地球物理学报  2012, Vol. 55 Issue (12): 4116-4125   PDF    
西南天山—塔里木盆地结合带浅深构造关系———深地震反射剖面的初步揭露
侯贺晟1,2 , 高锐1,2 , 贺日政1,2 , 蔡勋育3 , 刘金凯2 , 熊小松1,2 , 管烨1,2 , 曾令森1 , JamesH.Knapp4 , StevenRoecker5     
1. 中国地质科学院地质研究所,北京100037;
2. 中国地质科学院深部探测与地球动力学开放实验室,北京100037;
3. 中国石油化工股份有限公司,北京100078;
4. 南卡罗来纳大学地球与海洋科学学院,美国南卡罗来纳州哥伦比亚29208;
5. 伦斯勒理工学院,美国纽约州特洛伊12180-3590
摘要: 盆山结合部的浅-深结构样式是进行陆内造山动力学研究与讨论的重要依据.2007年,在喀什东的天山与 塔里木盆地之间的过渡带上,完成了一条近南北向的长度为121km的主动源深地震反射剖面,显示出盆山结合部 现今地壳尺度的构造格架.剖面南部呈现出10?12 km巨厚的沉积盖层,沉积盖层内发育滑脱断层;盆山结合部多 排隆起构造以及天山山前上地壳显现出向北倾斜的断裂与地表地质观察吻合;盆山结合带展现出滑脱与逆冲推覆 构造相关的断层褶皱;与塔里木盆地稳定沉积层相比,在南天山浅、中层地层受到强烈的变形改造,导致地层比较 破碎,反射变弱、连续性较差;时间剖面上可以追踪到比较连续的Moho反射,从南向北有加深的趋势.深地震反射 剖面揭露出的西南天山与塔里木盆地的这些浅-深构造,展现出塔里木盆地盖层向南天山滑脱与南天山向塔里木 盆地逆冲推覆的特征,反映出陆内汇聚下的盆山耦合关系.
关键词: 西南天山      塔里木盆地      盆山结合带      深地震反射剖面      浅深构造关系     
Shallow-deep tectonic relationship for the junction belt of western part of South Tianshan and Tarim basin—Revealed from preliminary processed deep seismic reflection profile
HOU HeSheng1,2, GAO Rui1,2, HE RiZheng1,2, CAI XunYu3, LIU Jin-Kai2, XIONG XiaoSong1,2, GUAN Ye1,2, ZENG Ling-Sen1, James H. Knapp4, Steven Roecker5     
1. InsLiLuLe of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China;
2. Key Laboratory of Earihprobe and Geodynamics,Chinese Academy of Geological Sciences,Beijing 100037,China;
3. China PeLroleum & Chemical Corporation,Beijing 100078,China;
4. University of South Carolina,Columbia,South Carolina,29208,USA;
5. Rensselaer PolyLechnC InsLiUSe,Troy,New York, 12180-3590, USA
Abstract: Shallow-deep structure relationships for the junction belt is the import basis for the research and discussion of intracontinental orogenic dynamics. A deep seismic reflection profile of 121 km long, running in nearly SN direction,deployed in the junction zone between South Tianshan and Tarim basin to the east of Kashi, was completed in 2007. The profile shows nowadays lithospheric tectonic framework of this junction zone. From south to north, for upper crust structure observed from the prcfile is the folded sedimentary cover withhuge 10 ~12 km thick and detachment fault developed within the sedimentary cover. Fold-thrust belt can be divided into several rows of anticlines, including Muziduke anticline, Tashipisake anticline, Keketamu-Artux anticline, Kashi anticline, and northward incline faults are matched with geology observation. Fault-related folds were generated in association with detachment faults and thrust faults in this junction basin-range region. In the north part of the profile, comparing with continuous reflection of Tarim basin, the discontinuous reflection of middle and shallow crust beneath Tianshan Mountain which s weak and distorted indicate that strong deformation undertaken with the formation making t more broken. Continuous reflection Moho, being well defined along this profile, shows the trend deepened from the south and a i i ttle upward in the middle then deepens to the north within 1 s disparity. The image of the deep structures determines the coupling relationship between the Tarim basin and the Tianshan Mountains, features the detachment of the sedimentary cover of the Tarim basin towards the South Tianshan and the corresponding thrusting of the South Tianshan towards the Tarim basin under the process of intra-continental convergence..
Key words: Western part of South Tianshan      Tarim basin      Junction belt      Deep seismic reflection profile      Deep and shallow tectonic relationship     
1 引 言

远离板块碰撞带的天山是典型的陆内造山带.如何理解天山陆内造山机制与浅-深部动力学过程一直是地学家关心和讨论的主要问题[1-15].

关于天山隆升的机制,有影响的论点是印度板块的远距离碰撞效应[7, 12].晚新生代以来,印度板块与欧亚大陆的汇聚作用和持续碰撞使中亚内陆沿天山、昆仑山、阿尔金山发生变形[7, 13].现今GPS观测结果[14-15],塔里木盆地整体上对天山褶皱带形成正向挤压,刚性的塔里木盆地内部基本不变形[14],向北传递来自印度板块的推挤应力[15].

也有学者根据天山山前万米的新生界沉积记录和频发的地震活动[16-17],认为塔里木地块与哈萨克斯坦板块的向天山下的汇聚、俯冲可能仍在继续,南天山前可能隐伏着巨大的大陆板块俯冲带[18],塔里木板块沿着这个巨型俯冲带深深地俯冲到天山之下,导致现今天山的隆起.俄罗斯学者解释最近的地震观测资料时,仍维持这种认识[19].

数条穿过塔里木盆地与天山造山带南缘的深地震测深剖面[20-22],均揭示了刚性的塔里木盆地具有稳定较硬的基底,地壳平均速度较高(6.5km/s),地壳厚度45km,向北进入天山造山带,地壳显示了软弱的特征,平均速度为6.2km/s,地壳加厚到50~55km[20, 23].接收函数的结果显示,南天山的平均地壳厚度为52km[24].由宽角地震反射、重力数据反演和面波层析综合计算所获得的Moho 深度图[25]揭示出,Moho面深度由塔里木板块下的48km加深至南天山下的60km.其它一些天山及邻区主动源和天然地震的观测的成果,揭示了该地区岩石圈及地幔过渡带较为复杂的行为特征[26-29].

近年来,国内外学者对南天山的浅部地壳,即新生代构造变形开展了不同程度的研究[13, 30-33],这些研究为认识天山与塔里木盆地的构造变形和演化提供了非常重要的依据.在解剖盆山构造关系研究中,前人一般是利用石油地震剖面解释来研究盆岭耦合关系的构造样式,并建立构造模式[34].这些剖面通常只记录到双程走时(TWT)6s,最多9s[35],这对研究并刻画盆地的基底是足够的,但是这些资料无法提供盆地下,尤其是盆山结合部的浅-深结构信息及其联系.

深地震反射剖面已被国际地学界公认为揭示地壳精细结构的有效手段[36-42].探测塔里木块体北缘与南天山岩石圈尺度的接触关系,无疑将提升对该区新生代以来的构造形变特征、几何结构的认识,将促进板内造山动力学研究的发展.本文展示一条布设在西南天山与塔里木盆地结合部位的深地震反射时间剖面,打开一扇剖析该区浅-深构造关系的窗口.本文主要介绍Moho 界面以上,地壳尺度内的浅-深反射特征的联系,关于Moho界面以下岩石圈地幔的反射构造,作者将另文发表.

2 区域地质构造概况和深地震反射剖面位置

位于南天山与塔里木盆地过渡区的南天山褶皱冲断带,发育多排东西走向的逆冲断层和相关褶皱[4, 6, 43],各排构造变形特征及年代学分析也有相关报道[34, 44],逆冲断层由北向南扩展[45],断层和褶皱的形成时代自北向南逐渐变新[6].研究区位于南天山冲断褶皱带西段、西昆仑造山带西部帕米尔构造结(外帕米尔带)和塔里木盆地西北部(喀什凹陷)等构造单元的交汇部位(图 1).

图 1 深地震反射剖面位置图 黑线为深地震反射剖面共中心点(黄色数字)位置,红线为断层. Fig. 1 Location map of deep seismic reflection profile Black line is disruptions of common midpoint (yellow number) , red line is the fault.

作为塔里木盆地的一个次级构造单元,喀什北缘地区具有复杂的地质结构和丰富的油气资源,将是研究盆地变形和盆山耦合关系的典型区域.其构造变动既受天山褶皱系活动的控制,又与塔里木盆地构造活动相关,造就了其复杂而又独特的构造特征.现今南天山冲断带位于南天山造山带和塔里木盆地的过渡地带,基底性质属于塔里木古大陆边缘的一部分,在南天山长期复杂的地质构造演化过程中,逐渐卷入造山作用,成为现今南天山山脉的一部分[35].

为了研究南天山与塔北前陆盆地主要冲断构造、断裂展布和浅深构造关系,进而探讨油气远景,2007年夏季,中国地质科学院地质研究所联合中石化勘探公司和美国南卡罗莱纳大学在喀什东布置一条横过塔里木盆地西北缘与天山南缘的地震反射测线,剖面大致沿76°E 展布,自阿图什南,向北至中国与吉尔吉斯边境附近,大致沿阿图什市向西北至乌恰县铁列克的公路进行.剖面位置见图 1,地震测线自南向北分别穿过喀什背斜带、阿图什背斜带、柯克塔木、塔什皮萨克背斜带和木兹杜克背斜带;塔什皮萨克断裂(F1)和麦丹断裂(F2).

3 数据采集和处理

地震测线采用弯线施工,全长121km,其中炮间距250m,检波点距50m,采用正常小炮(40kg)、中炮(80kg)和大炮(200kg以上)三种药量尺度的深井(井深范围20~36 m)激发和长排列接收进行数据采集,共采集474 炮,其中小炮347 个,中炮115个,大炮4个.具体采集参数见表 1.

表 1 深地震反射采集参数 Table 1 Data acquisition parameters of deep seismic reflection

沿地震测线由盆地区进入山区,最高海拔高程2887m,最低海拔高程1228m.浅层折射面不连续,低、降速层厚度变化较大,山地区低速层厚度大,一般在20~31 m 之间,存在降速层,高速层速度达2500~3600 m/s,盆地区无降速层,低速层厚度在5~9m,高速层速度在1600m/s左右.单炮记录总体较好,浅、中、深反射波组较为齐全,能量较强,连续性较好,莫霍反射出现在17s(TWT,双程走时,下同)左右.

在南天山—塔里木盆地盆山结合带,地形起伏较大,表层、地下地质结构非常复杂,静校正问题、弯线面元的离散度等因素影响叠加效果.

采用组合静校正方法以解决盆山结合带近地表静校正问题[46];采用地表一致性振幅补偿和振幅一致性反褶积解决了振幅、频率一致性问题[47].采用多域组合去噪技术有效地压制了噪声,采用多道叠加技术对远偏移距多次波进行压制,应用预测反褶积技术消弱部分多次波,在此基础上,对近偏移距多次波和层间多次波适当采用了近道切除压制技术来消除部分噪声,并利用F-K 倾角滤波技术,通过校正和信噪分离滤除多次波(图 2),提高了资料信噪比.

图 2 盆地内400 kg大炮记录 Fig. 2 400 kg shot gather in basin
4 盆山结合带浅-深构造格架特征

西南天山—塔里木盆地间的盆山结合带深地震反射时间剖面成果(图 3,CMP 间距25 m),揭示出塔里木盆地与西南天山结合地带的地壳精细结构,从浅部到深部反射波组强,层位清晰,接触关系明显.通过西南天山与塔里木盆地西北缘的盆山结合带的探测,显示出塔里木盆地的浅部变形特征明显受到深部结构的控制.这种结构关系,有助于进一步认识塔里木盆地与天山造山带结合部位地壳形变特征及盆地内油气盖层特征.

图 3 深地震反射CMP叠加时间剖面图 Fig. 3 CMP stack time section of deep seismic reflection
4.1 稳定基底与盖层变形

地震反射剖面南段显示塔里木盆地北缘6.5s强水平反射层,代表塔里木盆地北缘基底埋深约为12km (按4km/s的上地壳平均速度[17])(图 4).沉积物层5.1s,约10km 处观察到另一强水平反射界面,解释其为沉积物盖层底部的主滑脱层(图 4).盆地北侧广泛分布的强水平反射揭露出塔里木盆地北缘至阿图什背斜基底稳定,无断裂活动.地震反射剖面中段,基底和滑脱层反射层上隆并向北延续被断层(F2)截断,断层切穿沉积物和基底延伸到下地壳(图 4).由此我们解释喀什背斜为断层滑脱褶皱,阿图什背斜为断层相关褶皱.受南北挤压影响,沉积物沿滑脱层向上隆起.地震反射剖面北段南天山一侧,沉积物层和基底反射波阻不连续,断裂活动明显,表明天山构造活动强烈.

图 4 深地震反射剖面解释结果 Fig. 4 Interpretation results of deep seismic reflection profiling

地震剖面证实塔北前陆盆地的构造变形及其演化与南天山造山带的发育密切相关[48].靠近天山,塔里木盆地北缘的新生代沉积层受主滑脱断裂活动影响产生隆起,形成褶皱.自南向北,基底埋深变大,变形加强.至南天山,断裂活动最为明显.虽然盆山结合部位浅层地震波组不很清楚,但是两侧波组差异较大.剖面北侧西南天山向盆地发育一系列向南的逆冲构造,其变形深度席卷了整个沉积盖层,波及下地壳.

4.2 Moho反射

陆内造山所构建的区域性盆山格局及其构造耦合是汇聚单元在岩石圈尺度上进行的过程,造山带及山前构造带同受深部构造的控制,浅部的构造变形与深部构造有着复杂而有机的联系[49].整条剖面上都得到了较清楚的莫霍面反射.塔里木盆地莫霍面较平坦,时间深度约17s.西南天山的莫霍面略深,在18s左右.两者在盆山结合部位下存在莫霍面错断(图 4).

4.3 盆山结合部浅-深部结构关系

剖面显示出塔里木盆地北缘发育主滑脱构造与南天山山脉发育的南倾隐伏逆冲断层在盆山结合带形成断层相关褶皱.由南向北至南天山断裂活动加强,地层错断明显(图 4).南天山底部莫霍面也发生错断,印证新生代天山隆起过程中构造活动强烈,反映出新生代中国西部陆-陆汇聚的一种深部过程及浅部响应.

5 讨论与结论

南天山—塔里木盆地盆山结合带深地震反射剖面反映了沉积地层、山前断裂、逆冲构造、下地壳倾斜反射、莫霍面起伏等多方面丰富的信息,揭露了盆山结合带地壳尺度内的浅深精细结构.

(1) 地震剖面南部揭示出塔里木盆地西南缘沉积盖层厚度可达约12km,并且具有稳定的结晶基底.沉积物层内发育主滑脱层.巨厚的沉积和稳定的基底在整条剖面都可以追逐,为油气生成与成藏提供了物质基础.类比同一构造区阿克1 井的钻井资料,喀什背斜南翼中生界白垩系地层具有油气远景.

(2) 喀什背斜和阿图什背斜为断层相关褶皱.木兹杜克背斜、塔什皮萨克背斜、柯克塔木—阿图什背斜及喀什背斜之间分别发育上地壳尺度的向北倾斜的断裂(断裂F1-F2)和向南倾斜的隐伏断裂(F3-F4).

(3) 上地壳一系列南向的逆冲构造反映了西南天山向盆地的仰冲作用席卷了整个沉积盖层,并且越向天山内部,逆冲变形作用席卷的深度越深.

(4) 时间剖面上可以追踪到较为连续的Moho反射,从南向北Moho面反射时间从17.4s变化为17.9s,在盆山结合处略有上挠至17s,结合该区域的测深结果[20, 26],总体上南天山Moho面埋深要比塔里木板块深约6~8km.

南天山—塔里木盆地盆山结合带具有极其复杂的地质背景,需要不断探索反射地震工作的方法和思路,在盆山结合带的核心部位加大探测工作量,以获得更优质的深反射地震数据,进而更准确地为推测油气远景规模服务.

致谢

野外数据采集工作由华东石油局第六物探大队完成.北京派特森科技发展有限公司完成了剖面的精细处理实验工作.研究工作中得到了德国美因茨大学AlfredKroner教授和中国科学院地质与地球物理研究所王清晨研究员、林伟研究员的支持和帮助,在此一并表示感谢.感谢审稿专家提出的修改意见.

参考文献
[1] Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia. Tectonics , 1997, 16(4): 571-584. DOI:10.1029/97TC01413
[2] 张培震, 邓启东, 杨晓平, 等. 天山的晚新生代构造变形及其地球动力学问题. 中国地震 , 1996, 12(2): 127–140. Zhang P Z, Deng Q D, Yang X P, et al. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain, Northwestern China. Earthquakes Research in China (in Chinese) , 1996, 12(2): 127-140.
[3] 蔡立国. 天山陆内俯冲造山转换带的基本特征. 石油实验地质 , 2000, 22(3): 206–209. Cai L G. The transfer zone within intra-continent subduction orogenic belt in the Tianshan, Northwest China. Experimental Petroleum Geology (in Chinese) , 2000, 22(3): 206-209.
[4] 肖安成, 贾承造, 杨树锋, 等. 中国南天山西部冲断褶皱系前缘区的运动学特征. 沉积学报 , 2000, 18(3): 439–444. Xiao A C, Jia C Z, Yang S F, et al. The kinematics characters of the thrust-fold belts western front regions in southern Tianshan, China. Acta Sedimentologica Sinica (in Chinese) , 2000, 18(3): 439-444.
[5] 舒良树, 郭召杰, 朱文斌, 等. 天山地区碰撞后构造与盆山演化. 高校地质学报 , 2004, 10(3): 393–404. Shu L S, Guo Z J, Zhu W B, et al. Post-collision tectonism and Basin-Range evolution in the Tianshan Belt. Geological Journal of China Universities (in Chinese) , 2004, 10(3): 393-404.
[6] 汪新, 贾承造, 杨树锋. 南天山库车褶皱冲断带构造几何学和运动学. 地质科学 , 2002, 37(3): 372–384. Wang X, Jia C Z, Yang S F. Geometry and kinematics of the Kuqa fold-and-thrust belt in the Southern Tianshan. Chinese Journal of Geology (in Chinese) , 2002, 37(3): 372-384.
[7] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science , 1975, 189(4201): 419-426. DOI:10.1126/science.189.4201.419
[8] Tapponnier P, Molnar P. Active faulting and tectonics in China. J. Geophys. Res , 1977, 82(20): 2905-2929. DOI:10.1029/JB082i020p02905
[9] Sobel E R, Dumitru T A. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. J. Geophys. Res , 1997, 102(B3): 5043-5063. DOI:10.1029/96JB03267
[10] Allen M B, Vincent S J, Wheeler P J. Late Cenozoic tectonics of the Kepingtage thrust zone: interactions of the Tien Shan and Tarim Basin, Northwest China. Tectonics , 1999, 18(4): 639-654. DOI:10.1029/1999TC900019
[11] 高锐, 肖序常, 高弘, 等. 西昆仑—塔里木—天山岩石圈深地震探测综述. 地质通报 , 2002, 21(1): 11–18. Gao R, Xiao X C, Gao H, et al. Summary of deep seismic probing of the lithospheric structure across the West Kunlun-Tarim-Tianshan. Geological Bulletin of China (in Chinese) , 2002, 21(1): 11-18.
[12] 贾承造, 魏国齐, 李本亮, 等. 中国中西部两期前陆盆地的形成及其控气作用. 石油学报 , 2003, 24(2): 13–17. Jia C Z, Wei G Q, Li B L, et al. Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China's mid-western areas. Acta Petrolei Sinica (in Chinese) , 2003, 24(2): 13-17.
[13] Yin A, Nie S, Craig P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics , 1998, 17(1): 1-27. DOI:10.1029/97TC03140
[14] 王琪, 丁国瑜, 乔学军, 等. 天山现今地壳快速缩短与南北地块的相对运动. 科学通报 , 2000, 45(14): 1543–1547. Wang Q, Ding G Y, Qiao X J, et al. Rapid crustal shortening and relative motion of crustal blocks in the Tianshan. Chinese Science Bulletin (in Chinese) , 2000, 45(14): 1543-1547.
[15] Vergolle M, Calais E, Dong L. Dynamics of continental deformation in Asia. J. Geophys. Res , 2007, 112: B11403. DOI:10.1029/2006JB004807
[16] Chen J, Burbank D W, Scharer K M, et al. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tianshan: rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters , 2002, 195(1-2): 113-130. DOI:10.1016/S0012-821X(01)00579-9
[17] 赵金仁, 张先康, 张成科, 等. 伽师—阿图什震区地壳深部结构特征的探测与研究. 中国地震 , 2002, 18(4): 317–325. Zhao J R, Zhang X K, Zhang C K, et al. The detection and research of the deep crust tectonic characters at the Jiashi-Artux Seismic Region. Earthquake Research in China (in Chinese) , 2002, 18(4): 317-325.
[18] 刘树根, 罗志立, 赵锡奎, 等. 试论中国西部陆内俯冲型前陆盆地的基本特征. 石油与天然气地质 , 2005, 26(1): 37–48. Liu S G, Luo Z L, Zhao X K, et al. Discussion on essential characteristics of intracontinental-subduction type foreland basins in western China. Oil and Gas Geology (in Chinese) , 2005, 26(1): 37-48.
[19] Makarov V I, Alekseev D V, Batalev V Y, et al. Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Kol. Geotectonics , 2010, 44(2): 23-42.
[20] 卢德源, 李秋生, 高锐, 等. 横跨天山的人工爆炸地震剖面. 科学通报 , 2000, 45(9): 982–987. Lu D Y, Li Q S, Gao R, et al. A deep seismic sounding profile across the Tianshan mountains. Chinese Science Bulletin (in Chinese) , 2000, 45(9): 982-987.
[21] 张先康, 赵金仁, 张成科, 等. 帕米尔东北侧地壳结构研究. 地球物理学报 , 2002, 45(5): 665–671. Zhang X K, Zhao J R, Zhang C K, et al. Crustal structure at the northeast side of the Pamirs. Chinese J. Geophys. (in Chinese), (in Chinese) , 2002, 45(5): 665-671.
[22] 赵俊猛. 天山造山带岩石圈结构与动力学. 北京: 地震出版社, 2005 . Zhao J M. Lithospheric Structure and Geodynamics of Tianshan Orogenic Belt (in Chinese). Beijing: Seismological Press, 2005 .
[23] 熊小松, 高锐, 李秋生, 等. 天山造山带的深部结构. 地球物理学进展 , 2011, 26(2): 1906–1914. Xiong X S, Gao R, Li Q S, et al. The deep structure of Tienshan orogenic belt. Progress in Geophys. (in Chinese (in Chinese) , 2011, 26(2): 1906-1914.
[24] Li Y, Liu Q Y, Chen J H, et al. Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt. Science in China Series D: Earth Sciences , 2007, 50(3): 321-330. DOI:10.1007/s11430-007-0008-x
[25] Zhang Z J, Yang L Q, Teng J W, et al. An overview of the earth crust under China. Earth Science Reviews , 2011, 104(1-3): 143-166. DOI:10.1016/j.earscirev.2010.10.003
[26] Tian X B, Zhao D P, Zhang H S, et al. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt. J. Geophys. Res , 2010, 115: B10308. DOI:10.1029/2008JB006229
[27] Li Z W, Steve R, Li Z H, et al. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delamination. Tectonophysics , 2009, 477(1-2): 49-57. DOI:10.1016/j.tecto.2009.05.007
[28] 钱俊锋, 肖安成, 杨树锋, 等. 南天山造山带与西昆仑(帕米尔)造山带深层岩石圈对接. 科技通报 , 2009, 25(2): 153–159. Qian J F, Xiao A C, Yang S F, et al. Deep lithospheric jointing relationship between South Tienshan Orogen and West Kunlun (Pamir) Orogen. Bulletin of Science and Technology (in Chinese) , 2009, 25(2): 153-159.
[29] Zhao J M, Liu G D, Lu Z X, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics , 2003, 376(3-4): 199-239. DOI:10.1016/j.tecto.2003.07.001
[30] 陈杰, 卢演俦, 丁国瑜. 塔里木西缘晚新生代造山过程的记录——磨拉石建造及生长地层和生长不整合. 第四纪研究 , 2001, 21(6): 528–539. Chen J, Lu Y C, Ding G Y. Records of Late Cenozoic mountain building in Western Tarim Basin: Molasses, Growth Strata, and Growth unconformity. Quaternary Sciences (in Chinese) , 2001, 21(6): 528-539.
[31] 刘胜, 汪新, 伍秀芳, 等. 塔西南山前晚新生代构造生长地层与变形时代. 石油学报 , 2004, 25(5): 24–28. Liu S, Wang X, Wu X F, et al. Growth strata and the deformation time of the Late Cenozoic along front belts of Pamir-western Kunlun-southwest Tianshan in China. Acta Petrolei Sinica (in Chinese) , 2004, 25(5): 24-28.
[32] 陈杰, HeermanceR V, BurbankD W, 等. 中国西南天山西域砾岩的磁性地层年代与地质意义. 第四纪研究 , 2007, 27(4): 576–587. Chen J, Heermance R V, Burbank D W, et al. Magnetochronology and its implications of the Xiyu conglomerate in the Southwestern Chinese Tian Shan foreland. Quaternary Sciences (in Chinese) , 2007, 27(4): 576-587.
[33] Chen J, Heermance R, Burbank D W, et al. Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan. J. Geophys. Res , 2007, 112: B03S16.
[34] 尚新璐, 陈新卫, 吴超, 等. 塔里木盆地西部喀什地区的新生代冲断构造. 地质科学 , 2004, 39(4): 543–550. Shang X L, Chen X W, Wu C, et al. Cenozoic thrust structures in the Kashi area, western Tarim Basin. Chinese Journal of Geology (in Chinese) , 2004, 39(4): 543-550.
[35] 钱俊锋, 肖安成, 程晓敢, 等. 喀什北缘南天山冲断带构造变形分析. 中国矿业大学学报 , 2008, 37(4): 538–544. Qian J F, Xiao A C, Cheng X G, et al. Structural deformation of fold-thrust belt in the North margin of Kashi, Southern Tien Shan. Journal of China University of Mining and Technology (in Chinese) , 2008, 37(4): 538-544.
[36] Zhao W J, Nelson K D, Che J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature , 1993, 366(6455): 557-559. DOI:10.1038/366557a0
[37] 赵文津, 纳尔逊K D. 印度板块俯冲到藏南之下的深反射证据. 地球学报 , 1996, 17(2): 131–137. Zhao W J, Nelson K D. Deep seismic reflection evidence for continental underthrusting beneath Southern Tibet. Acta Geoscientia Sinica (in Chinese) , 1996, 17(2): 131-137.
[38] 高锐, 黄东定, 卢德源, 等. 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面. 科学通报 , 2000, 45(17): 1874–1849. Gao R, Huang D D, Lu D Y. Deep seismic reflection profiles across juncture zone between Tarim basin and west Kunlun Mountain. Chinese Science Bulletin (in Chinese) , 2000, 45(17): 1874-1849.
[39] 杨卓欣, 张先康, 嘉世旭, 等. 伽师强震群区震源细结构的深地震反射探测研究. 地球物理学报 , 2006, 49(6): 1701–1708. Yang Z X, Zhang X K, Jia S X, et al. Fine crustal structure in the Jiashi earthquake swarm region revealed by deep seismic reflection profiling. Chinese J. Geophys. (in Chinese) , 2006, 49(6): 1701-1708.
[40] 刘保金, 沈军, 张先康, 等. 深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造. 地球物理学报 , 2007, 50(5): 1464–1472. Liu B J, Shen J, Zhang X K, et al. The crust structures and tectonics of Urümqi depression revealed by deep seismic reflection profile in the northern margin of Tianshan mountains. Chinese J. Geophys. (in Chinese) , 2007, 50(5): 1464-1472.
[41] 董树文, 李廷栋, 高锐, 等. 地球深部探测国际发展与我国现状综述. 地质学报 , 2010, 84(6): 743–770. Dong S W, Li T D, Gao R, et al. International progress in probing the Earth's lithosphere and deep interior: A review. Acta Geologica Sinica (in Chinese) , 2010, 84(6): 743-770.
[42] 王海燕, 高锐, 卢占武, 等. 深地震反射剖面揭露大陆岩石圈精细结构. 地质学报 , 2010, 84(6): 818–839. Wang H Y, Gao R, Lu Z W, et al. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile. Acta Geologica Sinica (in Chinese) , 2010, 84(6): 818-839.
[43] 温声明, 王贵重, 程明华, 等. 南天山山前冲断带的构造样式及成因探讨. 新疆地质 , 2006, 24(1): 24–29. Wen S M, Wang G Z, Cheng M H, et al. Discussion about the tectonic styles and the cause of formation of the structures in the precordillera thrust belt of southern Tianshan Mountain. Xingjiang Geology (in Chinese) , 2006, 24(1): 24-29.
[44] 陈杰, 丁国瑜, BurbankD W, 等. 中国西南天山山前的晚新生代构造与地震活动. 中国地震 , 2001, 17(2): 134–154. Chen J, Ding G Y, Burbank D W, et al. Late Cenozoic tectonics and seismicity in the southwestern Tianshan, China. Earthquake Research in China (in Chinese) , 2001, 17(2): 134-154.
[45] 郭召杰, 邓松涛, 魏国齐, 等. 天山南北缘前陆冲断构造对比研究及其油气藏形成的构造控制因素分析. 地学前缘 , 2007, 14(4): 123–131. Guo Z J, Deng S T, Wei G Q, et al. Comparative study of the foreland thrust belts of South and North Tianshan and implications for hydrocarbon accumulation. Earth Science Frontiers (in Chinese) , 2007, 14(4): 123-131.
[46] 侯贺晟, 高锐, 贺日政, 等. 盆山结合部近地表速度结构与静校正方法研究——以西南天山与塔里木盆地结合带为例. 石油物探 , 2010, 49(1): 7–11. Hou H S, Gao R, He R Z, et al. Near-surface velocity structure and static correction of basin-mountain junction zone: case study on the junction belt of western part of South Tianshan and Tarim Basin. Geophysical Prospecting for Petroleum (in Chinese) , 2010, 49(1): 7-11.
[47] 刘金凯. 南天山—塔里木盆地结合带深地震反射剖面精细处理与叠前成像. 北京: 中国地质科学院 , 2011. Liu J K. Fine data processing and pre-stack imaging of the deep seismic reflection profile of the contact zone between the Southern Tianshan and Tarim basin (in Chinese). Beijing: Chinese Academy of Geological Sciences (in Chinese) , 2011.
[48] 田作基. 塔北前陆盆地与南天山造山带的耦合关系及油气分布特征. 中国石油勘探 , 2006, 11(4): 16–20. Tian Z J. Coupling relation between Tabei foreland basin and Nantianshan Orogenic belt and their oil-gas distribution feature. China Petroleum Exploration (in Chinese) , 2006, 11(4): 16-20.
[49] 李涛, 王宗秀. 塔里木地块北部横向构造及断条模式. 中国地质 , 2006, 33(1): 14–27. Li T, Wang Z X. Transverse structure and model of fault slivers in the northern part of the Tarim block. Geology in China (in Chinese) , 2006, 33(1): 14-27.