地球物理学报  2011, Vol. 54 Issue (3): 807-816   PDF    
晚白垩世以来川东北地区的剥蚀历史——多类低温热年代学数据综合剖面的制约
田云涛1 , 朱传庆1 , 徐明1 , 饶松1 , BarryP.Kohn2 , 胡圣标1     
1. 中国科学院地质与地球物理研究所 岩石圈演化国家重点实验室,北京 100029;
2. 澳大利亚墨尔本大学地球科学学院,维多利亚3010
摘要: 低温热年代学数据是一个与热历史过程紧密相关的资料类型,与高温年代学不同,低温热年代学表观年龄本身在很多情况下没有直接的地质意义.当且仅当样品线性持续冷却的情况下,表观年龄才可以被直接解释为样品经过其封闭温度的大致时间.因此,只有结合地质约束通过对低温热年代学数据进行热历史模拟才能更好地揭示其所蕴含的地质信息.对川东北地区现有裂变径迹数据的统计显示,露头样品的表观年龄主要集中在60~80 Ma,其为冷却年龄并无直接的地质意义.前人利用这些数据对川东北地区热历史进行了模拟,然而不同研究者的研究结果却不甚一致,争议主要集中在四川盆地最后一期剥蚀开始的时间上.这体现了单一低温热年代学指标应用范围局限的缺陷.为解决这一问题,本文介绍了一种多类低温热年代学数据剖面联合解释的方法:首先根据低温热年代学动力学模型对诸多种可能的热历史进行正演模拟,然后将正演模拟的结果与观测结果相比较,因此,通过对比正演模拟结果与实测结果的拟合程度便可从诸多种可能的热历史中选择出最可能的一种.本文利用此方法对四川盆地东北部已发表的诸多可能的冷却/剥蚀历史进行了正演模拟,并将这些正演模拟与实测磷灰石裂变径迹和(U-Th)/He综合深度剖面数据进行比较,更好地制约了四川盆地的热历史:~100 Ma和~30 Ma之间冷却速度为0.57 ℃/Ma,~30 Ma以来冷却速度加快(~1.67 ℃/Ma).在假设川东北地区100 Ma内地温梯度大致与现今20 ℃/km的地温梯度相近的前提下,其剥蚀历史可计算为:在~100 Ma和~30 Ma之间剥蚀速度为29 m/Ma,~30 Ma以来剥蚀速度加快(~83 m/Ma),川东北地区自晚白垩世以来总剥蚀量约为5 km.
关键词: 低温热年代学      热历史模拟      剥蚀      川东北地区     
Post-Early Cretaceous denudation history of the northeastern Sichuan Basin: constraints from low-temperature thermochronology profiles
TIAN Yun-Tao1, ZHU Chuan-Qing1, XU Ming1, RAO Song1, Barry P. Kohn2, HU Sheng-Biao1     
1. State Key Lab of Lithosphere Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia
Abstract: Previously reported apatite fission track (AFT) data from surface samples of the northeastern Sichuan Basin yield apparent ages range between 60~80 Ma, which as is often the case, cannot be linked directly to any obvious geological events. Thermal modeling based on those data; however, provide some constraints on the cooling history of the northeastern Sichuan Basin. However, the details of the reconstructed cooling histories reported, vary significantly, especially with regard to the timing of the latest episode of cooling. This variation can be attributed to the lack of geological constraints for modeling purposes and the limited thermal resolution of AFT thermochronology in the lower temperature range (<~60℃). To address these issues, we have acquired new borehole AFT and apatite (U-Th)/He (AHe) data, which when combined with previously reported AFT surface and borehole data, allows synthetic AFT and AHe age and AFT length profiles for the basin to be constructed, and improves thermal history modeling to be carried out. This strategy includes, forward modeling based on candidate thermal histories to obtain predicted low-temperature thermochronology profiles and achieving a good match between the predicted and observed results. Using this strategy, we tested three possible cooling histories for the northeastern Sichuan Basin: linear cooling since 100 Ma, enhanced cooling since 40 Ma following slow cooling since 100 Ma and enhanced cooling since 30 Ma following slow cooling since 100 Ma. Results suggest that the most likely post-Early Cretaceous cooling history for the basin is - cooling at a rate of ~0.57 ℃/Ma between ~100 and 30 Ma, followed by a rate of ~1.67 ℃/Ma since ~30 Ma. Assuming that cooling resulted from denudation (as suggested from previous work) and occurred under a constant paleothermal gradient of ~20 ℃/km (similar to that of the present day), the denudation history of the basin is calculated - denudation at rate of ~29 m/Ma between ~100 Ma and ~30Ma and at ~83 m/Ma since ~30 Ma. The total post Early Cretaceous denudation for the northeastern Sichuan Basin is estimated at ~5 km..
Key words: Low-temperature thermochronology      Thermal history modeling      Denudation      Northeastern Sichuan Basin     
1 引言

近些年来低温热年代学发展迅速,以一些新的低温热年代学模型(如磷灰石多元退火模型[1~3],磷灰石中He 扩散模型[4~8],锆石中He 扩散模型[9~11],榍石中He扩散模型[12]等)的建立为代表,该类方法不仅理论上发展迅速,在应用领域中也不断发展[13~15]:从传统的造山带剥蚀历史[16~21]、新构造活动等研究[2223],拓展到地貌演化研究[2425]、盆地热历史重建[26~30]、成矿过程的研究[31~34]等等.

然而,对于低温热年代学数据的解释方法还尚在探索[127283536],这使得不少地区不同研究者的研究结果不甚一致,如川东北1)地区.这些分歧主要表现在两个方面:(1)对低温热年代学表观年龄的解释常存在误区;(2)不同研究者对同一问题通过各自数据进行热历史模拟的结果不甚一致.最主要的原因是低温热年代学数据是一个与热历史过程紧密相关的资料类型,低温热年代学表观年龄本身没有直接的地质意义.当且仅当样品线性持续冷却的情况下,低温热年代学年龄才可以被直接地解释为样品经过其封闭温度的大致时间[14~1637].因此,在很多情况下需要对样品热历史进行模拟,这样才能更好地揭示其数据所蕴含的地质信息[113153738].目前多数低温热年代学研究案例主要使用单低温热年代学指标模拟的方法,这一方法的重要缺陷是应用温度范围局限(如磷灰石裂变径迹技术敏感的温度区间是60~120 ℃).

本文以四川盆地东北部近些年来的低温热年代学工作为例试图解释以下3点问题:(1)低温热年代学表观年龄具有欺骗性,很多情况下无直接意义;(2)单低温热年代学指标应用温度范围局限;(3)介绍一种多种低温热年代学数据综合剖面的解释方法,并利用此方法对四川盆地东北部已发表的诸多可能的冷却/剥蚀历史进行正演计算和讨论,通过对正演模拟与实测结果(磷灰石裂变径迹和(U-Th)/He综合深度剖面数据)的比较更好地制约了四川盆地东北部的冷却/剥蚀历史.

2 研究的问题

近些年来国内外诸多研究者对川东北及其邻区进行了大量的低温热年代学(磷灰石裂变径迹和(U-Th)/He)研究工作[2939~46].据不完全统计,该区报道的低温热年代学数据近百条目.然而,即便是在这样低温热年代学研究非常密集的地区也面临着下述两大主要的数据解释问题.

首先,对于磷灰石裂变径迹表观年龄的解释尚存误区.川东北露头样品的磷灰石裂变径迹表观年龄主要集中在60~80 Ma(图 1),但是我们不能将这一年龄直接解释为某一构造事件的时间.为了揭示这一年龄所蕴含的地质意义,前人结合川东北的地质信息对磷灰石裂变径迹分析的结果进行了热历史模拟分析[394142],并认为川东北露头样品表观年龄主要集中在60~80 Ma的磷灰石裂变径迹分析结果所指示的是:川东北~100 Ma以来经历了剥蚀/冷却过程,并且这一过程在新生代中后期加速,而在磷灰石裂变径迹表观年龄(主要集中在60~80 Ma)所指示的时间没有显著的地质事件发生.

图 1 (A)四川盆地及其邻区地质简图(改自文献[4748])与磷灰石裂变径迹数据收集[22, 29, 3942, 46, 49, 50];(B)本文研究涉及的部分钻井,其中红色标记的钻井为本文收集和报道的钻井低温热年代学数据来源的位置.虚线框圈注了本文图 3展示的低温热年代学数据点. Fig. 1 (A) Generalized geology map of the Sichuan Basin and its vicinities (Modified from Refs.[4748]),and acompilation ofapatite fission track ages[22, 29, 3942, 46, 49, 50]; (B) Location of several boreholes that involved in this study, and those marked by red are borehole from which low-temperature thermochronology data derived.The dashed polygonoutlines the data shown in Fig.3.

川东北地区已报道的低温热年代学研究主要使用的是磷灰石裂变径迹[2939~4244]和磷灰石、锆石(U-Th)/He方法[4145],并且前人对川东北样品低温热年代学的热历史模拟主要使用的是单方法(磷灰石裂变径迹)热历史模拟的方式.热历史模拟所得到的结果也具有显著的差异,这一差异尤其体现在最后一次快速剥蚀/冷却的开始时间上.如图 2 所示,Richardson等[41]认为四川盆地最后一次剥蚀开始于约40 Ma(图 2c),Shen等[39]则认为其开始于约15 Ma(图 2d).笔者根据样品PG2-5和PG2-6反演计算的结果也略有差异,PG2-6 样品没有反映出最后一次较快速剥蚀/冷却的存在(图 2b),而PG2-5样品则明显反映出最后一期快速剥蚀开始于25~35 Ma(图 2a).需要指出的是PG2-5 的热历史(图 2a)是AFT和AHe联合制约的结果,其余热历史(图 2b~2d)的制约条件均只是AFT 分析结果.暂且不论哪种热历史更加合理,单单这些差异就明显地体现出单方法热历史模拟的弊端:应用的温度区间有限.

图 2 地质和低温热年代学制约所给出的川东北可能的热历史(a)和(b)分别为PG2-5和PG2-6样品的反演结果;(c)和(d)分别为RiChardSOn等[41]和Shen等[39]报道的样品2495-3和N011的反演结果. Fig. 2 Representative thermal histories of the Northwestern Sichuan Basin (a) is the reverse thermal modeling result of sample PG2-5 , (b) of PG2-6; (c) and (d) are of samples 2495-3 andN011 reported by Richardson et al.[41]and Shen et al [39] respectively.

下文介绍了一种多种低温热年代学数据综合剖面的解释方法,以更好地解释川东北的低温热年代学数据,更好地认识川东北地区的冷却/剥蚀历史.

3 多种低温热年代学数据综合剖面解释 3.1 数据

笔者在2007~2009 年间对四川盆地东北部做了大量的低温热年代学数据,不但包括传统的露头样品,还包括大量钻井样品.AFT 和AHe测试实验全部在澳大利亚墨尔本大学完成.结合前人发表的诸多工作[2939~4244~46],笔者建立了一个四川盆地东北部低温热年代学数据与深度的综合关系图(图 3).从此图上来看,四川盆地东北部和东部露头样品的磷灰石裂变径迹年龄主要集中在60~90 Ma, 平均长度为10.5~12.5μm, 磷灰石(U-Th)/He年龄变化在25~37 Ma.钻井样品的年龄表现出一致的趋势:近地表磷灰石裂变径迹年龄接近70 Ma, 平均长度为12.3μm, 磷灰石(U-Th)/He年龄约为37 Ma.在大约2km 深度,磷灰石裂变径迹年龄减小到约40 Ma, 平均长度变化较小,仍为约12μm, 磷灰石(U-Th)/He年龄减小为12Ma.磷灰石(U-Th)/He年龄在约3km 深度减小为近0 Ma.在2~5km 范围内,磷灰石裂变径迹年龄逐渐减小到3 Ma, 平均长度至约10μm.在这里需要指出的是,Richardson等[41]报道的裂变径迹长度数据没有收编在图 3中,因为该文使用的蚀刻条件为21 ℃下在7%(1.5mol/L)HNO3 中蚀刻50s, 与笔者实验中使用的21 ℃下在5mol/L HNO3中蚀刻20s的条件完全不同.这一蚀刻条件的差异虽然不会影响裂变径迹表观年龄,但是却会显著影响径迹的平均长度、Dpar和热模拟的结果(详见下文讨论部分).

图 3 川东北低温热年代学综合剖面资料(b)中不同颜色符号的意义与(a)相同.(a)为磷灰石裂变径迹年龄剖面,(b)为磷灰石裂变径迹平均长度剖面,(c)为磷灰石 (U-Th)/IIe年龄剖面.露头样品主要来自Richardson等[41],Shen等[39]和Tian等[46],界牌-1井数据来自Richardson 等[叫,河坝1井(IIeba-1)数据来自Tian等[叫,普光5井(PUgmmg-5)和毛坝3井(Ma〇ba-3)数据来自邱楠生等[45],其他数据为笔者最新工作结果.数据点所在钻井的位置见图 1 Fig. 3 A compilation of the low-temperature thermochronology data of the Northeastern Sichuan Basin(a) is the apatite fission track age profile, (b) apatite fission track mean length profile (for legend see (a)) ,and (c) apatite(U-Th)/IIe age profile.Surface data is from Richardson et ai.[41],Shen et ai.[39],and Tianet ai.[46],Jiepai-1 fromRichardson et ai [41],IIeba-1 from Tian et ai [46],Puguang-5 and Maoba-3 from Qiu et ai [45],Puguang-2,Maoba-1 andGuan-8 are our new results (see Fig.1 for iocations).
3.2 方法

通过多类低温热年代学数据综合剖面的模拟解释可以更好地反映一个地区的热历史的真实面貌.很多研究者通过这一方法制约了不同地区的热历史演化过程[272851~54].例如,House等[27]通过对澳大利亚东南部奥特韦盆地(Otway Basin)诸多研究者提出的热历史进行正演模拟,计算了不同热历史对应的AFT 和AHe深度剖面,进而通过与实测数据的对比更好地制约了该盆地的热历史.

图 4展示了多种低温热年代学数据剖面联合解释的工作流程.具体来说,首先根据低温热年代学动力学模型对假设的诸多种可能的热历史进行正演模拟.然后将正演模拟的结果与观测结果相对比.这样通过正演模拟的结果与实测结果的拟合程度来从诸多种可能的热历史中确定出最可能的一种,进而结合古今地热资料计算得到埋藏-剥蚀历史.很显然,这种方法的好处是能为一个地区的热历史提供多样品、多种指标的综合制约条件,更大程度地避免了单指标应用范围局限等缺点.因此,这种方法所制约的热历史更能反映真实的情况.

图 4 多种低温热年代学数据综合剖面解释方法示意图 Fig. 4 Workflow of interpreting multi-low-temperature thermochronology versus depth profiles
3.3 结果

笔者根据上述的方法对川东北进行了研究.考虑到研究区不同样品的磷灰石裂变径迹退火动力学参数(Dpar或Cl含量)可能有所差异,本文在进行AFT 深度剖面正演时考虑了两种类型的磷灰石(Dpar分别为1.6μm 和2.5μm).同样的原因,为了解决He在磷灰石中扩散动力学可能受辐射损伤强弱影响的问题,本文在进行AHe深度剖面正演时也考虑了两种类型的磷灰石(有效U 含量,eU=10和100).AFT 和AHe正演计算分别使用了磷灰石裂变径迹多元动力学退火模型[2]和RDAAM 模型[78].

笔者对川东北可能经历的三种类型的热历史进行了正演.第一种类型的热历史为:约100 Ma以来的缓慢的持续性的冷却历史(图 5A).对该热历史进行正演所得到的磷灰石裂变径迹年龄剖面可以很好地拟合实测结果,但是实测的磷灰石裂变径迹平均长度和(U-Th)/He数据却很难被该热历史的正演结果所拟合.

图 5 四川盆地三种可能的热历史正演结果(虚线)与实测结果的对比在AFT年龄-深度图(第二列)和AFT平均长度-深度图(第四列)中靠左边的虚线为Dpar = 1.6 μm时的正演结果,右侧的为Dpar= 2.5 μm时的正演结果.在Alle年龄-深度图(第三列)中靠右边的虚线为eU=10时的正演结果,左侧的为eU=100时的正演结果. Fig. 5 AFTand AHe data comparison between results of forward modeling (dashed lines) and observations On the AFT age-depth profile (column 2) and AFT mean length-depth profile (column 4) the dashed line on the lett side is the forwardmodeling result when Dpar is set to be 1.6 μm, while the dashed line on the right side is the result when Dpar= 2.5 μm.On the AHe age-depth profile (column 3) the dashed line on the lett side is the forward modeling result when eU=10,while the dashed line on the rightside is the resultwhen eU=100.

第二种热历史为Richardson等[41]的研究结果,即川东北在40 Ma以来冷却/剥蚀加速.对该热历史进行的正演计算结果与实测结果的对比显示:正演模拟得到的磷灰石裂变径迹年龄和平均长度很难拟合实测结果,尤其是1~2km 深度之间的磷灰石裂变径迹年龄和1.5~2km 深度的平均长度数据(图 5B).

第三种可能的热历史为~100-30 Ma冷却速度为0.57℃/Ma, 30 Ma 以来冷却/剥蚀加速,以1.67 ℃/Ma的速率冷却.图 5C 表明,该热历史的正演结果比上述的两种可以更好地拟合实测结果.因此,笔者认为,第三种热历史更能反映川东北的冷却过程,即川东北在30 Ma之后冷却/剥蚀加速.

通过冷却历史计算剥蚀历史最简单且有效的方法为:剥蚀速度= 冷却速度/地温梯度[2555~57].理论上,对剥蚀速度的准确计算需要详细的冷却历史和地温梯度历史.前者在本文中已经得到很好的制约,对后者的讨论已经超出了本文的范畴.本文假设川东北在100 Ma内变化较小,大致与现今的地温梯度相当.对川东北现今的地温梯度研究工作较多[58~60],最新的研究资料[60]表明川东北现今地温梯度变化范围为18~25 ℃/km, 平均20 ℃/km.根据最可能的第三种热历史,可以计算得到川东北的剥蚀历史为:~100-30 Ma剥蚀速度为29 m/Ma, 30 Ma以来剥蚀加速到83 m/Ma, 总剥蚀量约为5km.因本文报道和收集的低温热年代学剖面最上部(地表或近地表)的样品属于中侏罗统,因此,这5km的剥蚀量反映了在中侏罗统之上被剥蚀的上侏罗统和下白垩统的沉积(可能包括部分中侏罗统的沉积).

4 讨论

Richardson等[41]的研究认为四川盆地的冷却/剥蚀主要发生在40 Ma以来.笔者认为Richardson等[41]通过磷灰石裂变径迹分析数据计算的冷却历史是不完全合理的.最主要的原因是Richardson等[41]使用的蚀刻条件与其用于样品反演模拟的模型条件显著不一致:Richardson等[41]报道的数据的实验条件是21 ℃ 下在7% HNO3 (即1.5 mol/LHNO3)中蚀刻50s, 然而,用于模拟其数据的模型是在21℃下5.5 mol/L HNO3中蚀刻20s的条件下建立的[61].如果考虑到这个因素,Richardson 等[41]报道的数据所制约的最后一期剥蚀开始的时间很可能早于实际情况,因为该文使用的蚀刻条件比模型建立所使用的蚀刻条件时间更长(50s),这虽对AFT 年龄没有影响,但却会人为地使得蚀刻出来径迹和Dpar参数偏大[13153738].

Shen等[39]认为四川盆地的最后一期剥蚀开始于~15 Ma, 这一结论的得出很大程度上来自于最佳热历史模拟路径所给出的最后一期剥蚀开始的时间.然而,Shen等[39]报道的绝大部分样品磷灰石裂变径迹数据反演所得到的“好的"热历史包络线(GOF>0.5)都给出最后一期剥蚀开始于15~30 Ma的信息,只是原文并没有根据这一信息对最后一期剥蚀的开始时间进行误差计算.因此笔者认为,Shen等[39]报道的结果支持本文的结论之一:最后一期的剥蚀应开始于~30 Ma.

诸多研究对川东北地区晚白垩世以来剥蚀总量的计算较为一致,如刘树根等[42]的研究认为川东北地区的剥蚀量约为3.5~5.5km;Richardson等[41]计算的剥蚀量约为4km.另外,前人报道的川东北地区的镜质体反射率(Ro)数据也很好地支持了上述对剥蚀量的计算[294245].因此,笔者认为四川盆地的剥蚀历史为~100-30Ma剥蚀速度为29m/Ma, 30 Ma以来剥蚀加速(约83 m/Ma),总剥蚀量约为5km, 即中侏罗统之上被剥蚀的地层厚度(可能包括部分中侏罗统的沉积).

5 结论

本文通过对近些年来川东北地区报道的和笔者最新实验获得的低温热年代学数据的分析获得了以下结果和结论:

(1) 川东北露头样品磷灰石裂变径迹表观年龄主要集中在60~80 Ma, 为冷却年龄,没有直接的地质意义.

(2) 前人根据低温热年代学方法对川东北地区热历史的反演主要使用的是单方法模拟的方式,并且不同研究者给出的最后一期剥蚀开始的时间不甚一致.这可能体现了该模拟方法的弊端:单低温热年代学指标制约的温度区间有限.

(3) 阐述了多种低温热年代学数据剖面的解释的工作方法,并根据磷灰石裂变径迹和(U-Th)/He综合剖面对前人提出的川东北地区可能的热历史进行了正演模拟.这些正演模拟结果与实测结果的对比更好的制约了川东北地区的热历史:~100-30 Ma冷却速度为0.57 ℃/Ma, 30 Ma以来冷却加速(约1.67 ℃/Ma).在假设川东北100 Ma内地温梯度大致与现今20℃/km 的地温梯度相近的前提下,计算了川东北的剥蚀历史为:~100-30 Ma剥蚀速度为29m/Ma, 30Ma以来剥蚀加速(约为83m/Ma),总剥蚀量约为5km, 即中侏罗统之上被剥蚀的地层厚度(可能包括部分中侏罗统的沉积).因此,本文报道的多类低温热年代学数据综合剖面及其解释方法为川东北的剥蚀/冷却历史提供了更加可靠的多样品、多方法的制约.

致谢

感谢墨尔本大学Andrew Gleadow、AsafRaza、Fabian Kohlmann、Abaz Alimanovic和Ling Chung等在裂变径迹和(U-Th)/He工作上提供的帮助;感谢中国科学院地质与地球物理研究所汪集院士、何丽娟研究员及其他师生在本文写作中提供的帮助和支持;感谢审稿专家提出的宝贵建议.

参考文献
[1] Ketcham R A. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry , 2005, 58(1): 275-314. DOI:10.2138/rmg.2005.58.11
[2] Ketcham R A, Carter A, Donelick R A, et al. Improved modeling of fission-track annealing in apatite. American Mineralogist , 2007, 92(5-6): 799-810. DOI:10.2138/am.2007.2281
[3] Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist , 1999, 84(9): 1235-1255. DOI:10.2138/am-1999-0903
[4] Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica Et Cosmochimica Acta , 1996, 60(21): 4223-4229. DOI:10.1016/S0016-7037(96)00193-7
[5] Wolf R A, Farley K A, Kass D M. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology , 1998, 148(1-2): 105-114. DOI:10.1016/S0009-2541(98)00024-2
[6] Farley K. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research-Solid Earth , 2000, 105(B2): 2903-2914. DOI:10.1029/1999JB900348
[7] Flowers R M. Exploiting radiation damage control on apatite (U-Th)/He dates in cratonic regions. Earth and Planetary Science Letters , 2009, 277(1-2): 148-155. DOI:10.1016/j.epsl.2008.10.005
[8] Flowers R M, Ketcham R A, Shuster D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica Et Cosmochimica Acta , 2009, 73(8): 2347-2365. DOI:10.1016/j.gca.2009.01.015
[9] Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica Et Cosmochimica Acta , 2004, 68(8): 1857-1887. DOI:10.1016/j.gca.2003.10.021
[10] Reiners P W, Farley K A, Hickes H J. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics , 2002, 349(1-4): 297-308. DOI:10.1016/S0040-1951(02)00058-6
[11] Farley K A. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry , 2002, 47: 819-844. DOI:10.2138/rmg.2002.47.18
[12] Reiners P W, Farley K A. Helium diffusion and (U-Th)/He thermochronometry of titanite. Geochimica Et Cosmochimica Acta , 1999, 63(22): 3845-3859. DOI:10.1016/S0016-7037(99)00170-2
[13] Gleadow A J W, Belton D X, Kohn B P, et al. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry , 2002, 48: 579-630. DOI:10.2138/rmg.2002.48.16
[14] Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences , 1998, 26(1): 519-572. DOI:10.1146/annurev.earth.26.1.519
[15] Van den haute P, De Corte F. Advances in Fission-Track Geochronology. Dordrecht: Kulwer Academic Publishers, 1998
[16] Reiners P W, Brandon M T. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences , 2006, 34: 419-466. DOI:10.1146/annurev.earth.34.031405.125202
[17] Zheng D, Zhang P, Wan J, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters , 2006, 248(1-2): 198-208. DOI:10.1016/j.epsl.2006.05.023
[18] Hu S, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogen into the Yangtze craton, central China. Tectonics , 2006, 25: TC6009. DOI:10.1029/2006TC001985
[19] 许长海, 周祖翼, P. P.Van Den Haute等. 大别造山带磷灰石裂变径迹(AFT)年代学研究. 中国科学D辑 , 2005, 48(4): 506–520. Xu C H, Zhou Z Y, Van Den Haute P, et al. Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China. Science in China Series D: Earth Sciences (in Chinese) , 2005, 48(4): 506-520. DOI:10.1360/01yd0409
[20] 丁汝鑫, 周祖翼, 王纬. 利用低温年代学数据计算造山带剥露速率. 地球科学进展 , 2007, 22(5): 447–456. Ding R X, Zhou Z Y, Wang W. Modeling exhumation rates of orogenic belts with low-temperature thermochronological data. Advances in Earth Science (in Chinese) , 2007, 22(5): 447-456.
[21] Yuan W, Dong J, Shicheng W, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences , 2006, 27(6): 847-856. DOI:10.1016/j.jseaes.2005.09.002
[22] An Y, Han Z, Wan J. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China. Science in China Series D: Earth Sciences , 2008, 51(9): 1238-1247. DOI:10.1007/s11430-008-0105-5
[23] Kirby E, Reiners P W, Krol M A, et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics , 2002, 21(1): 1001. DOI:10.1029/2000TC001246
[24] Okay A I, Zattin M, Cavazza W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology , 2010, 38(1): 35-38. DOI:10.1130/G30234.1
[25] Kohn B P, Gleadow A J W, Brown R W, et al. Visualizing thermotectonic and denudation histories using apatite fission track thermochronology. Reviews in Mineralogy and Geochemistry , 2005, 58(1): 527-565. DOI:10.2138/rmg.2005.58.20
[26] Armstrong P A. Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry , 2005, 58(1): 499-525. DOI:10.2138/rmg.2005.58.19
[27] House M A, Kohn B P, Farley K A, et al. Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U-Th)/He and fission-track data from borehole apatites. Tectonophysics , 2002, 349(1-4): 277-295. DOI:10.1016/S0040-1951(02)00057-4
[28] Crowhurst P V, Green P F, Kamp P J J. Appraisal of (U-Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki Basin, New Zealand. AAPG Bulletin , 2002, 86(10): 1801-1819.
[29] 沈传波, 梅廉夫, 徐振平, 等. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报 , 2007, 23(11): 2901–2910. Shen C B, Mei L F, Xu Z P, et al. Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountain, central China. Acta Petrologica Sinica (in Chinese) , 2007, 23(11): 2901-2910.
[30] 许长海, 周祖翼, HauteP V D, 等. 合肥盆地构造演化的磷灰石裂变径迹分析. 石油学报 , 2006, 27(6): 5–13. Xu C H, Zhou Z Y, Haute P V D, et al. Apatite fission-track thermochronology of tectonic evolution in Hefei Basin. Acta Petrolei Sinica (in Chinese) , 2006, 27(6): 5-13.
[31] McInnes B I A, Farley K A, Sillitoe R H, et al. Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit Chile. Economic Geology and the Bulletin of the Society of Economic Geologists , 1999, 94(6): 937-947. DOI:10.2113/gsecongeo.94.6.937
[32] Harris A C, Dunlap W J, Reiners P W, et al. Multimillion year thermal history of a porphyry copper deposit: application of U-Pb, 40Ar/40Ar and (U-Th)/He chronometers, Bajo dela Alumbrera copper-gold deposit, Argentina. Miner. Depos. , 2008, 43(3): 295-314. DOI:10.1007/s00126-007-0151-5
[33] Campos E, Wijbrans J, Andriessen P. New thermochronologic constraints on the evolution of the Zaldívar porphyry copper deposit, Northern Chile. Miner. Depos. , 2009, 44(3): 329-342. DOI:10.1007/s00126-008-0226-y
[34] McInnes B I A, Evans N J, Fu F Q, et al. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry , 2005, 58(1): 467-498. DOI:10.2138/rmg.2005.58.18
[35] Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth and Planetary Science Letters , 2009, 284(3-4): 504-515. DOI:10.1016/j.epsl.2009.05.015
[36] Vermeesch P. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data. Chemical Geology , 2010, 271(3-4): 108-111. DOI:10.1016/j.chemgeo.2010.01.002
[37] Wagner G, Van den haute P. Fission-Track Dating. Dordrecht: Kulwer Academic Publishers, 1992
[38] Donelick R A, O'Sullivan P B, Ketcham R A. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry , 2005, 58(1): 49-94. DOI:10.2138/rmg.2005.58.3
[39] Shen C, Mei L, Xu S. Fission track dating of Mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin, China. Radiation Measurements , 2009, 44(9-10): 945-949. DOI:10.1016/j.radmeas.2009.10.001
[40] 田云涛, 朱传庆, 徐明, 等. 白垩纪以来米仓山—汉南穹窿剥蚀过程及其构造意义:磷灰石裂变径迹的证据. 地球物理学报 , 2010, 53(4): 920–930. Tian Y T, Zhu C Q, Xu M, et al. Exhumation history of the Micangshan-Hannan dome since cretaceous and its tectonic significance: evidences from apatite fission track analysis. Chinese J. Geophys. (in Chinese) , 2010, 53(4): 920-930.
[41] Richardson N J, Densmore A L, Seward D, et al. Extraordinary denudation in the Sichuan Basin: insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research-Solid Earth , 2008, 113: B04409. DOI:10.1029/2006JB004739
[42] 刘树根, 李智武, 刘顺, 等. 大巴山前陆盆地-冲断带的形成演化. 北京: 地质出版社, 2006 . Liu S G, Li Z W, Li S, et al. Formation and Evolution of Dabashan Foreland Basin and Fold-and-Thrust Belt, Sichuan, China (in Chinese). Beijing: Geological Publishing House, 2006 .
[43] 许长海, 周祖翼, 常远, 等. 大巴山弧形构造带形成与两侧隆起的关系:FT、(U-Th/He)低温热年代约束. 中国科学(D辑) , 2010, 40(12): 1684–1696. Xu C H, Zhou Z Y, Chang Y, et al. The correlation of Dabashan arcuate structure with Huangling and Hannan basement uplifts: constraints from FT, (U-Th)/He low-temperature geochronology. Science in China (Ser. D) (in Chinese) , 2010, 40(12): 1684-1696.
[44] 袁玉松, 孙冬胜, 周雁, 等. 中上扬子地区印支期以来抬升剥蚀时限的确定. 地球物理学报 , 2010, 53(2): 362–369. Yuan Y S, Sun D S, Zhou Y, et al. Determination of onset of uplifting for the Mid-upper Yangtze area after Indosinian event. Chinese J. Geophys. (in Chinese) , 2010, 53(2): 362-369.
[45] 邱楠生, 秦建中, McInnesB I A, 等. 川东北地区构造-热演化探讨——来自(U-Th)/He年龄和Ro的约束. 高校地质学报 , 2008, 14(2): 223–230.
[46] Tian Y, Kohn B, Zhu C, et al. Post-orogenic evolution of foreland basin systems: an example from the Mesozoic Micang Shan foreland basin, central China. Basin Research, 2011, in press
[47] 四川省地质矿产局. 四川省区域地质志. 北京: 地质出版社, 1991 . Sichuan Bureau of Geology and Mineral Resources. Regional Geology of Sichuan Province (in Chinese). Beijing: Geological Publishing House, 1991 .
[48] 马丽芳. 中国地质图集. 北京: 地质出版社, 2002 . Ma L F. Geological Atlas of China (in Chinese). Beijing: Geological Publishing House, 2002 .
[49] Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin. Geological Society of America Bulletin , 2006, 118(5-6): 651-671. DOI:10.1130/B25805.1
[50] Arne D, Worley B, Wilson C, et al. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics , 1997, 280(3): 239-256.
[51] Kohn B, Gleadow A, Cox S. Denudation history of the Snowy Mountains: constraints from apatite fission track thermochronology. Australian Journal of Earth Sciences , 1999, 46(2): 181-198. DOI:10.1046/j.1440-0952.1999.00703.x
[52] Braun J. Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers & Geosciences , 2003, 29(6): 787-794.
[53] Stephenson J, Gallagher K, Holmes C C. Low temperature thermochronology and strategies for multiple samples 2: Partition modelling for 2D/3D distributions with discontinuities. Earth and Planetary Science Letters , 2006, 241(3-4): 557-570. DOI:10.1016/j.epsl.2005.11.027
[54] Godard V, Pik R, Lavé J, et al. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: insight from (U-Th)/He thermochronometry. Tectonics , 2009, 28: TC5009. DOI:10.1029/2008TC002407
[55] Kohn B P, Gleadow A J W, Brown R W, et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Australian Journal of Earth Sciences , 2002, 50(4): 645-650.
[56] Green P F, Duddy I R, Gleadow A J W, et al. Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T eds. Thermal History of Sedimentary Basins—Methods and Case Histories. New York: Springer-Verlag, 1989 : 181 -195.
[57] O'sullivan P B, Orr M, O'sullivan A J, et al. Episodic Late Palaeozoic to Cenozoic denudation of the southeastern highlands of Australia: evidence from the Bogong High Plains, Victoria. Australian Journal of Earth Sciences , 1999, 46(2): 199-216. DOI:10.1046/j.1440-0952.1999.00704.x
[58] 胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报 , 2001, 44(5): 611–626. Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area (3rd edition). Chinese J. Geophys. (in Chinese) , 2001, 44(5): 611-626.
[59] Hu S, He L, Wang J. Heat flow in the continental area of China: a new data set. Earth and Planetary Science Letters , 2000, 179(2): 407-419. DOI:10.1016/S0012-821X(00)00126-6
[60] 卢庆治, 胡圣标, 郭彤楼, 等. 川东北地区异常高压形成的地温场背景. 地球物理学报 , 2005, 48(5): 1110–1116. Lu Q Z, Hu S B, Guo T L, et al. The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan basin. Chinese J. Geophys. (in Chinese) , 2005, 48(5): 1110-1116.
[61] Ketcham R A. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. American Mineralogist , 2003, 88(5-6): 817-829. DOI:10.2138/am-2003-5-610