(MS)值变化与χlf的变化趋势一致,总体表现为黄土层值较高而古土壤层较低.χlfMS在剖面顶部地表高值可能与乌鲁木齐市大气污染有关.样品的绝对频率磁化率χfd没有明显的变化,整体值也很低,平均仅为0.54×10-8m3/kg;百分频率磁化率(χfd%)在剖面没有明显的变化趋势,其值同样整体较低,平均值仅为1.24%,即使剖面顶部较高的χfd%也不超过4%.χfd%仅对特定粗粒级的超顺磁颗粒(约20nm)敏感[29, 36, 43],Liu等[43]也指出,χfd%在5%以下已经不能反映超顺磁颗粒相对含量的变化.χf/Ms在黄土研究中也常用以分析超顺磁颗粒含量与变化[28],但对中梁剖面样品而言,该参数同样很低且几乎无任何变化,平均仅为0.91×10-5m·A-1(如图 2).结合χfd%以及χfdχf/Ms等随深度的变化和低温磁化率随温度的变化,可以确认中梁剖面的黄土和古土壤层均缺少成壤过程形成的超顺磁颗粒的磁性矿物,剖面环境磁学参数的变化反映了大气粉尘磁学参数的变化.粒度分析结果显示,10μm以下的细粉砂粒级含量在古土壤层(S0和L1S1)较高,分别为37%与44%,而在黄土层很低,约为33%;古土壤层(S0和L1S1)粗颗粒含量较少,而黄土层(L1L1)颗粒整体较粗,大于63μm的砂粒级含量高达15%(图 2),与通过野外岩性观测划分的黄土、古土壤层位相吻合.

MS值是样品在1T的磁场中获得的磁化强度,反映了亚铁磁性矿物的绝对含量,不受磁颗粒粒径影响[28, 35].在磁性矿物含量不变的条件下,矿物磁畴状态的改变可以引起磁化率的显著变化,但不会导致饱和磁化强度的改变,如超顺磁颗粒相对含量的变化会明显改变样品磁化率的值[28, 38].中梁剖面中χfMS的变化几乎一致(图 2),散点关系图显示两者的相关系数为0.88(图 5a),明显的相关性表明磁化率的变化主要由磁性矿物的含量控制.图 5b显示χfχfd%没有明显的相关性(R2=0.04),进一步证实中梁剖面χf的变化未受磁性矿物粒径尤其是超顺磁颗粒所影响.结合前文低温磁化率分析,中梁剖面缺失成壤形成的超细磁性颗粒,同时由于磁性矿物类型也不存在显著变化,因此可以推知,中梁剖面磁化率值主要由粉尘输入的粗颗粒磁性矿物含量决定,该剖面的磁化率变化反映的是粉尘输入的磁性矿物含量的变化.

图 5 中梁剖面样品χfMs(a)及χfd%(b)相关性图 Fig. 5 Values of χf versus Ms(a)and χfd%(b)for samples from Zhongliang peofile

前人对新疆黄土的研究发现,新疆黄土中黄土层的磁化率普遍比古土壤层高,样品颗粒越粗其磁化率值越高[19, 23, 48].基于上述事实,前人推论,风尘搬运动力增强会导致输入的亚铁磁性矿物增加,磁化率值也就较高[19, 48].中梁剖面低温磁化率测量发现,新疆黄土中普遍存在的高磁化率值不是由于成壤作用造成的,而是由于粉尘输入过程中亚铁磁性矿物含量的差异造成的.然而,黄土形成时强的风动力或者近源区沉积也会导致碎屑沉积颗粒较粗[49],沉积速率较高,这一过程中要形成相对较高的磁性矿物含量,无疑要求粉尘沉积过程中磁性矿物如磁铁矿相对于石英、长石等碎屑颗粒产生相对的富集,风力越大磁性矿物相对富集越高.若这一推论成立,那么在干旱区,要求沙漠中沉积粉尘磁化率最高,离沙漠越远尽管降水增加,但粉尘磁化率会越低.为检验这一假设,我们选择大气污染最小的塔里木盆地塔克拉玛干沙漠,从沙漠中心向外围沿盛行风向采集4个表土样品(图 1),并测量样品粉砂组分的磁化率,即通常认为的大气粉尘组分[1, 50],其磁化率从490×10-8m3/kg递减到157×10-8m3/kg,年均降水量有微弱的增加,但都在50mm以下[51].这与以往Torii等[52]与昝金波等[53]测量的沙漠样品“全样”的磁化率值存在差别.这样,干旱区气候越干旱,风力越大,风尘沉积速率越高,颗粒越粗,反而导致磁性矿物含量越高,磁化率值也就越高这一模式,可以简称为干旱区黄土磁化率变化的“风尘输入模式”.干旱区环境磁学“风尘输入模式”的产生应当是粉尘在搬运过程中存在石英等碎屑物质与亚铁磁性矿物如磁铁矿间的密度差异形成“分馏效应”造成的.碎屑反磁性矿物如石英的密度是2.65g/cm3,亚铁磁性矿物如磁铁矿的密度是5.2g/cm3,这会导致粉尘沉积过程中磁性矿物先明显沉积,使磁性矿物在沉积物中相对含量增大,磁化率必然偏高.当风动力增强或者沉积区距离源区较近时,石英等碎屑物质较粗,磁铁矿因为密度较大而有相对高的沉积通量,从而导致磁铁矿的相对含量增加,结果使沉积层整体表现为较高的磁化率值,出现前人发现的新疆黄土磁化率高值对应沉积物较粗的黄土层这一现象[19, 23, 48].

新疆黄土环境磁学的“风尘输入模式”尽管不能用来指示成壤强弱或者降水高低变化,但可以指示风动力的强弱变化,从而具有明显的环境意义.除天山北麓外,西昆仑北麓的黄土磁化率也具有类似现象,较高的磁化率值往往对应于粗颗粒较高的沉积阶段[19].干旱区黄土磁化率的“风尘输入模式”可能适用于降水较少气候干旱的区域,例如天山北麓和六盘山西麓黄土分布区.伊犁河谷地区黄土分布区其年降水量从仅200mm到500mm,气候从干旱区到半湿润区,其较干旱区域的黄土磁化率增强模式符合“粉尘输入模式”;而较湿润区域,例如库尔德能布拉克剖面[20, 54],其黄土地层磁化率变化与黄土高原区域相似,磁化率与成壤作用呈现正相关,是由于部分层位经成壤过程中形成了次生超顺磁性颗粒,所以古土壤具有较高的质量高磁化率和百分频率磁化率[54].降水量较高的中亚地区的黄土分布区,例如塔吉克斯坦的黄土,其磁化率变化也记录成壤强度变化,指示区域降水变化[55].但对于同样在黄土层出现高磁化率值而在古土壤层出现低磁化率值的阿拉斯加黄土[56]与西伯利亚黄土[57],该“风尘输入模式”却未必完全适用,因为较高的绝对降水量和区域低温导致的高有效降水量可能形成特殊的土壤发育[57-58],明显生成次生磁性矿物[58-59],使磁化率的变化同时受风尘输入与土壤发育的影响.因此,尽管本文提出了新疆黄土磁化率变化的“风尘输入模式”,但其适用范围和条件还需要进一步研究.

4 结论

对新疆天山北麓中梁黄土剖面低温和室温环境磁学的系统研究发现:(1)中梁剖面黄土和古土壤样品在低温下均存在Verwey转换,样品低温剩磁变化指示该剖面磁性矿物以磁铁矿为主,含有少量磁赤铁矿;(2)不同频率下的低温磁化率随温度变化没有显示出差异,该剖面黄土和古土壤样品中不含有经成壤过程形成的任何粒级的次生超顺磁矿物颗粒;(3)中梁剖面黄土层具有较高的磁化率,古土壤层具有较低的磁化率,而百分频率磁化率平均值仅为1.24%且变化不大,整个剖面均不存在成壤作用形成的超顺磁性矿物颗粒.该剖面磁化率变化在新疆黄土中具有代表性,磁化率的增强符合“风尘输入模式”,风力越强或者越靠近源区,由于磁性矿物如磁铁矿密度较大而导致磁性矿物相对含量增加,磁化率值增大.

致谢

感谢李国强等参加了野外工作,Julie Bowles,Peter Solheid对实验过程的协助,论文完成过程中与刘青松研究员、宋友桂研究员进行了有益交流讨论,感谢审稿人的宝贵建议.

参考文献
[1] 刘东生. 黄土与环境. 北京: 科学出版社, 1985 . Liu T S. Loess and Environment (in Chinese). (in Chinese) Beijing: Science Press, 1985 .
[2] Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2. 6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea delta O-18 record. Paleoceanography , 2002, 17(3): 5-21.
[3] Ding Z L, Yang S L, Sun J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7. 0 Ma. Earth and Planetary Science Letters , 2001, 185(1-2): 99-109. DOI:10.1016/S0012-821X(00)00366-6
[4] Ruddiman W F, Hao Q Z, Wu H B, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature , 2002, 416(6877): 159-163. DOI:10.1038/416159a
[5] 刘秀铭, 刘东生, HellerF, 等. 黄土频率磁化率与古气候冷暖变换. 第四纪研究 , 1990, 10(1): 42–50. Liu X M, Liu T S, Heller F, et al. Frequency-dependent susceptibility of loess and quaternary paleoclimate. Quaternary Sciences (in Chinese) , 1990, 10(1): 42-50.
[6] Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature , 1990, 346(6286): 737-739. DOI:10.1038/346737a0
[7] Liu Q S, Jackson M J, Banerjee S K, et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research-Solid Earth , 2004, 109: B12107. DOI:10.1029/2004JB003249
[8] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China:Implications for Quaternary development of Asian aridification and cooling. Earth and Planetary Science Letters , 2006, 241(1-2): 248-259. DOI:10.1016/j.epsl.2005.10.020
[9] Kukla G. Loess stratigraphy in central China. Quaternary Science Reviews , 1987, 6(3-4): 191-207. DOI:10.1016/0277-3791(87)90004-7
[10] An Z S. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews , 2000, 19(1-5): 171-187. DOI:10.1016/S0277-3791(99)00060-8
[11] Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate records from Chinese loess:evidence for rapid climatic changes over the last 75 kyr. Palaeogeography Palaeoclimatology Palaeoecology , 1997, 130(1-4): 323-335. DOI:10.1016/S0031-0182(96)00149-6
[12] Fang X M, Ono Y, Fukuksawa H, et al. Asian summer monsoon instability during the past 60, 000 years:magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth and Planetary Science Letters , 1999, 168(3-4): 219-232. DOI:10.1016/S0012-821X(99)00053-9
[13] 滕志宏. 新疆黄土的某些特征及其形成条件的初步认识. 西北大学学报 , 1986, 16(1): 69–76. Teng Z H. Some characteristics and analysis of forming the conditions of loess in Xinjiang. Journal of Northwest University (in Chinese) , 1986, 16(1): 69-76.
[14] 宋友桂, 史正涛. 伊犁盆地黄土分布与组成特征. 地理科学 , 2010, 30(2): 267–272. Song Y G, Shi Z T. Distribution and compositions of loess sediments in Yili Basin, Central Asia. Scientia Geographica Sinica (in Chinese) , 2010, 30(2): 267-272.
[15] 方小敏, 史正涛, 杨胜利, 等. 天山黄土和古尔班通古特沙漠发育及北疆干旱化. 科学通报 , 2002, 47(16): 540–545. Fang X M, Shi Z T, Yang S L, et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut desert anddrying of northern Xinjiang. Chinese Science Bulletin (in Chinese) , 2002, 47(16): 540-545.
[16] Fang X M, Lü L Q, Yang S L, et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Science in China Series D:Earth Sciences , 2002, 45(4): 289-299. DOI:10.1360/02yd9031
[17] 叶玮, 桑长青, 赵兴有. 新疆黄土分布规律及粉尘来源. 中国沙漠 , 2003, 23(5): 514–520. Ye W, Sang C Q, Zhao X Y. Spatial-temporal distribution of loess and source of dust in Xinjiang. Journal of Desert Research (in Chinese) , 2003, 23(5): 514-520.
[18] 叶玮, 董光荣, 袁玉江, 等. 新疆伊犁地区末次冰期气候的不稳定性. 科学通报 , 2000, 45(6): 641–646. Ye W, Dong G R, Yuan Y J, et al. Instability of last ice age climate in Yili, XinJiang. Chinese Science Bulletin (in Chinese) , 2000, 45(6): 641-646.
[19] Zan J B, Fang X M, Yang S L, et al. A rock magnetic study of loess from the West Kunlun Mountains. Journal of Geophysical Research-Solid Earth , 2010, 115: B10101. DOI:10.1029/2009JB007184
[20] 叶玮. 新疆西风区黄土与古土壤磁化率变化特点. 中国沙漠 , 2001, 21(4): 380–386. Ye W. Study on magnetic susceptibility of loess and paleosol sequences in westerly region of Xinjiang. Journal of Desert Research (in Chinese) , 2001, 21(4): 380-386.
[21] 史正涛, 方小敏, 宋友桂, 等. 天山北坡黄土记录的中更新世以来干旱化过程. 海洋地质与第四纪地质 , 2006, 26(3): 109–114. Shi Z T, Fang X M, Song Y G, et al. Loess sediments in the north slope of Tianshan mountains and its indication of desertification since middle Pleistocene. Marine Geology and Quaternary Geology (in Chinese) , 2006, 26(3): 109-114.
[22] 夏敦胜, 陈发虎, 马剑英, 等. 新疆伊犁地区典型黄土磁学特征及其环境意义初探. 第四纪研究 , 2010, 30(5): 902–911. Xia D S, Chen F H, Ma J Y, et al. Magnetic characteristics of loess in the Ili area and their environmental implication. Quaternary Sciences (in Chinese) , 2010, 30(5): 902-911.
[23] 邓少福, 杨太保, 秦宏毅, 等. 新疆塔城黄土古土壤磁化率特征及其影响因素. 中国沙漠 , 2011, 31(4): 848–854. Deng S F, Yang T B, Qin H Y, et al. Magnetic susceptibility and its influencing factors from loess paleosol in Tacheng, Xinjiang, China. Journal of Desert Research (in Chinese) , 2011, 31(4): 848-854.
[24] 成鹏. 乌鲁木齐地区近50 a降水特征分析. 干旱区地理 , 2010, 33(4): 580–588. Cheng P. Characteristics of precipitation in the Urumqi regions over the past 50 years. Arid Land Geography (in Chinese) , 2010, 33(4): 580-588.
[25] 刘胜梅, 成鹏. 乌鲁木齐地区近50年来平均气温及极端气温变化特征. 干旱区资源与环境 , 2011, 25(6): 138–146. Liu S M, Cheng P. Characteristics of average air temperature and extreme air temperature changes in Urumqi regions for the past 50 years. Journal of Arid Land Resources and Environment (in Chinese) , 2011, 25(6): 138-146.
[26] Sun J. Source regions and formation of the loess sediments on the high mountain regions of Northwestern China. Quaternary Research , 2002, 58(3): 341-351. DOI:10.1006/qres.2002.2381
[27] Dearing J A, Dann R J L, Hay K, et al. Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International , 1996, 124(1): 228-240. DOI:10.1111/gji.1996.124.issue-1
[28] Hunt C P, Banerjee S K, Han J M, et al. Rock magnetic proxies of climate-change in the loess-paleosol sequences of the western Loess Plateau of China. Geophysical Journal International , 1995, 123(1): 232-244. DOI:10.1111/gji.1995.123.issue-1
[29] Lascu I, Banerjee S K, Berquo T S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods. Geochemistry Geophysics Geosystems , 2010, 11: Q08Z19. DOI:10.1029/2010GC003182
[30] 鹿化煜, 安芷生. 前处理方法对黄土沉积物粒度测量影响的实验研究. 科学通报 , 1997, 42(23): 2537–2538. Lu H Y, An Z S. Pretreatment methods influences on grain size measurement of loess. Chinese Science Bulletin (in Chinese) , 1997, 42(23): 2537-2538.
[31] Özdemir Ö, Dunlop D J, Moskowitz B M. The effect of oxidation on the verwey transition in magnetite. Geophysical Research Letters , 1993, 20(16): 1671-1674.
[32] Özdemir Ö, Dunlop D J. Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles. Journal of Geophysical Research-Solid Earth , 2010, 115: B02101. DOI:10.1029/2009JB006756
[33] Kletetschka G, Banerjee S K. Magnetic stratigraphy of Chinese Loess as a record of natural fires. Geophysical Research Letters , 1995, 22(11): 1341-1343. DOI:10.1029/95GL01324
[34] Moskowitz B M, Jackson M, Kissel C. Low-temperature magnetic behavior of titanomagnetites. Earth and Planetary Science Letters , 1998, 157(3-4): 141-149. DOI:10.1016/S0012-821X(98)00033-8
[35] Evans M E, Heller F. Environmental Magnetism:Principles and Applications of Enviromagnetics.Amsterdam. Boston: Academic Press, 2003 .
[36] Liu Q S, Torrent J, Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research-Solid Earth , 2005, 110: B11102.
[37] Worm H U. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophysical Journal International , 1998, 133(1): 201-206. DOI:10.1046/j.1365-246X.1998.1331468.x
[38] Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosols:paleoclimatic implications. Palaeogeography Palaeoclimatology Palaeoecology , 1998, 137(1-2): 25-54. DOI:10.1016/S0031-0182(97)00103-X
[39] Guyodo Y, LaPara T M, Anschutz A J, et al. Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska. Earth and Planetary Science Letters , 2006, 251(1-2): 168-178. DOI:10.1016/j.epsl.2006.09.005
[40] Shcherbakov V P, Fabian K. On the determination of magnetic grain-size distributions of superparamagnetic particle ensembles using the frequency dependence of susceptibility at different temperatures. Geophysical Journal International , 2005, 162(3): 736-746. DOI:10.1111/gji.2005.162.issue-3
[41] 刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义. 第四纪研究 , 2007, 227(6): 955–962. Liu Q S, Deng C L, Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism. Quaternary Sciences (in Chinese) , 2007, 227(6): 955-962.
[42] 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学. 第四纪研究 , 2007, 27(2): 193–209. Deng C L, Liu Q S, Pan Y X, et al. Environmental magnetism of Chinese loess-paleosol sequences. Quaternary Sciences (in Chinese) , 2007, 27(2): 193-209.
[43] Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews , 2007, 26(3-4): 368-385. DOI:10.1016/j.quascirev.2006.08.004
[44] Forster T, Heller F. Magnetic enhancement paths in loess sediments from Tajikistan, China and Hungary. Geophysical Research Letters , 1997, 24(1): 17-20. DOI:10.1029/96GL03751
[45] Maher B A, MengYu H, Roberts H M, et al. Holocene loess accumulation and soil development at the western edge of the Chinese Loess Plateau:implications for magnetic proxies of palaeorainfall. Quaternary Science Reviews , 2003, 22(5-7): 445-451. DOI:10.1016/S0277-3791(02)00188-9
[46] Liu Q S, Jackson M J, Yu Y J, et al. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophysical Research Letters , 2004, 31. DOI:10.1029/2004GL021090
[47] Geiss C E, Egli R, Zanner C W. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research-Solid Earth , 2008, 113: B11102. DOI:10.1029/2008JB005669
[48] 宋友桂, 史正涛, 方小敏, 等. 伊犁黄土的磁学性质及其与黄土高原对比. 中国科学 , 2010, 40(1): 61–72. Song Y G, Shi Z T, Fang X M, et al. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Science China in Earth Science (in Chinese) , 2010, 40(1): 61-72.
[49] Ding Z, Yu Z, Rutter N W, et al. Towards an orbital time-scale for Chinese Loess Deposits. Quaternary Science Reviews , 1994, 13(1): 39-70. DOI:10.1016/0277-3791(94)90124-4
[50] Pye K. Aeolian Dust and Dust Deposits. London: Academic Press, 1987 .
[51] 刘明光. 中国自然地理地图集. 北京: 中国地图出版社, 2010 . Liu G M. Atlas of China Physics Geography (in Chinese). (in Chinese) Beijing: China Cartographic Publishing House, 2010 .
[52] Torii M, Lee T Q, Fukuma K, et al. Mineral magnetic study of the Taklimakan desert sands and its relevance to the Chinese loess. Geophysical Journal International , 2001, 146(2): 416-424. DOI:10.1046/j.0956-540x.2001.01463.x
[53] 昝金波, 方小敏, 聂军胜, 等. 塔里木盆地风积物表土磁学特征及其与物源物质、气候条件的关系. 科学通报 , 2011, 56(2): 153–160. Zan J B, Fang X M, Nie J S, et al. Magnetic properties of surface soils across the southern Tarim Basin and their relationship with climate and source materials. Chinese Science Bulletin (in Chinese) , 2011, 56(2): 153-160.
[54] 史正涛, 董铭, 方小敏. 伊犁盆地晚更新世黄土一古土壤磁化率特征. 兰州大学学报(自然科学版) , 2007, 43(2): 7–10. Shi Z T, Dong M, Fang X M. The characteristics of later Pleistocene loess-paleosol magnetic susceptibility in Yili Bason. Journal of Lanzhou University (Natural Sciences) (in Chinese) , 2007, 43(2): 7-10.
[55] Ding Z L, Ranov V, Yang S L, et al. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters , 2002, 200(3-4): 387-400. DOI:10.1016/S0012-821X(02)00637-4
[56] Begét J E, Hawkins D B. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature , 1989, 337(6203): 151-153. DOI:10.1038/337151a0
[57] Liu X, Liu T, Paul H, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Science in China Series D:Earth Sciences , 2008, 51(2): 284-293. DOI:10.1007/s11430-007-0145-2
[58] Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess:evidence for pedogenesis. Quaternary International , 1999, 62(1): 93-102. DOI:10.1016/S1040-6182(99)00027-0
[59] Matasova G, Petrovsky E, Jordanova N, et al. Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia:palaeoenvironmental implications. Geophysical Journal International , 2001, 147(2): 367-380. DOI:10.1046/j.0956-540x.2001.01544.x