中老年帕金森病患者认知障碍危险因素的回顾性病例对照研究

马藩源 简伟明 安丽君 吴利平 张华

引用本文: 马藩源,简伟明,安丽君,等. 中老年帕金森病患者认知障碍危险因素的回顾性病例对照研究[J]. 海军军医大学学报,2025,46(9):1169-1176. DOI: 10.16781/j.CN31-2187/R.20240109..
Citation: MA F, JIAN W, AN L, et al. Risk factors of cognitive disorder in middle-aged and elderly patients with Parkinson's disease: a retrospective case-control study[J]. Acad J Naval Med Univ, 2025, 46(9): 1169-1176. DOI: 10.16781/j.CN31-2187/R.20240109..

中老年帕金森病患者认知障碍危险因素的回顾性病例对照研究

doi: 10.16781/j.CN31-2187/R.20240109
基金项目: 

国家自然科学基金 81370928;

陕西省重点研发计划 2022SF160;

空军军医大学西京医院学科助推计划 XJZT18ML79;

空军军医大学唐都医院苗圃培育计划 2022MPPY006.

详细信息
    作者简介:

    马藩源,硕士,主治医师. E-mail: 390375281@qq.com.

    通讯作者:

    张华,E-mail: zhanghua77@fmmu.edu.cn.

Risk factors of cognitive disorder in middle-aged and elderly patients with Parkinson's disease: a retrospective case-control study

Funds: 

National Natural Science Foundation of China 81370928;

Key Research and Development Plan of Shaanxi Province 2022SF160;

Construction Program of the Key Discipline in Xijing Hospital of Air Force Medical University XJZT18ML79;

Nursery Project in Tangdu Hospital of Air Force Medical University 2022MPPY006.

  • 摘要:  目的 分析2型糖尿病(T2DM)与中老年帕金森病(PD)患者认知障碍的关系,并识别PD患者发生认知障碍的危险因素。 方法 收集2010年1月至2021年12月空军军医大学西京医院收治的年龄≥50岁、因PD住院患者的临床资料,包括人口统计学特征、一般临床特征、实验室指标等数据,通过简易精神状态检查量表(MMSE)评估认知状态。将281例PD患者分为T2DM组和非T2DM组,比较两组间MMSE原始认知评分、标化认知评分、认知状态的差异;重新将281例患者分为认知正常组和认知异常组,通过多重logistic回归分析中老年PD患者认知障碍的危险因素。 结果 T2DM组MMSE原始认知评分和标化认知评分均低于非T2DM组[23(18,25)分vs 24(21,27)分,P=0.011;-1(-3,2)分vs 1(-1,3)分,P=0.004],认知障碍检出率高于非T2DM组[53.57%(45/84) vs 33.50%(66/197),P=0.002]。多重logistic回归分析显示,T2DM(OR=2.452,95%CI 1.397~4.306,P=0.002)、居住地(OR=2.208,95%CI 1.261~3.868,P=0.006)、年龄(OR=1.054,95%CI 1.006~1.104,P=0.028)是中老年PD患者认知障碍的危险因素,血尿酸(OR=0.274,95%CI 0.098~0.768,P=0.014)是中老年PD患者认知障碍的保护因素。 结论 T2DM、居住于农村地区、高龄、低血尿酸是中老年PD患者认知障碍的独立危险因素。对于伴有T2DM的中老年PD患者应加强认知障碍的筛查,以便早期预防和干预。

     

    Abstract:  Objective To analyze the relationship between type 2 diabetes mellitus (T2DM) and cognitive disorder in middle-aged and elderly patients with Parkinson's disease (PD), and to identify risk factors for cognitive disorder in PD patients. Methods The clinical data of patients aged ≥50 years and hospitalized for PD in Xijing Hospital of Air Force Medical University from Jan. 2010 to Dec. 2021 were collected, including demographic characteristics, general clinical features, laboratory indicators, etc. The cognitive status was evaluated by mini-mental state examination (MMSE). A total of 281 PD patients were assigned to T2DM group or non-T2DM group, and MMSE original score, standardized score, and cognitive status were compared between the 2 groups. The 281 patients were reassigned to normal cognition group or abnormal cognition group, then multivariate logistic regression was used to analyze the risk factors of cognitive disorder in middle-aged and elderly patients with PD. Results The MMSE original score and standardized score in the T2DM group were significantly lower than those in the non-T2DM group (23[18, 25] vs 24[21, 27], P=0.011; -1[-3, 2] vs 1[-1, 3], P=0.004), and the detection rate of cognitive disorder was significantly higher than that of the non-T2DM group (53.57%[45/84] vs 33.50%[66/197], P=0.002). Multivariate logistic regression analysis showed that T2DM (odds ratio[OR]=2.452, 95% confidence interval[95%CI]1.397-4.306, P=0.002), place of residence (OR=2.208, 95%CI 1.261-3.868, P=0.006), and age (OR=1.054, 95%CI 1.006-1.104, P=0.028) were risk factors for cognitive disorder in middle-aged and elderly patients with PD, while serum uric acid (OR=0.274, 95%CI 0.098-0.768, P=0.014) was protective factor for cognitive disorder in middle-aged and elderly patients with PD. Conclusion T2DM, rural area, advanced age, and hypouricemia are independent risk factors for cognitive disorder in middle-aged and elderly patients with PD. For middle-aged and elderly PD patients with T2DM, screening for cognitive disorder should be strengthened for early prevention and intervention.

     

  • 2型糖尿病(type 2 diabetes mellitus,T2DM)是糖尿病最常见的一种类型,其在65岁以上人群中的患病率估计为18.8%[1]。T2DM可加速脑衰老进程,促进神经退行性病变,引起认知障碍甚至痴呆症[2-3]。糖尿病患者的认知衰退是一个相对微妙、缓慢渐进的过程,认知障碍和痴呆症主要发生在老年人中[4]。美国一项大型退伍军人登记研究显示,65~74岁的糖尿病患者伴发痴呆和认知障碍的患病率为13.1%,而74岁以上者为24.2%[5]。T2DM是导致认知功能下降的长期重要危险因素,随着糖尿病持续时间的延长,认知能力下降的速度加快,痴呆症的风险显著增加[6]。然而,与T2DM的其他并发症相比,目前对T2DM患者认知障碍识别和管理的关注度仍不足[4]

    帕金森病(Parkinson’s disease,PD)是一种神经退行性疾病,认知能力下降和痴呆症是晚期PD患者的常见症状[7]。PD患者认知能力下降的机制仍不十分清楚,目前大量证据支持炎症参与PD的发病或进展[8]。炎症也是T2DM发生、发展的重要机制[9-10]。对共病患者的潜在特征进行分析有助于优化有效的医疗管理策略。本研究以中老年PD患者为研究对象,分析T2DM与PD患者认知障碍的关系,并识别PD患者发生认知障碍的危险因素。

    本研究为回顾性病例对照研究,已通过空军军医大学西京医院药物临床试验伦理委员会审查批准(KY20212227)。以空军军医大学西京医院电子微缩病例系统为依托,收集2010年1月至2021年12月收治的年龄≥50岁、因PD住院患者的临床资料。主诊断选择PD的原因是PD患者入院一般情况下都会进行认知测试。纳入标准:(1)确诊为PD;(2)进行简易精神状态检查量表(mini-mental state examination,MMSE)评估。排除标准:(1)年龄<50岁;(2)入院前3个月内发生急性脑出血、急性脑梗死或其他急性脑病;(3)酒精依赖、药物滥用或药物成瘾;(4)精神障碍、脑肿瘤、脑炎或癫痫;(5)一氧化碳中毒、梅毒、严重全身感染;(6)1型糖尿病;(7)有遗传性疾病家族史;(8)相关数据缺失。

    参照《中国2型糖尿病防治指南(2020年版)》[11]中T2DM的诊断标准,将纳入的患者分为T2DM组和非T2DM组,比较两组的MMSE原始认知评分、标化认知评分(原始认知评分减去以受教育程度对人群分层后的评估标准分)及认知状态,若两组间认知状态存在差异,则重新将患者分为认知正常组和认知异常组,以确定影响PD患者认知障碍的危险因素。

    所有资料均来源于空军军医大学西京医院病例微缩系统的住院患者信息,以最早进行认知测试的该次入院信息为准进行收集。(1)一般人口学资料:性别、年龄、婚姻状态、居住地、受教育程度、吸烟情况、饮酒情况。(2)入院时情况:身高、体重、BMI、慢性合并症、临床诊断、既往病史、收缩压、舒张压、血糖。(3)临床实验室检查资料:血常规指标、肝肾功能指标、血脂指标、心肌功能指标、凝血指标、肿瘤标志物指标、同型半胱氨酸、维生素B12、叶酸、糖化血红蛋白(glycosylated hemoglobin,HbA1c)。(4)临床量表测试:MMSE得分、蒙特利尔认知评估量表(Montreal cognitive assessment scale,MoCA)得分、汉密尔顿焦虑量表(Hamilton anxiety scale,HAMA)得分、汉密尔顿抑郁量表(Hamilton depression scale,HAMD)得分、巴塞尔指数(Barthel index,BI)得分,其中BI得分用于评估患者对他人的依赖程度,分为自理(91~100分)、轻度依赖(61~90分)、中度依赖(21~60分)和重度依赖(0~20分)[12-13]

    本研究目标对象为50岁以上人群,故选择中文版MMSE为认知功能的评估依据,因为MMSE充分考虑到受试者受教育程度的因素,将不同受教育程度的人群进行分层评估。中文版MMSE是一种临床问卷,满分30分,包括时间定向力、位置定向力、即刻记忆、注意与计算、延迟记忆、语言能力、视空间等7个维度[14]。本研究对受教育程度进行修正后的MMSE评估标准如下:受教育程度为文盲的人群记录为不识字水平,该人群MMSE原始认知评分<17分表示认知功能异常;受教育程度为小学的人群MMSE原始认知评分<20分为认知功能异常;受教育程度为初中、高中、大专、本科及以上人群MMSE原始认知评分<24分为认知功能异常[15]

    采用SPSS 26.0软件进行统计学分析。采用Kolmogorov-Smirnov检验对连续变量进行正态性检验。呈正态分布的计量资料采用x±s描述,两组间比较采用独立样本t检验;非正态分布的计量资料采用M(Q1Q3)描述,两组间比较采用Mann-Whitney U检验;计数资料采用频数和百分数描述,二分类资料、多分类资料两组间比较采用χ2检验,等级资料两组间比较采用Mann-Whitney U检验。采用结果变量为二值变量的多重logistic回归分析筛选可能与认知障碍相关的危险因素。检验水准(α)为0.05。

    2010年1月至2021年12月因PD入院且进行MMSE评估的患者共807例,其中年龄<50岁者306例,相关数据缺失者313例,急性脑出血28例、急性脑梗死20例,酒精依赖、药物滥用或药物成瘾l例,精神障碍、脑肿瘤、急性脑炎或癫痫39例,一氧化碳中毒、梅毒、严重全身感染11例,1型糖尿病89例,遗传性家族病史0例,最终共281例患者符合纳排条件。281例中老年PD患者中,男157例(55.87%),女124例(44.13%);年龄53~84(67.84±5.71)岁,65岁以上者占66.90%(188/281);84例(29.89%)合并T2DM。T2DM组患者年龄大于非T2DM组,MMSE原始认知评分和标化认知评分低于非T2DM组,认知障碍检出率高于非T2DM组,心脑血管事件发生率高于非T2DM组,差异均有统计学意义(均P<0.05);两组性别、居住地、受教育程度、患者对他人的依赖程度、HAMA评分、HAMD评分差异均无统计学意义(均P>0.05)。见表 1。这提示T2DM不仅加速中老年PD患者认知功能恶化的速度,而且使中老年PD患者更易发生心脑血管疾病。

    表  1  非T2DM组和T2DM组中老年PD患者认知特征及其他资料比较
    Table  1  Cognitive characteristics and other data between non-T2DM group and T2DM group in middle-aged and elderly patients with PD
    Item Non-T2DM N=197 T2DM N=84 Statistic P value
    Age/year, M (Q1, Q3) 67 (62, 71) 70 (65, 74) Z=-3.737 <0.001
    Male, n (%) 111 (56.35) 46 (54.76) χ2=0.060 0.807
    Place of residence (urban), n (%) 133 (67.51) 63 (75.00) χ2=1.565 0.211
    Education level, n (%) Z=0.272 0.785
      Illiteracy 9 (4.57) 8 (9.52)
      Elementary school 42 (21.32) 14 (16.67)
      Junior high school and above 146 (74.11) 62 (73.81)
    Cognitive dysfunction, n (%) 66 (33.50) 45 (53.57) χ2=9.925 0.002
    MMSE original score, M (Q1, Q3) 24 (21, 27) 23 (18, 25) Z=2.556 0.011
      MMSE original score (age 53-64 years)a, M (Q1, Q3) 25 (21, 27) 23 (19, 26) Z=1.439 0.150
      MMSE original score (age 65-74 years)b, M (Q1, Q3) 24 (21, 26) 23 (19, 25) Z=1.888 0.059
      MMSE original score (age 75-84 years)c, M (Q1, Q3) 23 (20, 25) 23 (17, 27) Z=0.098 0.922
    MMSE standardized score, M (Q1, Q3) 1 (-1, 3) -1 (-3, 2) Z=2.901 0.004
      MMSE standardized score (age 53-64 years)a, M (Q1, Q3) 1 (-1, 3) -1 (-2, 3) Z=1.693 0.091
      MMSE standardized score (age 65-74 years)b, M (Q1, Q3) 1 (-2, 3) -1 (-3, 2) Z=1.874 0.061
      MMSE standardized score (age 75-84 years)c, M (Q1, Q3) -1 (-2, 2) 0 (-6, 3) Z=-0.282 0.778
    HAMA score, M (Q1, Q3) 12 (8, 16) 11 (8, 15) Z=0.976 0.329
    HAMD score, M (Q1, Q3) 13 (9, 16) 11 (9, 14) Z=1.486 0.137
    Severity of dependence (BI), n (%) Z=-1.454 0.146
      Self-care 45 (22.84) 13 (15.48)
      Mild dependence 123 (62.44) 55 (65.48)
      Moderate dependence 23 (11.68) 14 (16.67)
      Severe dependence 6 (3.05) 2 (2.38)
    Cardiac-cerebrovascular events, n (%) 76 (38.58) 60 (71.43) χ2=25.446 <0.001
    a: n=75 in non-T2DM group, n=18 in T2DM group; b: n=99 in non-T2DM group, n=46 in T2DM group; c: n=23 in non-T2DM group, n=20 in T2DM group. T2DM: Type 2 diabetes mellitus; PD: Parkinson’s disease; MMSE: Mini-mental state examination; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression scale; BI: Barthel index.

    重新将281例中老年PD患者分为认知正常组(n=170)和认知异常组(n=111),单因素分析发现两组间T2DM、年龄、居住地、BMI、患者对他人的依赖程度、HbA1c、血肌酐、血尿酸、凝血酶原时间(prothrombin time,PT)、国际标准化比值(international normalized ratio,INR)等指标差异有统计学意义(均P<0.05),见表 2。结果变量为二值变量的多重logistic回归分析结果显示,T2DM(OR=2.452,95%CI 1.397~4.306,P=0.002)、居住地(OR=2.208,95%CI 1.261~3.868,P=0.006)以及年龄(OR=1.054,95%CI 1.006~1.104,P=0.028)是中老年PD患者发生认知障碍的危险因素,血尿酸(OR=0.274,95%CI 0.098~0.768,P=0.014)是中老年PD患者发生认知障碍的保护因素。见表 3。这提示对于中老年PD患者应重点关注以上4项因素,以预防认知障碍的发生和进展。

    表  2  认知正常组和认知异常组中老年PD患者各指标比较
    Table  2  Indexes between normal cognition group and abnormal cognition group in middle-aged and elderly patients with PD
    Item Normal cognition N=170 Abnormal cognition N=111 Statistic P value
    T2DM, n (%) 39 (22.94) 45 (50.54) χ2=9.925 0.002
    Age/year, M (Q1, Q3) 67 (63, 72) 68 (64, 74) Z=-2.026 0.043
    Male, n (%) 94 (55.29) 63 (56.76) χ2=0.058 0.809
    Place of residence (rural), n (%) 43 (25.29) 42 (37.84) χ2=5.008 0.025
    Alcohol consumption, n (%) 26 (15.29) 19 (17.12) χ2=0.166 0.684
    Smoking, n (%) 30 (17.65) 21 (18.92) χ2=0.073 0.787
    Education level, n (%) Z=0.581 0.562
      Illiteracy 10 (5.88) 7 (6.31)
      Elementary school 32 (18.82) 24 (21.62)
      Junior high school above 128 (75.29) 80 (72.07)
    Body mass index/(kg•m2), M (Q1, Q3) 23.9 (22.2, 25.9) 22.7 (21.1, 25.7) Z=2.032 0.042
    Systolic blood pressure/mmHg, x±s 132±18 130±19 t=0.157 0.431
    Diastolic blood pressure/mmHg, M (Q1, Q3) 80 (70, 86) 78 (70, 85) Z=1.049 0.294
    Admission glucose/(mmol•L1), M (Q1, Q3) 6.9 (5.8, 8.7) 6.9 (5.9, 9.7) Z=-0.697 0.486
    HbA1c/%, M (Q1, Q3) 6.3 (5.7, 6.9) 6.7 (6.1, 7.4) Z=-2.454 0.014
    HAMA score, M (Q1, Q3) 12 (8, 15) 13 (8, 17) Z=-0.918 0.359
    HAMD score, M (Q1, Q3) 12 (9, 16) 13 (7, 15) Z=-0.291 0.771
    Severity of dependence (BI), n (%) Z=-3.090 0.002
      Self-care 42 (24.71) 16 (14.41)
      Mild dependence 109 (64.12) 69 (62.16)
      Moderate dependence 17 (10.00) 20 (18.02)
      Severe dependence 2 (1.18) 6 (5.41)
    White blood cell/(L1,×109), M (Q1, Q3) 5.39 (4.49, 6.45) 5.09 (4.39, 6.05) Z=0.884 0.377
    Neutrophil, x±s 0.605±0.085 0.598±0.091 t=0.110 0.491
    Lymphocyte, x±s 0.297±0.076 0.309±0.085 t=1.048 0.211
    Monocyte, M (Q1, Q3) 0.067 (0.056, 0.080) 0.067 (0.059, 0.081) Z=-0.650 0.516
    Red blood cell/(L1, ×1012), M (Q1, Q3) 4.28 (4.03, 4.65) 4.24 (4.03, 4.54) Z=0.674 0.500
    Hemoglobin/(g•L1), M (Q1, Q3) 133 (121, 143) 130 (123, 139) Z=1.466 0.143
    Blood platelet/(L1, ×109), x±s 190±61 180±56 t=0.860 0.151
    ALT/(U•L1), M (Q1, Q3) 16 (12, 23) 16 (11, 24) Z=0.076 0.939
    AST/(U•L1), M (Q1, Q3) 19 (15, 23) 18 (15, 22) Z=0.861 0.389
    γ-glutamyl transpeptidase/(U•L-1), M (Q1, Q3) 18 (14, 26) 19 (14, 30) Z=-0.986 0.324
    Total protein/(g•L1), x±s 65.9±5.7 64.9±5.3 t=1.362 0.129
    Globulin/(g•L1), x±s 25.9±4.0 25.3±3.9 t=0.013 0.260
    Albumin/(g•L1), x±s 40.0±3.2 39.5±2.8 t=1.286 0.203
    Albumin-globulin ratio, M (Q1, Q3) 1.6 (1.4, 1.7) 1.6 (1.4, 1.8) Z=-0.296 0.767
    Total bilirubin/(μmol•L1), M (Q1, Q3) 11.1 (8.8, 14.8) 11.9 (8.8, 15.1) Z=0.634 0.526
    Direct bilirubin/(μmol•L1), M (Q1, Q3) 3.8 (3.0, 5.0) 4.2 (3.1, 5.6) Z=1.200 0.230
    Indirect bilirubin/(μmol•L1), M (Q1, Q3) 7.1 (5.8, 9.7) 7.6 (5.8, 9.9) Z=0.435 0.664
    Alkaline phosphatase/(U•L1), M (Q1, Q3) 74 (62, 85) 79 (59, 95) Z=0.759 0.448
    Total cholesterol/(mmol•L1), M (Q1, Q3) 4.00 (3.27, 4.38) 3.91 (3.31, 4.36) Z=0.131 0.896
    Triglyceride/(mmol•L1), M (Q1, Q3) 1.09 (0.78, 1.43) 1.08 (0.79, 1.43) Z=0.058 0.954
    HDL-C/(mmol•L1), M (Q1, Q3) 1.17 (1.02, 1.39) 1.14 (1.00, 1.38) Z=0.493 0.622
    LDL-C/(mmol•L1), x±s 2.32±0.76 2.34±0.75 t=-0.009 0.900
    Apolipoprotein-A1/(g•L1), M (Q1, Q3) 1.16 (1.02, 1.33) 1.14 (1.00, 1.33) Z=0.737 0.461
    Apolipoprotein-B/(g•L1), M (Q1, Q3) 0.68 (0.55, 0.82) 0.68 (0.57, 0.77) Z=-0.444 0.657
    Cystatin C/(mg•L1), M (Q1, Q3) 0.98 (0.91, 1.09) 1.00 (0.90, 1.14) Z=-0.617 0.537
    Blood urea nitrogen/(mmol•L1), M (Q1, Q3) 5.19 (4.36, 6.26) 5.33 (4.30, 6.50) Z=-0.197 0.844
    Serum creatinine/(μmol•L1), x±s 78±19 83±19 t=-0.025 0.041
    Serum uric acid/(μmol•L1), x±s 268±76 248±72 t=0.174 0.033
    K+/(mmol•L1), M (Q1, Q3) 3.97 (3.75, 4.22) 3.96 (3.73, 4.13) Z=0.747 0.455
    CO2 combining power/(mmol•L1), x±s 23.3±2.4 22.9±2.4 t=0.003 0.245
    PT/s, M (Q1, Q3) 10.90 (10.50, 11.40) 11.20 (10.80, 11.70) Z=-2.538 0.011
    APTT/s, M (Q1, Q3) 26.40 (23.80, 29.40) 26.15 (24.48, 28.93) Z=0.214 0.830
    Fibrinogen/(g•L1), M (Q1, Q3) 2.61 (2.25, 3.06) 2.69 (2.26, 3.19) Z=-1.034 0.301
    Thrombin time/s, M (Q1, Q3) 18.20 (17.50, 18.80) 18.10 (17.40, 19.03) Z=0.273 0.785
    D-dimer/(mg•L1), M (Q1, Q3) 0.36 (0.20, 0.71) 0.40 (0.26, 0.67) Z=-1.494 0.135
    FDP/(mg•L1), M (Q1, Q3) 1.82 (1.32, 2.36) 1.92 (1.56, 2.60) Z=-1.456 0.146
    PTR/%, x±s 95.08±15.10 91.85±13.13 t=1.203 0.086
    INR, M (Q1, Q3) 0.96 (0.92, 1.00) 0.98 (0.94, 1.03) Z=-2.498 0.012
    LDH/(U•L1), M (Q1, Q3) 173 (154, 195) 173 (152, 197) Z=-0.083 0.934
    LDH-1/(U•L1), x±s 43±14 46±14 t=-0.186 0.234
    CK/(U•L1), M (Q1, Q3) 68 (52, 99) 64 (45, 92) Z=1.430 0.153
    CK-MB/(U•L1), M (Q1, Q3) 12 (10, 16) 11 (9, 14) Z=1.448 0.148
    α-HBDH/(U•L1), x±s 146±32 145±27 t=1.353 0.840
    Pro-BNP/(pg•mL1), M (Q1, Q3) 97.66 (48.70, 156.75) 95.86 (53.80, 195.60) Z=0.896 0.370
    Myoglobin/(ng•mL1), M (Q1, Q3) 27.70 (22.80, 32.80) 27.50 (20.90, 35.30) Z=0.320 0.749
    CK-MB-mass/(ng•mL1), M (Q1, Q3) 1.30 (0.90, 2.00) 1.20 (0.88, 1.60) Z=1.179 0.238
    Homocysteine/(μmol•L1), M (Q1, Q3) 11.77 (9.30, 14.67) 12.11 (9.59, 17.26) Z=-0.767 0.443
    Vitamin B12/(pmol•L1), M (Q1, Q3) 318.0 (208.0, 531.5) 377.3 (262.4, 594.9) Z=-1.809 0.070
    Folic acid/(nmol•L1), M (Q1, Q3) 16.10 (11.28, 27.04) 12.80 (8.52, 25.19) Z=1.678 0.093
    1 mmHg=0.133 kPa. PD: Parkinson’s disease; T2DM: Type 2 diabetes mellitus; HbA1c: Glycosylated hemoglobin; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression scale; BI: Barthel index; ALT: Alanine transaminase; AST: Aspartate transaminase; HDL-C: High density lipoprotein-cholesterol; LDL-C: Low density lipoprotein-cholesterol; PT: Prothrombin time; APTT: Activated partial thromboplastin time; FDP: Fibrinogen degradation products; PTR: Prothrombin time ratio; INR: International normalized ratio; LDH: Lactic dehydrogenase; CK: Creatine kinase; CK-MB: Creatine kinase isoenzyme MB; α-HBDH: α-hydroxybutyrate dehydrogenase; Pro-BNP: Pro-brain natriuretic peptide.
    表  3  中老年PD患者认知障碍影响因素的多重logistic回归分析(结果变量为二值变量)
    Table  3  Multivariate logistic regression analysis of influencing factors for cognitive disorder in middle-aged and elderly patients with PD (the result variable is binary variable)
    Factor b SE Wald P value OR (95%CI)
    T2DM (yes vs no) 0.897 0.287 9.755 0.002 2.452 (1.397, 4.306)
    Place of residence (rural vs urban) 0.792 0.286 7.674 0.006 2.208 (1.261, 3.868)
    Age (continuous variable, year) 0.052 0.024 4.855 0.028 1.054 (1.006, 1.104)
    Serum uric acid (continuous variable, μmol•L1) -1.293 0.525 6.058 0.014 0.274 (0.098, 0.768)
    PD: Parkinson’s disease; T2DM: Type 2 diabetes mellitus; b: Regression coefficient; SE: Standard error; OR: Odds ratio; 95%CI: 95% confidence interval.

    本研究收集的患者样本入院时间跨度12年,但符合纳排标准的患者仅有281例,样本量不够大的原因主要包括以下两方面:一方面,本研究入组人群是年龄≥50岁的人群,由于T2DM中老年患者即使已出现痴呆症状也不一定接受定期的认知筛查(相对于其他糖尿病并发症,认知障碍的发病率低,且没有良好的预防策略和足够的证据表明定期认知筛查对该人群有益[2]),因此本研究纳入的是主诊断为PD的患者;另一方面,对可能出现认知障碍的患者一般采用MoCA和MMSE进行评估,但空军军医大学西京医院使用MoCA量表进行评估的PD患者较少,且中国中老年人群的受教育程度较低,因此本研究选择基于受教育程度的中文版MMSE作为认知障碍的评估工具,即便如此仍有许多PD患者缺失相关数据,无法从医院的病例数据库中检索出详细的MMSE评分。此外,由于随着年龄的增长,患者认知功能的下降可能与自我护理和自我意识的减弱以及更大的依赖性有关[16],因此本研究纳入的患者均进行了依赖性评估,导致样本量更少。

    本研究结果显示,T2DM是PD患者认知功能下降的危险因素。研究发现,散发性PD患者早期即可出现糖代谢紊乱,导致抗氧化储备不足,这可能与神经元存活率下降和脑葡萄糖代谢下降有关[17],但目前相关的病理生理机制仍不完全明确。糖代谢紊乱与多巴胺能功能障碍之间存在相关性,对肥胖模型OLETF(Otsuka Long-Evans Tokushima fatty)大鼠的研究结果表明,由年龄和T2DM依赖性p62转录减少导致的多泛素化p-tau降解受损是T2DM大鼠阿尔茨海默病样病理学表现随年龄增长而加重的主要机制[18]。随着T2DM病程的延长,大血管和微血管病变、氧化应激损伤及胰岛素抵抗均可加重神经元损伤。通常情况下,糖尿病相关认知功能下降的变化比较微妙,在发展为轻度认知功能障碍和痴呆症之前,这些变化不太可能影响日常生活活动或糖尿病自我管理[19]。事实上,严重的低血糖或高血糖发作预示着未来认知功能的恶化,而认知障碍也使老年人更易出现血糖的不稳定波动,因此,未被意识到或未被重视的认知功能下降很可能导致不良健康结局,尤其是当低血糖反复发作时[4]。低血糖发作至血糖恢复正常后,认知功能受损会促进患者的不稳定和非理性行为,引起意识错乱,影响视力和平衡,可导致跌倒和意外,甚至会迅速出现更为严重的神经系统后遗症[20]。本研究中部分中老年PD患者被诊断为T2DM,但大多数血糖控制指标和T2DM病程,即使因PD住院后也没有常规进行检查和记录,临床医师对T2DM与认知障碍相关性的重视程度较低也是其中一个重要原因。

    糖尿病合并认知障碍最明显的共同危险因素无疑是年龄[21]。本研究将患者年龄分层后进行认知评分组间比较,发现T2DM组与非T2DM组之间认知功能的差异减小,MMSE原始得分和标化得分组间差异均无统计学意义(均P>0.05),因此在实践中无法忽视年龄的主导作用。年龄对认知衰退的推动作用及T2DM对认知障碍的影响之间可能存在潜在的交互作用,共同影响认知储备和认知功能恶化。抑郁症与慢性高血糖是协同作用的危险因素,会增加认知缺陷的风险,从而影响T2DM患者对自我管理的能力[22]。但本研究中非T2DM组与T2DM组、认知正常组与认知异常组中老年PD患者HAMD评分差异均无统计学意义(均P>0.05),未发现抑郁与T2DM和认知障碍之间存在明显联系。

    高尿酸血症可能增加老年人的脑血管负担,被认为是一种独立的心血管危险因素[23],但尿酸也可以通过其抗氧化特性或放大β淀粉样蛋白1-42(amyloid β1-42,Aβ1-42)效应而发挥对认知功能的有益作用[24]。Lee等[25]的研究表明,血尿酸可能与载脂蛋白E4相互作用,减少Aβ1-42和tau的沉积,减轻氧化应激水平以及TNF-α和β-淀粉样蛋白对女性患者认知恶化的影响,缓解女性患者的纵向认知衰退[26-27]。Boccardi等[28]的一项回顾性研究也阐明,血尿酸可能有助于降低迟发性阿尔茨海默病风险。然而,在Khan等[29]的meta分析中,对5项研究的调整后logistic回归分析表明血尿酸水平与认知障碍无关(OR=1.18,95%CI 0.96~1.46,P=0.12)。本研究在样本量有限的情况下,多重logistic回归分析结果显示血尿酸对认知障碍的进展具有保护作用。血尿酸与认知功能障碍的关系仍存在争议,这可能与研究人群的不同特征和认知功能障碍评估方法有关。本研究的证据支持升高血尿酸水平可以延缓中老年PD患者认知功能障碍的进展。值得注意的是,在认知障碍的早期就应重视对血尿酸和认知状态的管理,而不是推迟到后期才重视[30]

    本研究还发现,相较于居住在城市,居住在农村的中老年PD患者更容易发生认知障碍,这与Yuan等[31]的研究结果类似。居住在农村的中老年PD患者多为家庭经济状况和消费低下、受教育程度偏低的人群,他们对健康状况的认知和对自我身体管理的认知较低,所以居住在农村与虚弱、认知功能恶化轨迹的可能性增加有关。健康是一个整体概念,涵盖身体、认知和心理健康。高等教育和职业复杂性与更好的认知功能有关,这可能是通过更大的认知储备来实现的[32]。此外,中老年PD患者中有一部分为多重慢性病患者,农村地区医疗资源相对匮乏,患者自我用药管理能力不足,多种药物方案中经常发生药物相互作用,还有多重药物剂量、频率的把控不准确,甚至药物依从性问题[33],这也是受认知水平影响从而又加重认知功能恶化的重要因素。

    综上所述,T2DM、居住于农村地区、高龄、低血尿酸是中老年PD患者认知障碍的独立危险因素。年龄无疑是PD患者发生认知障碍最明显的危险因素,但这一因素无法干预。应加强农村地区的医疗资源投入和医疗保健教育工作,识别和分诊高疾病风险的中老年人群,并根据他们的虚弱状态、认知障碍程度的特征进行保健或护理。针对血尿酸,应客观认识其对认知功能的损害,在降尿酸治疗中切忌过度降低中老年人群血尿酸水平。在PD患者中,糖尿病与更快的运动进展和认知能力下降有关[34]。对于伴有T2DM的中老年PD患者应加强认知障碍的筛查,尤其是在T2DM的发病呈现年轻化趋势的现况下,这一做法具有重要意义。能够保护认知功能的降糖治疗策略[35-36]可能在PD合并T2DM患者的血糖管理中具有潜在价值,值得进一步研究。

  • 表  1   非T2DM组和T2DM组中老年PD患者认知特征及其他资料比较

    Table  1   Cognitive characteristics and other data between non-T2DM group and T2DM group in middle-aged and elderly patients with PD

    Item Non-T2DM N=197 T2DM N=84 Statistic P value
    Age/year, M (Q1, Q3) 67 (62, 71) 70 (65, 74) Z=-3.737 <0.001
    Male, n (%) 111 (56.35) 46 (54.76) χ2=0.060 0.807
    Place of residence (urban), n (%) 133 (67.51) 63 (75.00) χ2=1.565 0.211
    Education level, n (%) Z=0.272 0.785
      Illiteracy 9 (4.57) 8 (9.52)
      Elementary school 42 (21.32) 14 (16.67)
      Junior high school and above 146 (74.11) 62 (73.81)
    Cognitive dysfunction, n (%) 66 (33.50) 45 (53.57) χ2=9.925 0.002
    MMSE original score, M (Q1, Q3) 24 (21, 27) 23 (18, 25) Z=2.556 0.011
      MMSE original score (age 53-64 years)a, M (Q1, Q3) 25 (21, 27) 23 (19, 26) Z=1.439 0.150
      MMSE original score (age 65-74 years)b, M (Q1, Q3) 24 (21, 26) 23 (19, 25) Z=1.888 0.059
      MMSE original score (age 75-84 years)c, M (Q1, Q3) 23 (20, 25) 23 (17, 27) Z=0.098 0.922
    MMSE standardized score, M (Q1, Q3) 1 (-1, 3) -1 (-3, 2) Z=2.901 0.004
      MMSE standardized score (age 53-64 years)a, M (Q1, Q3) 1 (-1, 3) -1 (-2, 3) Z=1.693 0.091
      MMSE standardized score (age 65-74 years)b, M (Q1, Q3) 1 (-2, 3) -1 (-3, 2) Z=1.874 0.061
      MMSE standardized score (age 75-84 years)c, M (Q1, Q3) -1 (-2, 2) 0 (-6, 3) Z=-0.282 0.778
    HAMA score, M (Q1, Q3) 12 (8, 16) 11 (8, 15) Z=0.976 0.329
    HAMD score, M (Q1, Q3) 13 (9, 16) 11 (9, 14) Z=1.486 0.137
    Severity of dependence (BI), n (%) Z=-1.454 0.146
      Self-care 45 (22.84) 13 (15.48)
      Mild dependence 123 (62.44) 55 (65.48)
      Moderate dependence 23 (11.68) 14 (16.67)
      Severe dependence 6 (3.05) 2 (2.38)
    Cardiac-cerebrovascular events, n (%) 76 (38.58) 60 (71.43) χ2=25.446 <0.001
    a: n=75 in non-T2DM group, n=18 in T2DM group; b: n=99 in non-T2DM group, n=46 in T2DM group; c: n=23 in non-T2DM group, n=20 in T2DM group. T2DM: Type 2 diabetes mellitus; PD: Parkinson’s disease; MMSE: Mini-mental state examination; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression scale; BI: Barthel index.

    表  2   认知正常组和认知异常组中老年PD患者各指标比较

    Table  2   Indexes between normal cognition group and abnormal cognition group in middle-aged and elderly patients with PD

    Item Normal cognition N=170 Abnormal cognition N=111 Statistic P value
    T2DM, n (%) 39 (22.94) 45 (50.54) χ2=9.925 0.002
    Age/year, M (Q1, Q3) 67 (63, 72) 68 (64, 74) Z=-2.026 0.043
    Male, n (%) 94 (55.29) 63 (56.76) χ2=0.058 0.809
    Place of residence (rural), n (%) 43 (25.29) 42 (37.84) χ2=5.008 0.025
    Alcohol consumption, n (%) 26 (15.29) 19 (17.12) χ2=0.166 0.684
    Smoking, n (%) 30 (17.65) 21 (18.92) χ2=0.073 0.787
    Education level, n (%) Z=0.581 0.562
      Illiteracy 10 (5.88) 7 (6.31)
      Elementary school 32 (18.82) 24 (21.62)
      Junior high school above 128 (75.29) 80 (72.07)
    Body mass index/(kg•m2), M (Q1, Q3) 23.9 (22.2, 25.9) 22.7 (21.1, 25.7) Z=2.032 0.042
    Systolic blood pressure/mmHg, x±s 132±18 130±19 t=0.157 0.431
    Diastolic blood pressure/mmHg, M (Q1, Q3) 80 (70, 86) 78 (70, 85) Z=1.049 0.294
    Admission glucose/(mmol•L1), M (Q1, Q3) 6.9 (5.8, 8.7) 6.9 (5.9, 9.7) Z=-0.697 0.486
    HbA1c/%, M (Q1, Q3) 6.3 (5.7, 6.9) 6.7 (6.1, 7.4) Z=-2.454 0.014
    HAMA score, M (Q1, Q3) 12 (8, 15) 13 (8, 17) Z=-0.918 0.359
    HAMD score, M (Q1, Q3) 12 (9, 16) 13 (7, 15) Z=-0.291 0.771
    Severity of dependence (BI), n (%) Z=-3.090 0.002
      Self-care 42 (24.71) 16 (14.41)
      Mild dependence 109 (64.12) 69 (62.16)
      Moderate dependence 17 (10.00) 20 (18.02)
      Severe dependence 2 (1.18) 6 (5.41)
    White blood cell/(L1,×109), M (Q1, Q3) 5.39 (4.49, 6.45) 5.09 (4.39, 6.05) Z=0.884 0.377
    Neutrophil, x±s 0.605±0.085 0.598±0.091 t=0.110 0.491
    Lymphocyte, x±s 0.297±0.076 0.309±0.085 t=1.048 0.211
    Monocyte, M (Q1, Q3) 0.067 (0.056, 0.080) 0.067 (0.059, 0.081) Z=-0.650 0.516
    Red blood cell/(L1, ×1012), M (Q1, Q3) 4.28 (4.03, 4.65) 4.24 (4.03, 4.54) Z=0.674 0.500
    Hemoglobin/(g•L1), M (Q1, Q3) 133 (121, 143) 130 (123, 139) Z=1.466 0.143
    Blood platelet/(L1, ×109), x±s 190±61 180±56 t=0.860 0.151
    ALT/(U•L1), M (Q1, Q3) 16 (12, 23) 16 (11, 24) Z=0.076 0.939
    AST/(U•L1), M (Q1, Q3) 19 (15, 23) 18 (15, 22) Z=0.861 0.389
    γ-glutamyl transpeptidase/(U•L-1), M (Q1, Q3) 18 (14, 26) 19 (14, 30) Z=-0.986 0.324
    Total protein/(g•L1), x±s 65.9±5.7 64.9±5.3 t=1.362 0.129
    Globulin/(g•L1), x±s 25.9±4.0 25.3±3.9 t=0.013 0.260
    Albumin/(g•L1), x±s 40.0±3.2 39.5±2.8 t=1.286 0.203
    Albumin-globulin ratio, M (Q1, Q3) 1.6 (1.4, 1.7) 1.6 (1.4, 1.8) Z=-0.296 0.767
    Total bilirubin/(μmol•L1), M (Q1, Q3) 11.1 (8.8, 14.8) 11.9 (8.8, 15.1) Z=0.634 0.526
    Direct bilirubin/(μmol•L1), M (Q1, Q3) 3.8 (3.0, 5.0) 4.2 (3.1, 5.6) Z=1.200 0.230
    Indirect bilirubin/(μmol•L1), M (Q1, Q3) 7.1 (5.8, 9.7) 7.6 (5.8, 9.9) Z=0.435 0.664
    Alkaline phosphatase/(U•L1), M (Q1, Q3) 74 (62, 85) 79 (59, 95) Z=0.759 0.448
    Total cholesterol/(mmol•L1), M (Q1, Q3) 4.00 (3.27, 4.38) 3.91 (3.31, 4.36) Z=0.131 0.896
    Triglyceride/(mmol•L1), M (Q1, Q3) 1.09 (0.78, 1.43) 1.08 (0.79, 1.43) Z=0.058 0.954
    HDL-C/(mmol•L1), M (Q1, Q3) 1.17 (1.02, 1.39) 1.14 (1.00, 1.38) Z=0.493 0.622
    LDL-C/(mmol•L1), x±s 2.32±0.76 2.34±0.75 t=-0.009 0.900
    Apolipoprotein-A1/(g•L1), M (Q1, Q3) 1.16 (1.02, 1.33) 1.14 (1.00, 1.33) Z=0.737 0.461
    Apolipoprotein-B/(g•L1), M (Q1, Q3) 0.68 (0.55, 0.82) 0.68 (0.57, 0.77) Z=-0.444 0.657
    Cystatin C/(mg•L1), M (Q1, Q3) 0.98 (0.91, 1.09) 1.00 (0.90, 1.14) Z=-0.617 0.537
    Blood urea nitrogen/(mmol•L1), M (Q1, Q3) 5.19 (4.36, 6.26) 5.33 (4.30, 6.50) Z=-0.197 0.844
    Serum creatinine/(μmol•L1), x±s 78±19 83±19 t=-0.025 0.041
    Serum uric acid/(μmol•L1), x±s 268±76 248±72 t=0.174 0.033
    K+/(mmol•L1), M (Q1, Q3) 3.97 (3.75, 4.22) 3.96 (3.73, 4.13) Z=0.747 0.455
    CO2 combining power/(mmol•L1), x±s 23.3±2.4 22.9±2.4 t=0.003 0.245
    PT/s, M (Q1, Q3) 10.90 (10.50, 11.40) 11.20 (10.80, 11.70) Z=-2.538 0.011
    APTT/s, M (Q1, Q3) 26.40 (23.80, 29.40) 26.15 (24.48, 28.93) Z=0.214 0.830
    Fibrinogen/(g•L1), M (Q1, Q3) 2.61 (2.25, 3.06) 2.69 (2.26, 3.19) Z=-1.034 0.301
    Thrombin time/s, M (Q1, Q3) 18.20 (17.50, 18.80) 18.10 (17.40, 19.03) Z=0.273 0.785
    D-dimer/(mg•L1), M (Q1, Q3) 0.36 (0.20, 0.71) 0.40 (0.26, 0.67) Z=-1.494 0.135
    FDP/(mg•L1), M (Q1, Q3) 1.82 (1.32, 2.36) 1.92 (1.56, 2.60) Z=-1.456 0.146
    PTR/%, x±s 95.08±15.10 91.85±13.13 t=1.203 0.086
    INR, M (Q1, Q3) 0.96 (0.92, 1.00) 0.98 (0.94, 1.03) Z=-2.498 0.012
    LDH/(U•L1), M (Q1, Q3) 173 (154, 195) 173 (152, 197) Z=-0.083 0.934
    LDH-1/(U•L1), x±s 43±14 46±14 t=-0.186 0.234
    CK/(U•L1), M (Q1, Q3) 68 (52, 99) 64 (45, 92) Z=1.430 0.153
    CK-MB/(U•L1), M (Q1, Q3) 12 (10, 16) 11 (9, 14) Z=1.448 0.148
    α-HBDH/(U•L1), x±s 146±32 145±27 t=1.353 0.840
    Pro-BNP/(pg•mL1), M (Q1, Q3) 97.66 (48.70, 156.75) 95.86 (53.80, 195.60) Z=0.896 0.370
    Myoglobin/(ng•mL1), M (Q1, Q3) 27.70 (22.80, 32.80) 27.50 (20.90, 35.30) Z=0.320 0.749
    CK-MB-mass/(ng•mL1), M (Q1, Q3) 1.30 (0.90, 2.00) 1.20 (0.88, 1.60) Z=1.179 0.238
    Homocysteine/(μmol•L1), M (Q1, Q3) 11.77 (9.30, 14.67) 12.11 (9.59, 17.26) Z=-0.767 0.443
    Vitamin B12/(pmol•L1), M (Q1, Q3) 318.0 (208.0, 531.5) 377.3 (262.4, 594.9) Z=-1.809 0.070
    Folic acid/(nmol•L1), M (Q1, Q3) 16.10 (11.28, 27.04) 12.80 (8.52, 25.19) Z=1.678 0.093
    1 mmHg=0.133 kPa. PD: Parkinson’s disease; T2DM: Type 2 diabetes mellitus; HbA1c: Glycosylated hemoglobin; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression scale; BI: Barthel index; ALT: Alanine transaminase; AST: Aspartate transaminase; HDL-C: High density lipoprotein-cholesterol; LDL-C: Low density lipoprotein-cholesterol; PT: Prothrombin time; APTT: Activated partial thromboplastin time; FDP: Fibrinogen degradation products; PTR: Prothrombin time ratio; INR: International normalized ratio; LDH: Lactic dehydrogenase; CK: Creatine kinase; CK-MB: Creatine kinase isoenzyme MB; α-HBDH: α-hydroxybutyrate dehydrogenase; Pro-BNP: Pro-brain natriuretic peptide.

    表  3   中老年PD患者认知障碍影响因素的多重logistic回归分析(结果变量为二值变量)

    Table  3   Multivariate logistic regression analysis of influencing factors for cognitive disorder in middle-aged and elderly patients with PD (the result variable is binary variable)

    Factor b SE Wald P value OR (95%CI)
    T2DM (yes vs no) 0.897 0.287 9.755 0.002 2.452 (1.397, 4.306)
    Place of residence (rural vs urban) 0.792 0.286 7.674 0.006 2.208 (1.261, 3.868)
    Age (continuous variable, year) 0.052 0.024 4.855 0.028 1.054 (1.006, 1.104)
    Serum uric acid (continuous variable, μmol•L1) -1.293 0.525 6.058 0.014 0.274 (0.098, 0.768)
    PD: Parkinson’s disease; T2DM: Type 2 diabetes mellitus; b: Regression coefficient; SE: Standard error; OR: Odds ratio; 95%CI: 95% confidence interval.
  • [1] SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
    [2] SRIKANTH V, SINCLAIR A J, HILL-BRIGGS F, et al. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 535-545. DOI: 10.1016/S2213-8587(20)30118-2.
    [3] CHERBUIN N, WALSH E I. Sugar in mind: untangling a sweet and sour relationship beyond type 2 diabetes[J]. Front Neuroendocrinol, 2019, 54: 100769. DOI: 10.1016/j.yfrne.2019.100769.
    [4] BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. DOI: 10.1038/s41574-018-0048-7.
    [5] FEIL D G, RAJAN M, SOROKA O, et al. Risk of hypoglycemia in older veterans with dementia and cognitive impairment: implications for practice and policy[J]. J Am Geriatr Soc, 2011, 59(12): 2263-2272. DOI: 10.1111/j.1532-5415.2011.03726.x.
    [6] VAN DUINKERKEN E, RYAN C M. Diabetes mellitus in the young and the old: effects on cognitive functioning across the life span[J]. Neurobiol Dis, 2020, 134: 104608. DOI: 10.1016/j.nbd.2019.104608.
    [7] AARSLAND D, CREESE B, POLITIS M, et al. Cognitive decline in parkinson disease[J]. Nat Rev Neurol, 2017, 13(4): 217-231. DOI: 10.1038/nrneurol.2017.27.
    [8] PAJARES M, ROJO A I, MANDA G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687. DOI: 10.3390/cells9071687.
    [9] BILGIN S, KURTKULAGI O, ATAK TEL B M, et al. Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with type 2 diabetes mellitus? The CARE TIME study[J]. Prim Care Diabetes, 2021, 15(6): 1071-1074. DOI: 10.1016/j.pcd.2021.08.015.
    [10] AGHO E T, OWOTADE F J, KOLAWOLE B A, et al. Salivary inflammatory biomarkers and glycated haemoglobin among patients with type 2 diabetic mellitus[J]. BMC Oral Health, 2021, 21(1): 101. DOI: 10.1186/s12903-021-01453-y.
    [11] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
    [12] STRINI V, PIAZZETTA N, GALLO A, et al. Barthel index: creation and validation of two cut-offs using the BRASS index[J]. Acta Biomed, 2020, 91(2-S): 19-26. DOI: 10.23750/abm.v91i2-S.9226.
    [13] BOUWSTRA H, SMIT E B, WATTEL E M, et al. Measurement properties of the Barthel index in geriatric rehabilitation[J]. J Am Med Dir Assoc, 2019, 20(4): 420-425. e1. DOI: 10.1016/j.jamda.2018.09.033.
    [14] LI H, JIA J, YANG Z. Mini-mental state examination in elderly Chinese: a population-based normative study[J]. J Alzheimers Dis, 2016, 53(2): 487-496. DOI: 10.3233/JAD-160119.
    [15] JIA X, WANG Z, HUANG F, et al. A comparison of the mini-mental state examination (MMSE) with the Montreal cognitive assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study[J]. BMC Psychiatry, 2021, 21(1): 485. DOI: 10.1186/s12888-021-03495-6.
    [16] KIM M J, FRITSCHI C. Relationships between cognitive impairment and self-management in older adults with type 2 diabetes: an integrative review[J]. Res Gerontol Nurs, 2021, 14(2): 104-112. DOI: 10.3928/19404921-20201117-01.
    [17] DUNN L, ALLEN G F, MAMAIS A, et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease[J]. Neurobiol Aging, 2014, 35(5): 1111-1115. DOI: 10.1016/j.neurobiolaging.2013.11.001.
    [18] JUNG H J, KIM Y J, EGGERT S, et al. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62[J]. Exp Neurol, 2013, 248: 441-450. DOI: 10.1016/j.expneurol.2013.07.013.
    [19] KOEKKOEK P S, KAPPELLE L J, VAN DEN BERG E, et al. Cognitive function in patients with diabetes mellitus: guidance for daily care[J]. Lancet Neurol, 2015, 14(3): 329-340. DOI: 10.1016/S1474-4422(14)70249-2.
    [20] FRIER B M. Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications[J]. Nat Rev Endocrinol, 2014, 10(12): 711-722. DOI: 10.1038/nrendo.2014.170.
    [21] BIESSELS G J, WHITMER R A. Cognitive dysfunction in diabetes: how to implement emerging guidelines[J]. Diabetologia, 2020, 63(1): 3-9. DOI: 10.1007/s00125-019-04977-9.
    [22] BLACK S, KRAEMER K, SHAH A, et al. Diabetes, depression, and cognition: a recursive cycle of cognitive dysfunction and glycemic dysregulation[J]. Curr Diab Rep, 2018, 18(11): 118. DOI: 10.1007/s11892-018-1079-0.
    [23] CHANG C C, WU C H, LIU L K, et al. Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: the Taiwan I-Lan Longitudinal Aging Study[J]. Sci Rep, 2018, 8(1): 5234. DOI: 10.1038/s41598-018-22997-0.
    [24] YE B S, LEE W W, HAM J H, et al. Does serum uric acid act as a modulator of cerebrospinal fluid Alzheimer's disease biomarker related cognitive decline?[J]. Eur J Neurol, 2016, 23(5): 948-957. DOI: 10.1111/ene.12969.
    [25] LEE Y G, PARK M, JEONG S H, et al. Effects of baseline serum uric acid and apolipoprotein E4 on longitudinal cognition and cerebral metabolism[J]. Neurobiol Aging, 2021, 106: 223-231. DOI: 10.1016/j.neurobiolaging.2021.05.003.
    [26] TIAN T, LIU X R, LI T T, et al. Detrimental effects of long-term elevated serum uric acid on cognitive function in rats[J]. Sci Rep, 2021, 11(1): 6732. DOI: 10.1038/s41598-021-86279-y.
    [27] QIAO M, CHEN C, LIANG Y, et al. The influence of serum uric acid level on Alzheimer's disease: a narrative review[J]. Biomed Res Int, 2021, 2021: 5525710. DOI: 10.1155/2021/5525710.
    [28] BOCCARDI V, CARINO S, MARINELLI E, et al. Uric acid and late-onset Alzheimer's disease: results from the ReGAl 2.0 project[J]. Aging Clin Exp Res, 2021, 33(2): 361-366. DOI: 10.1007/s40520-020-01541-z.
    [29] KHAN A A, QUINN T J, HEWITT J, et al. Serum uric acid level and association with cognitive impairment and dementia: systematic review and meta-analysis[J]. Age (Dordr), 2016, 38(1): 16. DOI: 10.1007/s11357-016-9871-8.
    [30] TANA C, TICINESI A, PRATI B, et al. Uric acid and cognitive function in older individuals[J]. Nutrients, 2018, 10(8): 975. DOI: 10.3390/nu10080975.
    [31] YUAN Y, PENG C, BURR J A, et al. Frailty, cognitive impairment, and depressive symptoms in Chinese older adults: an eight-year multi-trajectory analysis[J]. BMC Geriatr, 2023, 23(1): 843. DOI: 10.1186/s12877-023-04554-1.
    [32] CONG L, REN Y, WANG Y, et al. Mild cognitive impairment among rural-dwelling older adults in China: a community-based study[J]. Alzheimers Dement, 2023, 19(1): 56-66. DOI: 10.1002/alz.12629.
    [33] RASU R S, SHRESTHA N, KARPES MATUSEVICH A R, et al. Polypharmacy and cognition function among rural adults[J]. J Alzheimers Dis, 2021, 82(2): 607-619. DOI: 10.3233/JAD-200951.
    [34] PAGANO G, POLYCHRONIS S, WILSON H, et al. Diabetes mellitus and Parkinson disease[J]. Neurology, 2018, 90(19): e1654-e1662. DOI: 10.1212/WNL.0000000000005475.
    [35] YOUSSEF M E, YAHYA G, POPOVICIU M S, et al. Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control[J]. Int J Mol Sci, 2023, 24(7): 6039. DOI: 10.3390/ijms24076039.
    [36] PRADHAN S P, TEJASWANI P, SA N, et al. Mechanistic study of gold nanoparticles of vildagliptin and vitamin E in diabetic cognitive impairment[J]. J Drug Deliv Sci Technol, 2023, 84: 104508. DOI: 10.1016/j.jddst.2023.104508.
WeChat 点击查看大图
表(3)
出版历程
  • 收稿日期:  2024-02-15
  • 接受日期:  2024-04-14

目录

    /

    返回文章
    返回