Inflammation and anti-inflammatory therapy in diabetic nephropathy: research progress
-
摘要: 糖尿病肾病是糖尿病最严重的并发症,也是全球终末期肾病的主要病因。高血糖是糖尿病肾病进展为终末期肾病的主要驱动力,炎症信号通路和炎症细胞在糖尿病肾病的发病和进展中也扮演着重要角色,针对炎症相关细胞内信号通路的策略可能成为糖尿病肾病治疗的新方向。目前,针对糖尿病肾病的抗炎药物研发也在进行中,并且在实验模型中显示出良好的效果。本文综述了炎症细胞和炎症信号通路与糖尿病肾病之间的联系及靶向炎症治疗的研究进展。Abstract: Diabetic nephropathy is the most serious complication of diabetes and a major cause of end-stage renal disease worldwide. Although hyperglycaemia is widely considered to be the main driving force for the progression of diabetic nephropathy to end-stage renal disease, inflammatory signaling pathways and inflammatory cells also play important roles in the pathogenesis and progression of the disease. Therefore, treatment strategies targeting the inflammation-related intracellular signaling pathways may become a new direction for the treatment of diabetic nephropathy. Currently, the development of anti-inflammatory drugs for diabetic nephropathy is also underway, and they have shown promising results in experimental models. This article focuses on the connection between inflammatory cells and inflammatory signaling pathways and diabetic nephropathy, as well as the current research progress on targeted anti-inflammatory treatment.
-
糖尿病肾病(diabetic nephropathy,DN)是糖尿病常见的并发症之一,也是慢性肾脏病发病率和死亡率增长较快的原因之一[1]。传统观点认为,DN的发病与糖尿病高血糖状态下肾小球滤过膜的损伤及肾小管细胞的代谢紊乱有关。而炎症反应和免疫系统的异常激活在DN中也起着重要作用,不仅可促进肾小球内皮细胞、系膜细胞的增殖和胶原沉积,引起肾小球硬化及肾小球滤过率的下降,还可导致肾小管细胞代谢紊乱和氧化应激,最终造成肾脏损伤[2]。因此,控制炎症反应和免疫系统的异常激活被认为是DN的重要防治策略之一,目前也有针对炎症的研究药物正在开展临床试验。进一步探讨炎症的作用以及开发针对炎症机制的新型治疗方法有望改善DN的治疗效果。
1 炎症在DN发病中的作用
DN被认为是一种慢性炎症性疾病,炎症反应的激活和炎症细胞在其发展过程中起到重要的促进作用。高血糖会激活NF-κB和核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体等炎症信号通路,促进炎症细胞产生细胞因子,这些炎症因子再进一步引起肾小球和肾小管的炎症反应。高血糖还会激活晚期糖基化终末产物受体(receptor for advanced glycation end product,RAGE)和Toll样受体等炎症受体,促进炎症反应的发生。这些炎症反应会导致肾脏组织损伤和纤维化,从而加重病情[3-4]。此外,DN患者的免疫系统中存在免疫细胞的异常活化和功能异常,如巨噬细胞、T细胞、B细胞、中性粒细胞等,导致炎症因子和趋化因子大量产生,促进炎症反应的发生和发展[5],进而加速DN的进程。
2 炎症信号通路与DN
2.1 NF-κB信号通路
在DN患者的肾脏组织中,NF-κB信号通路的活化水平明显增高。在非激活状态下,NF-κB位于细胞质中,与NF-κB抑制因子(inhibitor of NF-κB,IκB)结合形成复合物并阻止其进入细胞核。而异常活化的NF-κB可以促进炎症细胞因子的产生和炎症细胞的浸润,导致肾脏炎症反应和损伤。NF-κB受体活化因子(receptor activator for NF-κB,RANK)是NF-κB受体激活剂,Ke等[6]发现足细胞RANK耗竭可缓解DN小鼠白蛋白尿、系膜基质扩张和基底膜增厚,而RANK过表达则加重病情,说明RANK激活NF-κB介导了DN的发展。还有研究发现沉默信息调节因子1(sirtuin 1,SIRT1)在DN患者肾小球中的表达降低,而通过增强足细胞中SIRT1表达可以抑制DN小鼠肾脏中NF-κB的活性,防止足细胞损伤,减轻肾小球氧化应激,从而发挥肾脏保护作用[7]。
2.2 NLRP3炎症小体
NLRP3炎症小体在DN炎症和免疫反应中都起着重要作用。在DN中,高血糖和氧化应激可激活NLRP3炎症小体,导致IL-1β和IL-18等促炎因子释放,诱导炎症级联反应,引发肾脏损伤。有学者在DN患者肾活检样本中发现NLRP3炎症小体的表达与蛋白尿的严重程度呈正相关。相比之下,足细胞特异性NLRP3或caspase 1缺陷的高血糖小鼠肾损伤程度明显减轻[8]。Wu等[9]通过使用NLRP3炎症小体选择性抑制剂MCC3构建NLRP3敲除小鼠模型,发现抑制NLRP3炎症小体可有效减少脂质积累和活性氧生成,改善足细胞损伤。miRNA-10a/b是NLRP3炎症小体的内源性抑制剂,Ding等[10]发现miRNA-10a/b在糖尿病小鼠和DN患者的肾脏中表达下调,而将其转染到糖尿病小鼠的肾脏中可以抑制NLRP3的表达及IL-1β和IL-18的释放,减少DN小鼠的白蛋白尿,减轻了肾脏炎症反应。
2.3 RAGE
RAGE在糖尿病患者体内表达上调。发生DN时,晚期糖基化终末产物(advanced glycation end product,AGE)与RAGE结合并诱导信号转导,引发炎症反应,促进细胞迁移、侵袭和增殖。RAGE激活是DN及其并发症的共同特征,可以促进炎症因子的产生和炎症细胞的浸润,加剧肾脏损伤。此外,RAGE激活还会引起氧化应激和其他炎症信号通路的激活,如NADH磷酸氧化酶和NF-κB,进一步加剧炎症因子的产生和细胞损伤[11]。动物实验显示,敲除RAGE的小鼠表现出较轻的炎症反应和肾损伤,在给予RAGE拮抗剂或可溶性RAGE(soluble RAGE,sRAGE)治疗后DN小鼠的炎症和肾损伤也得到缓解[12]。
2.4 TGF-β/Smad信号通路
TGF-β是一种重要的炎症调节因子,在DN发病中起着关键作用。高血糖会增强TGF-β信号转导并使其活化,通过Smad-3信号通路促进炎症因子的产生和肾纤维化,导致肾脏功能进一步恶化。TGF-β可通过Smad3依赖的方式激活NLRP3炎症小体释放IL-1β和IL-18等炎症细胞因子,同时在上皮-间质转化(epithelial-mesenchymal transition,EMT)过程中促进TGF-β1诱导Smad3磷酸化来增强TGF-β信号转导[13]。研究证明Smad3在糖尿病条件下通过诱导纤维化和炎症介导肾功能不全[14]。
2.5 PI3K/Akt/哺乳动物雷帕霉素靶蛋白(mammalin target of rapamycin,mTOR)信号通路
PI3K/Akt/mTOR通路参与了细胞的生长、增殖和炎症反应等多种生物学过程,在DN的发生、发展中发挥重要作用[15]。研究发现,用β-lapachone(β-LAP,一种已被证实有抗炎特性的天然制剂)喂养DN小鼠,能降低小鼠肾脏中的磷酸化mTOR水平以及磷酸化cAMP响应元件结合蛋白水平,同时增加肾脏中的SIRT1水平,减轻肾小球和肾小管损伤程度,改善肌酐清除率,这表明β-LAP通过调节PI3K/Akt/mTOR信号通路发挥肾脏保护作用[16]。另外,Tang等[17]揭示了丁酸盐通过增强肠屏障功能和激活游离脂肪酸受体2(free fatty acid receptor 2,FFA2)介导PI3K/Akt/mTOR通路减轻DN诱导的肌肉萎缩。表皮生长因子(epidermal growth factor,EGF)也能通过抑制该信号通路激活自噬并保护肾小球细胞,减轻高糖诱导的足细胞损伤[18]。
2.6 JAK/STAT信号通路
在DN中,高血糖、RAGE、血管紧张素等都可以激活JAK/STAT通路,该通路的异常激活与炎症反应的发生和持续密切相关。如肾小球系膜细胞中JAK/STAT通路的激活可以促进TGF-β、胶原蛋白Ⅳ和纤连蛋白的产生,导致肾脏中细胞外基质的积累和肾小球硬化[19]。Lu等[20]在STAT3基因部分敲除DN小鼠中发现STAT3活性降低后小鼠的蛋白尿、肾脏病理、炎症反应都得到了改善。另外,细胞因子信号抑制物(suppressor of cytokine signaling,SOCS1)可以通过下调JAK/STAT信号通路减轻白蛋白尿、肾脏形态学病变、炎症和脂质沉积[21]。总而言之,发生DN时JAK/STAT信号通路被过度激活,募集炎症细胞和释放炎症细胞因子,促进炎症反应的发生。
2.7 核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)
Nrf2在细胞内调控抗氧化应激反应,保护细胞免受氧化应激和炎症损伤。在高血糖环境下,Nrf2的活性受到负调控,导致抗氧化能力下降,氧化应激反应增强,进一步损伤肾脏组织[22]。Liu等[23]发现,Nrf2敲除Akita小鼠模型的肾脏氧化应激和炎症反应较对照组加剧,导致严重的DN,进一步敲低Keap1(一种调节细胞氧化应激反应的蛋白质,正常情况下与Nrf2结合促使Nrf2被泛素化降解)能提高Akita小鼠Nrf2活性,改善肾小管损伤,这些结果说明Nrf2活性的丧失加速了DN病程进展,而Nrf2活性的增加可以抑制DN发展。抗衰老蛋白Klotho是多种类型细胞中Nrf2的诱导剂,在高糖环境下,Klotho过表达能够上调足细胞中的Nrf2信号转导,进而抑制氧化应激,防止足细胞凋亡[24]。但是,Rush等[25]发现在DN小鼠中Nrf2上调可能会加剧蛋白尿的排泄,使用Nrf2通路诱导剂的临床试验需仔细监测肾脏效应。
3 炎症细胞与DN
3.1 巨噬细胞
巨噬细胞的活化和功能异常一直被认为是DN进程的重要驱动因素。在DN中,M2型巨噬细胞的数量和活性下降,导致肾脏炎症和纤维化加剧,促进M2型巨噬细胞的极化可能有助于减轻肾脏炎症和纤维化,从而治疗DN。Chow等[26]发现在DN小鼠中,肾小球和肾小管损伤的进展与肾脏巨噬细胞的积累有关。巨噬细胞还可以分泌富含亮氨酸α2糖蛋白1(leucine-rich α2-glycoprotein 1,LRG1)的细胞外囊泡(extracellular vesicle,EV),这些EV可以通过转化生长因子β受体1(transforming growth factor β receptor 1,TGFβR1)依赖性途径激活巨噬细胞并上调多种炎症基因的表达,从而诱导肾脏炎症和损伤[27]。
3.2 T细胞
T细胞在DN的发生和进展中参与了多个病理过程。研究发现,DN患者的肾组织中存在大量的T细胞浸润,尤其是CD4+和CD8+ T细胞。DN发生时,肾脏中的T细胞主要来自组织驻留记忆T细胞的募集,循环T细胞需要到达炎症部位才能发挥作用[28]。在高血糖的刺激下,T细胞释放IL-1β、IL-6、IL-17A、干扰素γ、TNF-α等炎症因子,导致滤过屏障受损、肾脏纤维化、白蛋白尿增加、胰岛素抵抗等病理过程。此外,调节性T细胞(regulatory T cell,Treg)的数量和功能与DN的严重程度和预后密切相关。在动物模型中发现Treg的过继转移改善了胰岛素抵抗和DN[29]。文献报道髓源性抑制细胞(myeloid-derived suppressor cell,MDSC)免疫治疗能够降低肾体重比、减少肾小球中纤连蛋白积累,使估算肾小球滤过率(estimated glomerular filtration rate,eGFR)正常化,从而改善DN,推测可能与MDSC干扰了T细胞的募集和活力有关[30]。
3.3 中性粒细胞
关于中性粒细胞与DN之间联系的研究较少。Wan等[31]对4 813例成年糖尿病患者进行了横断面调查,发现糖尿病早期肾脏病变的发生风险随着中性粒细胞与淋巴细胞比值的增高而增加。生物信息学分析发现,DN患者中性粒细胞比例降低,不过这一点与采用链脲佐菌素诱导的糖尿病小鼠模型的动物实验结果相反[32-33]。另外,中性粒细胞在受到感染或其他刺激时会释放细胞核内的染色质和颗粒物质,形成一种网状结构,这种结构被称为中性粒细胞外陷阱(neutrophil extracellular trap,NET)。Zheng等[34]发现DN患者和糖尿病小鼠的肾小球中NET沉积增加。当NET降解后,糖尿病小鼠的肾小球病变和肾小球内皮细胞损伤程度都有所减轻。
4 抗炎治疗研究进展
4.1 钠-葡萄糖协同转运蛋白2(sodium-glucose cotransporter-2,SGLT-2)抑制剂
研究发现,SGLT-2抑制剂对肾脏的保护作用不仅通过改善血糖水平实现,对抑制炎症、减少氧化应激也起作用[35]。SGLT-2抑制剂可以抑制NF-κB信号通路和NLRP3炎症小体的活化,减少炎症细胞因子的产生,还可以抑制趋化因子如单核细胞趋化蛋白1和细胞间黏附分子1等,减少巨噬细胞等炎症细胞浸润。Elkazzaz等[36]发现,达格列净能通过调节PI3K/Akt/Nrf2信号通路减轻氧化应激、线粒体功能障碍、纤维化和炎症反应,它还通过AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)途径抑制mTOR信号通路,增加自噬,从而保护肾脏免受炎症和氧化应激的损伤[37]。
4.2 胰高血糖素样肽1受体激动剂(glucagon-like peptide 1 receptor agonist,GLP-1RA)
在动物实验以及临床研究中,GLP-1RA都展现出一定的抗炎效果。Shi等[38]发现,利拉鲁肽能够抑制NLRP3诱导的炎症和焦亡相关蛋白表达,发挥保护DN小鼠足细胞的作用。Liu等[39]发现,接受利拉鲁肽治疗的DN患者的炎症和氧化应激标志物如TNF-α、单核细胞趋化蛋白1、谷胱甘肽过氧化物酶和丙二醛水平下降,尿白蛋白排泄减少,足细胞损伤减轻,表明其治疗作用可能与抑制炎症和氧化应激有关。GLP-1RA还能抑制NF-κB、MAPK等多条炎症信号通路,减少巨噬细胞等炎症细胞的激活和浸润,抑制多种炎症细胞因子如TNF-α、IL-1β、IL-6等的产生和释放,降低炎症反应[40]。
4.3 盐皮质激素受体拮抗剂(mineralocorticoid receptor antagonist,MRA)
MRA可以促进巨噬细胞向M2型极化,抑制巨噬细胞产生TNF-α、IL-6等促炎细胞因子,从而减轻炎症反应。另外,MRA还通过抑制NF-κB和STAT3的激活来抑制DN的炎症反应[41]。临床常用的MRA包括甾体类MRA螺内酯(第1代)和依普利酮(第2代)等。新型非甾体类MRA非奈利酮在DN的治疗上也崭露头角,其亲和力和特异性更高,发生高钾血症的风险更低[42]。
4.4 甲基巴多索隆
甲基巴多索隆是一种合成三萜类化合物,其不仅能上调Nrf2活性,还具有抗炎作用,对NF-κB通路可能也有作用。既往研究发现它可以增加DN患者的eGFR,但Ⅱ期和Ⅲ期临床试验却发现甲基巴多索隆会增加蛋白尿,尤其是在脑利尿钠肽(brain natriuretic peptide,BNP)>200 pg/mL或有心力衰竭住院史的DN患者中存在不良心血管事件的风险。虽然在排除了BNP>200 pg/mL或有心力衰竭住院史的患者后,甲基巴多索隆的安全性较高,但其不良反应依然不能忽视。此外,它不能降低患者发生终末期肾病的风险[43],未来还需要更多深入研究。
4.5 内皮素受体拮抗剂
研究表明,糖尿病患者的血浆内皮素1水平升高,导致内皮功能障碍[44]。在临床试验中内皮素受体拮抗剂表现出对DN患者的肾保护作用。内皮素受体拮抗剂通过抑制内皮素受体来减少肾脏病变和蛋白尿,此外还可能对心血管系统产生积极影响。DN患者大多为中老年人,该人群发生水肿和低血压风险较大,内皮素受体拮抗剂有助于减缓DN的进展,同时预防不良反应发生[45]。Heerspink等[46]发现,内皮素受体拮抗剂联合SGLT-2抑制剂可减轻体液潴留并减少白蛋白尿,且患者耐受性良好。
4.6 抗IL-1β药物
针对DN,目前有一些抗IL-1β药物的研究正在进行。卡那单抗(canakinumab)通过降低纤维蛋白原、IL-6和CRP的水平减轻炎症反应。临床试验结果表明卡那单抗治疗降低了心血管事件的风险,包括心肌梗死和系统性炎症[47]。尽管卡那单抗在心血管疾病的治疗中显示出积极效果,但目前的研究并未评估它能否阻止DN进展为终末期肾病,也许未来将其与SGLT-2抑制剂等联合使用能产生安全且互补的效果。
5 小结
DN患者人数逐年递增,而控制血糖、血压等常规治疗方法有其局限性,因此需要找到更有效的治疗方法。炎症反应导致肾小球滤过膜和肾小管损伤,在DN发展中起着重要作用。目前一些临床用药如SGLT-2抑制剂类药物、GLP-1RA类药物等展现出一定的抗炎能力,对肾脏起到保护作用;新型非甾体类MRA的抗炎和抗纤维化作用较甾体类MRA更强,并且可以降低不良反应(如高钾血症)的发生率,因此其治疗肾脏疾病的潜力被广泛看好。在DN治疗中也有一些新兴抗炎药物备注关注,包括内皮素受体拮抗剂、甲基巴多索隆。此外,还有一些针对炎症和纤维化途径的药物也引起了治疗兴趣,如抗IL-1β药物卡那单抗。这些药物还需要更多的临床试验来确定其安全性和有效性,如甲基巴多索隆会增加蛋白尿,长期看来可能是有害的。从这点看,长战线的临床前研究非常必要。针对DN开发更安全、有效的治疗方法面临诸多挑战,未来针对炎症的策略应该会成为研究的焦点之一。
-
[1] CHENG H T, XU X, LIM P S, et al. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000-2015[J]. Diabetes Care, 2021, 44(1): 89-97. DOI: 10.2337/dc20-1913. [2] RAYEGO-MATEOS S, MORGADO-PASCUAL J L, OPAZO-RÍOS L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(11): E3798. DOI: 10.3390/ijms21113798. [3] SELBY N M, TAAL M W. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): 3-15. DOI: 10.1111/dom.14007. [4] PÉREZ-MORALES R E, DEL PINO M D, VALDIVIELSO J M, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-16. DOI: 10.1159/000493278. [5] GALKINA E, LEY K. Leukocyte recruitment and vascular injury in diabetic nephropathy[J]. J Am Soc Nephrol, 2006, 17(2): 368-377. DOI: 10.1681/asn.2005080859. [6] KE G, CHEN X, LIAO R, et al. Receptor activator of NF-κB mediates podocyte injury in diabetic nephropathy[J]. Kidney Int, 2021, 100(2): 377-390. DOI: 10.1016/j.kint.2021.04.036. [7] HONG Q, ZHANG L, DAS B, et al. Increased podocyte sirtuin-1 function attenuates diabetic kidney injury[J]. Kidney Int, 2018, 93(6): 1330-1343. DOI: 10.1016/j.kint.2017.12.008. [8] SHAHZAD K, FATIMA S, KHAWAJA H, et al. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease[J]. Kidney Int, 2022, 102(4): 766-779. DOI: 10.1016/j.kint.2022.06.010. [9] WU M, YANG Z, ZHANG C, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J]. Metabolism, 2021, 118: 154748. DOI: 10.1016/j.metabol.2021.154748. [10] DING H, LI J, LI Y, et al. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome[J]. Mol Ther, 2021, 29(7): 2308-2320. DOI: 10.1016/j.ymthe.2021.03.012. [11] TAGUCHI K, FUKAMI K. RAGE signaling regulates the progression of diabetic complications[J]. Front Pharmacol, 2023, 14: 1128872. DOI: 10.3389/fphar.2023.1128872. [12] WENDT T M, TANJI N, GUO J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy[J]. Am J Pathol, 2003, 162(4): 1123-1137. DOI: 10.1016/S0002-9440(10)63909-0. [13] WANG L, WANG H L, LIU T T, et al. TGF-beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15): 7881. DOI: 10.3390/ijms22157881. [14] XU B H, SHENG J, YOU Y K, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy[J]. Metabolism, 2020, 103: 154013. DOI: 10.1016/j.metabol.2019.154013. [15] MA X, MA J, LENG T, et al. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention[J]. Ren Fail, 2023, 45(1): 2146512. DOI: 10.1080/0886022x.2022.2146512. [16] SANAJOU D, BAHRAMBEIGI S, ASLANI S. β-lapachone is renoprotective in streptozotocin-induced diabetic mice via regulating the PI3K/Akt/mTOR signaling pathway[J]. Iran J Basic Med Sci, 2021, 24(5): 650-656. DOI: 10.22038/ijbms.2021.55565.12422. [17] TANG G, DU Y, GUAN H, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals[J]. Br J Pharmacol, 2022, 179(1): 159-178. DOI: 10.1111/bph.15693. [18] SUN Y, DENG M, KE X, et al. Epidermal growth factor protects against high glucose-induced podocyte injury possibly via modulation of autophagy and PI3K/AKT/mTOR signaling pathway through DNA methylation[J]. Diabetes Metab Syndr Obes, 2021, 14: 2255-2268. DOI: 10.2147/dmso.s299562. [19] CHUANG P Y, HE J C. JAK/STAT signaling in renal diseases[J]. Kidney Int, 2010, 78(3): 231-234. DOI: 10.1038/ki.2010.158. [20] LU T C, WANG Z H, FENG X, et al. Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy[J]. Kidney Int, 2009, 76(1): 63-71. DOI: 10.1038/ki.2009.98. [21] OPAZO-RÍOS L, SANCHEZ MATUS Y, RODRIGUES-DÍEZ R R, et al. Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001242. DOI: 10.1136/bmjdrc-2020-001242. [22] BEHL T, KAUR I, SEHGAL A, et al. Unfolding Nrf2 in diabetes mellitus[J]. Mol Biol Rep, 2021, 48(1): 927-939. DOI: 10.1007/s11033-020-06081-3. [23] LIU Y, URUNO A, SAITO R, et al. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice[J]. Redox Biol, 2022, 58: 102525. DOI: 10.1016/j.redox.2022.102525. [24] XING L, GUO H, MENG S, et al. Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes[J]. Biochem Biophys Res Commun, 2021, 534: 450-456. DOI: 10.1016/j.bbrc.2020.11.061. [25] RUSH B M, BONDI C D, STOCKER S D, et al. Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice[J]. Kidney Int, 2021, 99(1): 102-116. DOI: 10.1016/j.kint.2020.07.036. [26] CHOW F, OZOLS E, NIKOLIC-PATERSON D J, et al. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury[J]. Kidney Int, 2004, 65(1): 116-128. DOI: 10.1111/j.1523-1755.2004.00367.x. [27] JIANG W J, XU C T, DU C L, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022, 12(1): 324-339. DOI: 10.7150/thno.63735. [28] LIU Y, LV Y, ZHANG T, et al. T cells and their products in diabetic kidney disease[J]. Front Immunol, 2023, 14: 1084448. DOI: 10.3389/fimmu.2023.1084448. [29] DOUSDAMPANIS P, TRIGKA K, MOUZAKI A. Tregs and kidney: from diabetic nephropathy to renal transplantation[J]. World J Transplant, 2016, 6(3): 556-563. DOI: 10.5500/wjt.v6.i3.556. [30] HSIEH C C, CHANG C C, HSU Y C, et al. Immune modulation by myeloid-derived suppressor cells in diabetic kidney disease[J]. Int J Mol Sci, 2022, 23(21): 13263. DOI: 10.3390/ijms232113263. [31] WAN H, WANG Y, FANG S, et al. Associations between the neutrophil-to-lymphocyte ratio and diabetic complications in adults with diabetes: a cross-sectional study[J]. J Diabetes Res, 2020, 2020: 6219545. DOI: 10.1155/2020/6219545. [32] WANG Y, ZHAO M, ZHANG Y. Identification of fibronectin 1(FN1) and complement component 3(C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis[J]. Bioengineered, 2021, 12(1): 5386-5401. DOI: 10.1080/21655979.2021.1960766. [33] ZHOU W, LIU Y, HU Q, et al. The landscape of immune cell infiltration in the glomerulus of diabetic nephropathy: evidence based on bioinformatics[J]. BMC Nephrol, 2022, 23(1): 303. DOI: 10.1186/s12882-022-02906-4. [34] ZHENG F, MA L, LI X, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease[J]. Diabetes, 2022, 71(12): 2739-2750. DOI: 10.2337/db22-0153. [35] WINIARSKA A, KNYSAK M, NABRDALIK K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822. DOI: 10.3390/ijms221910822. [36] ELKAZZAZ S K, KHODEER D M, EL FAYOUMI H M, et al. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis[J]. Life Sci, 2021, 280: 119018. DOI: 10.1016/j.lfs.2021.119018. [37] NIU Y, CHEN Y, SUN P, et al. Intragastric and atomized administration of canagliflozin inhibit inflammatory cytokine storm in lipopolysaccharide-treated sepsis in mice: a potential COVID-19 treatment[J]. Int Immunopharmacol, 2021, 96: 107773. DOI: 10.1016/j.intimp.2021.107773. [38] SHI S, CHEN X, YU W, et al. Protective effect of GLP-1 analog liraglutide on podocytes in mice with diabetic nephropathy[J]. Endocr Connect, 2023, 12(10): e230284. DOI: 10.1530/ec-23-0284. [39] LIU J, GUO S, LI H, et al. Effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on podocytes, inflammation, and oxidative stress in patients with diabetic nephropathy (DN)[J]. Pak J Med Sci, 2022, 38(5): 1170-1174. DOI: 10.12669/pjms.38.5.4719. [40] YE Y, ZHONG X, LI N, et al. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway[J]. Obes Res Clin Pract, 2019, 13(4): 385-390. DOI: 10.1016/j.orcp.2019.03.003. [41] BARRERA-CHIMAL J, LIMA-POSADA I, BAKRIS G L, et al. Mineralocorticoid receptor antagonists in diabetic kidney disease-mechanistic and therapeutic effects[J]. Nat Rev Nephrol, 2022, 18(1): 56-70. DOI: 10.1038/s41581-021-00490-8. [42] LO K B, RANGASWAMI J, VADUGANATHAN M, et al. Non-steroidal mineralocorticoid receptor antagonists and cardiorenal outcomes in chronic kidney disease[J]. Eur Heart J, 2022, 43(31): 2931-2945. DOI: 10.1093/eurheartj/ehac299. [43] NANGAKU M, TAKAMA H, ICHIKAWA T, et al. Randomized, double-blind, placebo-controlled phase 3 study of bardoxolone methyl in patients with diabetic kidney disease: design and baseline characteristics of the AYAME study[J]. Nephrol Dial Transplant, 2023, 38(5): 1204-1216. DOI: 10.1093/ndt/gfac242. [44] ZHANG S, LI X, LIU S, et al. Research progress on the role of ET-1 in diabetic kidney disease[J]. J Cell Physiol, 2023, 238(6): 1183-1192. DOI: 10.1002/jcp.31023. [45] AHMAD N, VEERAPALLI H, LANKALA C R, et al. Endothelin receptor antagonists as a potential treatment of diabetic nephropathy: a systematic review[J]. Cureus, 2021, 13(11): e19325. DOI: 10.7759/cureus.19325. [46] HEERSPINK H J L, KOHAN D E, DE ZEEUW D. New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction[J]. Kidney Int, 2021, 99(2): 346-349. DOI: 10.1016/j.kint.2020.09.026. [47] HEPPRICH M, MUDRY J M, GREGORIANO C, et al. Canakinumab in patients with COVID-19 and type 2 diabetes-a multicentre, randomised, double-blind, placebo-controlled trial[J]. EClinicalMedicine, 2022, 53: 101649. DOI: 10.1016/j.eclinm.2022.101649.