昼夜节律紊乱、肠道菌群和炎症性肠病之间的因果关系分析:一项孟德尔随机化研究

朱虹蓉 冷岳奇 孙嘉岑 谭兴 王伟忠

引用本文: 朱虹蓉,冷岳奇,孙嘉岑,等. 昼夜节律紊乱、肠道菌群和炎症性肠病之间的因果关系分析:一项孟德尔随机化研究[J]. 海军军医大学学报,2025,46(9):1138-1147.DOI: 10.16781/j.CN31-2187/R.20250282..
Citation: ZHU H, LENG Y, SUN J, et al. Causal relationship among circadian rhythm disruption, gut microbiota, and inflammatory bowel disease: a Mendelian randomization study[J]. Acad J Naval Med Univ, 2025, 46(9): 1138-1147. DOI: 10.16781/j.CN31-2187/R.20250282..

昼夜节律紊乱、肠道菌群和炎症性肠病之间的因果关系分析:一项孟德尔随机化研究

doi: 10.16781/j.CN31-2187/R.20250282
基金项目: 

中国博士后科学基金 2022M713841.

详细信息

Causal relationship among circadian rhythm disruption, gut microbiota, and inflammatory bowel disease: a Mendelian randomization study

Funds: 

Postdoctoral Science Foundation of China 2022M713841.

  • 摘要:  目的 基于孟德尔随机化(MR)方法探讨昼夜节律紊乱与炎症性肠病(IBD)的因果关系及肠道菌群的中介效应。 方法 从IEU OpenGWAS数据库获取昼夜节律紊乱(样本量205 527例)和IBD(样本量214 053例)的全基因组关联研究(GWAS)汇总数据,同时从MiBioGen数据库获取肠道菌群GWAS数据(样本量18 340例),通过两样本MR分析评估遗传相关性及因果关系,并采用两步MR分析检验肠道菌群的中介效应。 结果 昼夜节律紊乱与IBD存在提示性因果关系(OR=1.255,P<0.05),理研菌科(Rikenellaceae,id.967)在两者因果链中发挥中介效应(中介效应为-0.028 740)。敏感性分析证实结果未受水平多效性及异质性干扰。 结论 昼夜节律紊乱与IBD存在遗传相关性,肠道菌群可能在两者之间发挥中介作用。

     

    Abstract:  Objective To investigate the causal relationship between circadian rhythm disruption and inflammatory bowel disease (IBD) and the mediating effect of gut microbiota based on Mendelian randomization (MR). Methods Summary statistics of Genome-wide Association Study (GWAS) for circadian rhythm disruption (n=205 527) and IBD (n=214 053) were obtained from IEU OpenGWAS database. Summary statistics of GWAS for the gut microbiota were obtained from the MiBioGen database (n=18 340). Two-sample MR analysis was used to estimate the genetic correlation and causality between circadian rhythm disruption and IBD, and the mediating effect of the gut microbiota was analyzed by two-step MR analysis. Results There was a suggestive causal relationship between circadian rhythm disruption and IBD (odds ratio=1.255, P<0.05). Rikenellaceae id.967 played a mediating role in the causal chain between them (the mediating effect was -0.028 740). Sensitivity analysis confirmed that the results were not interfered by level pleiotropy and heterogeneity. Conclusion There is a genetic correlation between circadian rhythm disruption and IBD, and gut microbiota may play a mediating role between them.

     

  • 炎症性肠病(inflammatory bowel disease,IBD)是一组包含克罗恩病和溃疡性结肠炎的慢性复发性炎症性疾病[1-2]。IBD的发生具有多因素致病特征,涉及遗传、环境、免疫及其他潜在风险因素的复杂交互作用[3],这使其精准化个体治疗面临重大挑战。当前IBD的病理生理机制尚未完全阐明,但有研究证实昼夜节律紊乱是其重要影响因素[4]。在现代社会中,轮班工作、时差反应及睡眠中断等生活方式改变使昼夜节律紊乱成为威胁人类健康的重要因素[5]。有证据表明昼夜节律紊乱可能导致消化代谢性疾病并加剧IBD病情[6]

    肠道菌群是与宿主协同进化的生物群落,具有营养代谢、免疫调节等重要生物学功能[7]。然而,这种协同进化稳态的破坏会导致胃肠功能障碍。有研究推测肠道菌群还参与IBD患者肠外表现的发生过程[8]。肠道菌群同样对昼夜节律振荡有着高度敏感性,昼夜节律紊乱可能通过改变菌群结构增加代谢综合征和胃肠疾病的发病风险[9]。而基于生活方式(如昼夜节律调节)和肠道菌群的干预可为IBD患者带来临床获益[10]。现有观察性研究无法推断昼夜节律紊乱与IBD的因果关系,昼夜节律紊乱是否通过影响肠道菌群而导致IBD发生,仍需进一步验证。

    基于全基因组关联研究(Genome-wide Association Study,GWAS)的统计分析已被广泛用于评估表型间的相关性及因果关联。孟德尔随机化(Mendelian randomization,MR)是一种以遗传变异作为工具变量(instrumental variable,Ⅳ)推断变量间因果关系的方法,备受生物医学领域关注。本研究通过综合性MR分析探讨昼夜节律紊乱、肠道菌群与IBD的因果关系,并采用两步MR分析检验肠道菌群是否在昼夜节律紊乱导致IBD的过程中发挥中介效应。

    本研究设计如图 1所示,主要包括4个部分的内容:(1)分析昼夜节律紊乱(暴露因素)与IBD(结局)的因果关系;(2)探究肠道菌群(中介变量)与IBD(结局)的因果关系;(3)针对与结局(IBD)存在因果关系的昼夜节律紊乱(暴露因素)和同样与结局(IBD)存在因果关系的肠道菌群(中介变量)进行因果关系分析;(4)通过两步MR分析识别昼夜节律紊乱与IBD因果关联的中介变量。本研究以单核苷酸多态性(single nucleotide polymorphism,SNP)作为Ⅳ,其选择需满足MR三大核心假设:(1)Ⅳ与暴露因素强相关;(2)Ⅳ与混杂因素无关联;(3)Ⅳ仅通过暴露因素影响结局且不直接作用于结局[11]

    图  1  研究设计和框架
    Fig.  1  Study design and framework
    IBD: Inflammatory bowel disease; IEU: Integrative Epidemiology Unit; GWAS: Genome-wide Association Study; MR: Mendelian randomization; IVW: Inverse-variance weighted.
    下载: 全尺寸图片

    本研究从IEU OpenGWAS数据库(https://gwas.mrcieu.ac.uk/)获取昼夜节律紊乱相关因素(ieu-b-4862,n=205 527)和IBD相关因素(finn-b-K11_IBD_STRICT,n=214 053)的GWAS数据(宿主SNP)[12],分别作为后续MR研究的暴露因素与结局变量。基于MiBioGen联盟提供的肠道菌群基因组数据(n=18 340),从MiBioGen数据库(https://mibiogen.gcc.rug.nl/)获取211种肠道菌群的GWAS数据(肠道菌群SNP)[13],其中15种菌属因分类未知被排除,最终纳入196种菌属作为中介变量参与后续MR研究。提取的GWAS数据主要包括SNP标识符(如rsID)、等位基因、效应等位基因频率、效应量(βOR)、标准误及P值等关键信息。对数据进行初步整理,包括统一效应等位基因方向、删除重复SNP以及进行基本的数据格式转换与匹配,为后续Ⅳ筛选做好准备。本研究为公开GWAS汇总数据的二次分析,原始GWAS研究均已通过伦理审查且未使用个体水平数据,故无需额外伦理审批。

    基于整理后的数据,依据以下标准筛选Ⅳ:(1)显著关联阈值设定为P<1×10-5;(2)为保障Ⅳ的独立性,设置连锁不平衡阈值为R2<0.001、距离窗口>10 000 kb进行聚类分析[14];(3)计算F值并剔除弱Ⅳ(F<10)[15];(4)利用GWAS Catalog数据库及Phenoscanner工具排除与潜在混杂因素显著相关的SNP[16]。经上述筛选后,保留显著相关的SNP位点作为Ⅳ。

    本研究采用R语言TwoSampleMR包(版本0.5.7,https://mrcieu.github.io/TwoSampleMR/)进行因果分析[17],核心方法为逆方差加权法(inverse-variance weighted,IVW)下的固定效应模型(fixed effect model,FEM)与随机效应模型(random effect model,REM),并通过加权中位数法、加权众数法及MR Egger法验证结果的稳健性。若存在异质性(P<0.05)则采用REM以减少偏倚,反之采用FEM。主要效应量指标为OR及其95%CI

    为评估结果的可靠性,进行以下敏感性分析:(1)利用Cochran’s Q检验评估IVW和MR Egger法的异质性;(2)采用MR Egger回归截距检验、MR多态性残差和离群值(Mendelian randomization-pleiotropy residual sum and outlier,MR-PRESSO)检验水平多效性;(3)进行留一法分析(leave-one-out analysis),依次剔除单个SNP后重新计算IVW合并效应量,并通过森林图直观展示单个SNP对整体结果的影响,以验证结果的稳定性。

    2.1.1   MR分析

    通过筛选暴露因素与结局间因果关系的MR分析,共获得158个SNP位点作为Ⅳ。IVW结果(图 2)表明昼夜节律紊乱与IBD存在显著因果关联(OR=1.255,P=0.033),提示昼夜节律紊乱是IBD的危险因素。

    图  2  昼夜节律紊乱与IBD因果关系的MR分析结果森林图
    Fig.  2  Forest plot of MR analysis results for circadian rhythm disruption-IBD causal correlation
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; OR: Odds ratio; 95%CI: 95% confidence interval.
    下载: 全尺寸图片

    散点图(图 3A)中IVW回归线斜率为正值,进一步支持昼夜节律紊乱是IBD危险因素的结论,与MR分析结果一致;漏斗图(图 3B)显示各SNP点近似对称分布于IVW线两侧,表明本研究符合MR分配的遗传学假设。

    图  3  昼夜节律紊乱与IBD因果关系的MR分析散点图(A)和漏斗图(B)
    Fig.  3  Scatter plot (A) and funnel plot (B) of MR analysis for circadian rhythm disruption-IBD casual correlation
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SNP: Single nucleotide polymorphism; SE: Standard error; Ⅳ: Instrumental variable.
    下载: 全尺寸图片
    2.1.2   敏感性分析

    异质性检验中昼夜节律紊乱P=0.025,提示存在异质性,但因IVW法P<0.05且IVW结果的P值与OR同步变化,异质性未显著影响MR分析结论。MR Egger回归截距水平多效性检验中昼夜节律紊乱P=0.103,结合MR-PRESSO检验(基于1 000次模拟,P=0.46)证实无水平多效性。留一法分析显示,昼夜节律紊乱与IBD的因果分析中无严重偏倚点,结果可靠性良好。

    2.2.1   MR分析

    通过IVW筛选(P<0.05)共提取出12类与IBD存在因果关联的Ⅳ肠道菌(图 45),其中可作为危险因素的菌包括理研菌科(Rikenellaceae,id.967)、放线菌属(Actinomyces,id.423)、厌氧丝菌属(Anaerofilum,id.2053)、巴恩斯氏菌属(Barnesiella,id.944)、Candidatus Soleaferrea(id.11350)和瘤胃菌科UCG013(Ruminococcaceae UCG013,id.11370);可作为保护性因素的菌包括乳杆菌科(Lactobacillaceae,id.1836)、乳杆菌属(Lactobacillus,id.1837)、理研菌科RC9肠道群(Rikenellaceae RC9 gut group,id.11191)、瘤胃菌科UCG002(Ruminococcaceae UCG002,id.11360)、瘤胃菌科UCG005(Ruminococcaceae UCG005,id.11363)和芽孢杆菌目(Bacillales,id.1674)。

    图  4  12类肠道菌与IBD因果关系的MR分析结果森林图
    Fig.  4  Forest plot of MR analysis results for 12 gut microbiota-IBD causal correlation
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; IVW: Inverse-variance weighted; OR: Odds ratio; 95%CI: 95% confidence interval.
    下载: 全尺寸图片
    图  5  12类肠道菌与IBD因果关系的MR分析散点图
    Fig.  5  Scatter plots for MR analysis for 12 gut microbiota-IBD causal correlation
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SNP: Single nucleotide polymorphism.
    下载: 全尺寸图片
    2.2.2   敏感性分析

    异质性检验中12类菌均无显著异质性(均P>0.05);MR Egger回归截距水平多效性检验和MR-PRESSO检验均显示无显著多效性(均P>0.05)。见表 1。留一法分析表明所有菌属分析结果均无偏倚。

    表  1  12类肠道菌与IBD因果关系的异质性和水平多效性检验结果
    Table  1  Heterogeneity and horizontal pleiotropy test results for 12 gut microbita-IBD causal correlation
    Outcome Exposure P value for heterogeneity Pleiotropy by MR Egger_intercept test P value for MR-PRESSO pleiotropy
    Intercept SE P value
    IBD Genus Barnesiella, id.944 0.672 814 0.004 321 0.037 415 0.910 143 0.837
    IBD Order Bacillales, id.1674 0.429 794 0.035 807 0.045 789 0.459 844 0.512
    IBD Family Rikenellaceae, id.967 0.638 489 0.041 479 0.025 283 0.121 677 0.682
    IBD Genus Rikenellaceae RC9 gut group, id.11191 0.471 885 -0.060 020 0.056 743 0.317 706 0.652
    IBD Genus Candidatus Soleaferrea, id.11350 0.078 090 -0.033 760 0.059 148 0.582 123 0.014
    IBD Genus Actinomyces, id.423 0.858 368 0.005 681 0.031 240 0.862 840 0.866
    IBD Genus Ruminococcaceae UCG013, id.11370 0.420 832 0.023 032 0.027 822 0.427 079 0.380
    IBD Genus Ruminococcaceae UCG002, id.11360 0.342 925 0.009 496 0.019 952 0.639 280 0.167
    IBD Genus Lactobacillus, id.1837 0.404 515 -0.006 470 0.030 261 0.836 699 0.385
    IBD Family Lactobacillaceae, id.1836 0.281 432 -0.017 590 0.036 024 0.642 765 0.300
    IBD Genus Ruminococcaceae UCG005, id.11363 0.435 768 0.017 232 0.025 968 0.519 511 0.629
    IBD Genus Anaerofilum, id.2053 0.459 109 0.060 479 0.048 631 0.245 053 0.571
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SE: Standard error; PRESSO: Pleiotropy residual sum and outlier.
    2.3.1   MR分析

    12类菌中仅理研菌科(id.967)与昼夜节律紊乱存在显著因果关联(P=0.037,OR=0.898;图 6),提示昼夜节律紊乱可导致该菌丰度降低。

    图  6  昼夜节律紊乱与12类肠道菌因果关系的MR分析结果森林图
    Fig.  6  Forest plot of MR analysis results for circadian rhythm disruption-12 gut microbiota causal correlation
    MR: Mendelian randomization; IVW: Inverse-variance weighted; OR: Odds ratio; 95%CI: 95% confidence interval.
    下载: 全尺寸图片

    IVW回归线斜率为负值(图 7A),且各SNP点对称分布于IVW线两侧(图 7B),进一步支持该结论。

    图  7  昼夜节律紊乱与12类肠道菌因果关系的MR分析散点图(A)和漏斗图(B)
    Fig.  7  Scatter plot (A) and funnel plot (B) of MR analysis for circadian rhythm disruption-12 gut microbiota causal correlation
    MR: Mendelian randomization; SNP: Single nucleotide polymorphism; SE: Standard error; Ⅳ: Instrumental variable.
    下载: 全尺寸图片
    2.3.2   敏感性分析

    异质性检验中理研菌科(id.967)无显著异质性(P=0.063),MR Egger回归截距检验和MR-PRESSO检验均显示无显著多效性(均P>0.05)。见表 2。留一法分析未发现偏倚点。

    表  2  昼夜节律紊乱与12类肠道菌因果关系的异质性和水平多效性检验结果
    Table  2  Heterogeneity and horizontal pleiotropy test results for circadian rhythm disruption-12 gut microbiota causal correlation
    Outcome Exposure P value for heterogeneity Pleiotropy by MR Egger_intercept test P value for MR-PRESSO pleiotropy
    Intercept SE P value
    Family Lactobacillaceae id.1836 Chronotype 0.714 224 0.020 183 0.007 465 0.007 780 0.640
    Family Rikenellaceae id.967 Chronotype 0.062 658 -0.007 220 0.005 124 0.160 972 0.137
    Genus Actinomyces id.423 Chronotype 0.903 298 -0.007 010 0.007 194 0.332 038 0.900
    Genus Anaerofilum id.2053 Chronotype 0.592 417 0.008 348 0.009 140 0.362 793 0.400
    Genus Barnesiella id.944 Chronotype 0.129 020 -0.003 500 0.005 601 0.533 098 0.156
    Genus Candidatus Soleaferrea id.11350 Chronotype 0.838 963 0.002 171 0.007 960 0.785 531 0.522
    Genus Lactobacillus id.1837 Chronotype 0.569 857 0.020 393 0.007 518 0.007 590 0.486
    Genus Rikenellaceae RC9 gut group id.11191 Chronotype 0.287 754 -0.013 050 0.012 962 0.316 020 0.308
    Genus Ruminococcaceae UCG002 id.11360 Chronotype 0.778 517 0.000 389 0.004 778 0.935 262 0.670
    Genus Ruminococcaceae UCG005 id.11363 Chronotype 0.237 066 0.004 892 0.005 125 0.341 651 0.280
    Genus Ruminococcaceae UCG013 id.11370 Chronotype 0.117 231 0.001 428 0.005 188 0.783 532 0.103
    Order Bacillales id.1674 Chronotype 0.156 225 0.010 600 0.014 961 0.480 042 0.054
    MR: Mendelian randomization; SE: Standard error; PRESSO: Pleiotropy residual sum and outlier.

    通过两步MR分析,理研菌科(id.967)的中介效应为-0.028 740,直接效应为0.255 747,表明该菌在昼夜节律紊乱与IBD的因果链中发挥部分负向中介作用。

    本研究基于GWAS数据库探讨了昼夜节律紊乱与IBD的因果关系,并通过MiBioGen数据库的肠道菌群基因组数据揭示了肠道菌群的中介效应。通过两样本MR分析,证实12类肠道微生物与IBD存在因果关联,其中理研菌科(id.967)在昼夜节律紊乱与IBD的因果链中发挥负向中介效应。这一结果为探索肠道菌群在昼夜节律紊乱诱发IBD中的作用机制提供了新思路,也为未来科学干预策略的制定提供了理论依据。

    肠道健康受肠上皮选择性通透性、黏液层完整性、菌群稳态及免疫细胞活性等多因素调控,而这些参数均具有昼夜节律性波动的特点[18]。昼夜节律紊乱可打破昼夜动态平衡,导致炎症反应增强[4]。研究发现IBD患者外周血白细胞中核心时钟基因[如昼夜运动输出周期蛋白(circadian locomotor output cycles kaput,CLOCK)、神经元PAS结构域蛋白2(neuronal PAS domain protein 2,NPAS2)、核受体亚家族1 D组成员1(nuclear receptor subfamily 1 group D member 1,NR1D1)等]表达异常,且患者睡眠质量显著下降甚至出现失眠症状[19]。这些结果提示昼夜节律紊乱与IBD存在密切联系,但其因果关系及循环效应机制仍需深入探索。

    目前已经有多项研究将肠道菌群视为防治IBD的关键靶点。现有证据表明,宿主免疫系统不仅能识别病原相关分子模式,还可通过感知菌群代谢产物(如短链脂肪酸)调控肠道内外免疫应答[20]。本研究发现12类肠道菌与IBD存在因果关联,其作用机制可能涉及上述通路:巴恩斯氏菌属作为紫单胞菌科(Porphyromonadaceae)成员,是小鼠肠道中最丰富的菌属之一[21]。早期动物实验发现,巴恩斯氏菌属可有效清除住院患者肠道内耐药致病菌的优势定植[22]。值得注意的是,巴恩斯氏菌属能利用岩藻糖基乳糖作为能量来源,其补充干预可重塑肠道抗炎微环境[23]。这些证据共同表明巴恩斯氏菌属是肠道有益菌的重要成员。类似地,理研菌科被报道对脊柱关节炎具有保护作用[24],而厌氧丝菌属丰度降低与多发性硬化症的发生相关[25]。本研究发现Candidatus Soleaferrea、瘤胃菌科UCG013及放线菌属为IBD的危险因素。从MR特性推断,巴恩斯氏菌属、理研菌科及厌氧丝菌属的丰度降低可能是IBD的病理结果,但其具体作用机制及新发现菌属的生物学效应仍需深入研究。就本研究发现的IBD保护性菌而言,乳杆菌属作为乳杆菌科的革兰氏阳性菌,是胃肠道有益菌群的核心组成[26]。临床与动物研究证据表明,乳杆菌属可通过减轻肠道组织损伤、增强肠道免疫屏障、上皮屏障及黏液屏障功能来抑制IBD及相关并发症进展[27-28],这与本研究结果高度一致。产短链脂肪酸的瘤胃菌科长期被视为IBD的关键保护性菌科[29]。尽管尚未有研究报道瘤胃菌科UCG013、UCG002及UCG005亚属与IBD的直接关联,但其代谢特性(如丁酸生成)提示其可能通过调控肠黏膜免疫发挥负向调控作用。此外,本研究发现芽孢杆菌目(id.1674)与IBD存在类似保护性关联,但相关机制仍需通过靶向菌群移植实验加以验证。

    昼夜节律与肠道菌群存在双向调控,宿主摄食节律、代谢物分泌及免疫节律可塑造菌群昼夜振荡[30],而菌群失调亦可反向影响时钟基因表达[31]。本研究发现昼夜节律紊乱仅与理研菌科(id.967)丰度降低显著相关。理研菌科隶属于拟杆菌门(Bacteroidetes)拟杆菌目(Bacteroidales),包括RikenellaAlistipes两属[32]。基于16S rRNA基因系统发育分析,该菌科成员具有以下共同特征:(1)严格厌氧代谢;(2)杆状形态;(3)可耐受20%胆汁环境,提示其对胃肠道微环境的特殊适应性[33]。既往在脊柱关节炎亚型与肠道菌群的因果关联研究中,理研菌科对强直性脊柱炎和银屑病关节炎显示出潜在保护效应[24]。值得注意的是,强直性脊柱炎患者回肠末端活检样本中理研菌科丰度异常升高,有研究者推测这种丰度增加可能通过双重机制发挥作用:一方面通过免疫调节抑制疾病发生,另一方面可能与疾病活动度增强相关[24, 34]。最新研究发现,理研菌科RC9肠道群的丰度变化可促进代谢适应,并在冷暴露期间通过产生短链脂肪酸维持结肠上皮屏障功能[35]。机制研究表明,该菌群的富集通过调节冷适应性葡萄糖稳态发挥作用,这与其短链脂肪酸合成能力密切相关。更重要的是,基于短链脂肪酸产生能力的广义线性模型比较研究显示,IBD患者肠道中克里斯滕森菌科(Christensenellaceae)、瘤胃菌科、理研菌科及坦纳菌科(Tannerellaceae)丰度显著降低[36]

    本研究通过MR分析证实,理研菌科的丰度降低在“昼夜节律紊乱→IBD”因果链中发挥中介效应。推测原因可能是昼夜节律紊乱通过抑制理研菌科的短链脂肪酸合成功能,破坏肠上皮屏障完整性,从而增加IBD发病风险。然而,该菌科影响IBD的具体分子机制及其中介效应的贡献度仍需通过以下角度深入解析:(1)构建理研菌科特异性敲除动物模型;(2)开展短链脂肪酸受体(如G蛋白偶联受体41/43)的功能验证实验;(3)揭示生物钟基因与菌群代谢的交互调控网络。

    本研究采用两步MR分析具有显著方法学优势:首先,MR通过Ⅳ有效规避反向因果及混杂偏倚;其次,基于大样本GWAS汇总数据提高了统计效能,使结果更具可靠性。但本研究仍存在以下局限:(1)受限于欧洲人群数据,结论外推需谨慎;(2)肠道菌群受饮食、药物等多因素影响,其低遗传度特性可能降低分析效力;(3)未测量多效性可能导致估计偏倚;(4)反向因果(IBD→昼夜节律紊乱)未被证实;(5)未开展随机对照试验及动物实验验证机制通路。

    本研究通过MR方法系统解析了昼夜节律紊乱、肠道菌群与IBD间的因果网络,主要得出以下结论:(1)昼夜节律紊乱是IBD的独立危险因素(OR=1.255,P<0.05),为临床管理昼夜节律异常人群提供了遗传学证据;(2)6类菌(如放线菌属)具有促IBD作用、6类菌(如乳杆菌属)具有抗IBD作用,提示肠道菌群在IBD发病中存在动态平衡机制;(3)理研菌科在“昼夜节律紊乱→菌群失调→IBD”因果链中具有负向中介效应,提示其可能通过短链脂肪酸代谢缓解IBD进展。此外,本研究还建立了两步MR分析框架,为复杂疾病中介效应研究提供了可推广的方法学范式。

    本研究存在欧洲人群偏倚、菌群遗传度较低等局限性,未来需通过多族裔队列验证相关结论的普适性,并借助类器官模型和代谢组学技术深入解析理研菌科的具体作用机制。

  • 图  1   研究设计和框架

    Fig.  1   Study design and framework

    IBD: Inflammatory bowel disease; IEU: Integrative Epidemiology Unit; GWAS: Genome-wide Association Study; MR: Mendelian randomization; IVW: Inverse-variance weighted.

    下载: 全尺寸图片

    图  2   昼夜节律紊乱与IBD因果关系的MR分析结果森林图

    Fig.  2   Forest plot of MR analysis results for circadian rhythm disruption-IBD causal correlation

    IBD: Inflammatory bowel disease; MR: Mendelian randomization; OR: Odds ratio; 95%CI: 95% confidence interval.

    下载: 全尺寸图片

    图  3   昼夜节律紊乱与IBD因果关系的MR分析散点图(A)和漏斗图(B)

    Fig.  3   Scatter plot (A) and funnel plot (B) of MR analysis for circadian rhythm disruption-IBD casual correlation

    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SNP: Single nucleotide polymorphism; SE: Standard error; Ⅳ: Instrumental variable.

    下载: 全尺寸图片

    图  4   12类肠道菌与IBD因果关系的MR分析结果森林图

    Fig.  4   Forest plot of MR analysis results for 12 gut microbiota-IBD causal correlation

    IBD: Inflammatory bowel disease; MR: Mendelian randomization; IVW: Inverse-variance weighted; OR: Odds ratio; 95%CI: 95% confidence interval.

    下载: 全尺寸图片

    图  5   12类肠道菌与IBD因果关系的MR分析散点图

    Fig.  5   Scatter plots for MR analysis for 12 gut microbiota-IBD causal correlation

    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SNP: Single nucleotide polymorphism.

    下载: 全尺寸图片

    图  6   昼夜节律紊乱与12类肠道菌因果关系的MR分析结果森林图

    Fig.  6   Forest plot of MR analysis results for circadian rhythm disruption-12 gut microbiota causal correlation

    MR: Mendelian randomization; IVW: Inverse-variance weighted; OR: Odds ratio; 95%CI: 95% confidence interval.

    下载: 全尺寸图片

    图  7   昼夜节律紊乱与12类肠道菌因果关系的MR分析散点图(A)和漏斗图(B)

    Fig.  7   Scatter plot (A) and funnel plot (B) of MR analysis for circadian rhythm disruption-12 gut microbiota causal correlation

    MR: Mendelian randomization; SNP: Single nucleotide polymorphism; SE: Standard error; Ⅳ: Instrumental variable.

    下载: 全尺寸图片

    表  1   12类肠道菌与IBD因果关系的异质性和水平多效性检验结果

    Table  1   Heterogeneity and horizontal pleiotropy test results for 12 gut microbita-IBD causal correlation

    Outcome Exposure P value for heterogeneity Pleiotropy by MR Egger_intercept test P value for MR-PRESSO pleiotropy
    Intercept SE P value
    IBD Genus Barnesiella, id.944 0.672 814 0.004 321 0.037 415 0.910 143 0.837
    IBD Order Bacillales, id.1674 0.429 794 0.035 807 0.045 789 0.459 844 0.512
    IBD Family Rikenellaceae, id.967 0.638 489 0.041 479 0.025 283 0.121 677 0.682
    IBD Genus Rikenellaceae RC9 gut group, id.11191 0.471 885 -0.060 020 0.056 743 0.317 706 0.652
    IBD Genus Candidatus Soleaferrea, id.11350 0.078 090 -0.033 760 0.059 148 0.582 123 0.014
    IBD Genus Actinomyces, id.423 0.858 368 0.005 681 0.031 240 0.862 840 0.866
    IBD Genus Ruminococcaceae UCG013, id.11370 0.420 832 0.023 032 0.027 822 0.427 079 0.380
    IBD Genus Ruminococcaceae UCG002, id.11360 0.342 925 0.009 496 0.019 952 0.639 280 0.167
    IBD Genus Lactobacillus, id.1837 0.404 515 -0.006 470 0.030 261 0.836 699 0.385
    IBD Family Lactobacillaceae, id.1836 0.281 432 -0.017 590 0.036 024 0.642 765 0.300
    IBD Genus Ruminococcaceae UCG005, id.11363 0.435 768 0.017 232 0.025 968 0.519 511 0.629
    IBD Genus Anaerofilum, id.2053 0.459 109 0.060 479 0.048 631 0.245 053 0.571
    IBD: Inflammatory bowel disease; MR: Mendelian randomization; SE: Standard error; PRESSO: Pleiotropy residual sum and outlier.

    表  2   昼夜节律紊乱与12类肠道菌因果关系的异质性和水平多效性检验结果

    Table  2   Heterogeneity and horizontal pleiotropy test results for circadian rhythm disruption-12 gut microbiota causal correlation

    Outcome Exposure P value for heterogeneity Pleiotropy by MR Egger_intercept test P value for MR-PRESSO pleiotropy
    Intercept SE P value
    Family Lactobacillaceae id.1836 Chronotype 0.714 224 0.020 183 0.007 465 0.007 780 0.640
    Family Rikenellaceae id.967 Chronotype 0.062 658 -0.007 220 0.005 124 0.160 972 0.137
    Genus Actinomyces id.423 Chronotype 0.903 298 -0.007 010 0.007 194 0.332 038 0.900
    Genus Anaerofilum id.2053 Chronotype 0.592 417 0.008 348 0.009 140 0.362 793 0.400
    Genus Barnesiella id.944 Chronotype 0.129 020 -0.003 500 0.005 601 0.533 098 0.156
    Genus Candidatus Soleaferrea id.11350 Chronotype 0.838 963 0.002 171 0.007 960 0.785 531 0.522
    Genus Lactobacillus id.1837 Chronotype 0.569 857 0.020 393 0.007 518 0.007 590 0.486
    Genus Rikenellaceae RC9 gut group id.11191 Chronotype 0.287 754 -0.013 050 0.012 962 0.316 020 0.308
    Genus Ruminococcaceae UCG002 id.11360 Chronotype 0.778 517 0.000 389 0.004 778 0.935 262 0.670
    Genus Ruminococcaceae UCG005 id.11363 Chronotype 0.237 066 0.004 892 0.005 125 0.341 651 0.280
    Genus Ruminococcaceae UCG013 id.11370 Chronotype 0.117 231 0.001 428 0.005 188 0.783 532 0.103
    Order Bacillales id.1674 Chronotype 0.156 225 0.010 600 0.014 961 0.480 042 0.054
    MR: Mendelian randomization; SE: Standard error; PRESSO: Pleiotropy residual sum and outlier.
  • [1] TORRES J, MEHANDRU S, COLOMBEL J F, et al. Crohn's disease[J]. Lancet, 2017, 389(10080): 1741-1755. DOI: 10.1016/s0140-6736(16)31711-1.
    [2] LE BERRE C, HONAP S, PEYRIN-BIROULET L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-584. DOI: 10.1016/s0140-6736(23)00966-2.
    [3] ANANTHAKRISHNAN A N, BERNSTEIN C N, ILIOPOULOS D, et al. Environmental triggers in IBD: a review of progress and evidence[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 39-49. DOI: 10.1038/nrgastro.2017.136.
    [4] GOMBERT M, CARRASCO-LUNA J, PIN-ARBOLEDAS G, et al. The connection of circadian rhythm to inflammatory bowel disease[J]. Transl Res, 2019, 206: 107-118. DOI: 10.1016/j.trsl.2018.12.001.
    [5] POTTER G D M, SKENE D J, ARENDT J, et al. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures[J]. Endocr Rev, 2016, 37(6): 584-608. DOI: 10.1210/er.2016-1083.
    [6] ZHANG Z, LI W, HAN X, et al. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier[J]. Front Immunol, 2024, 15: 1402395. DOI: 10.3389/fimmu.2024.1402395.
    [7] DENG L, WANG S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection[J]. Gut Microbes, 2024, 16(1): 2424914. DOI: 10.1080/19490976.2024.2424914.
    [8] TIE Y, HUANG Y, CHEN R, et al. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets[J]. Gut Microbes, 2023, 15(2): 2265028. DOI: 10.1080/19490976.2023.2265028.
    [9] BISHEHSARI F, VOIGT R M, KESHAVARZIAN A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer[J]. Nat Rev Endocrinol, 2020, 16(12): 731-739. DOI: 10.1038/s41574-020-00427-4.
    [10] WELLENS J, SABINO J, VANUYTSEL T, et al. Recent advances in clinical practice: mastering the challenge-managing IBS symptoms in IBD[J]. Gut, 2025, 74(2): 312-321. DOI: 10.1136/gutjnl-2024-333565.
    [11] SANDERSON E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harb Perspect Med, 2021, 11(2): a038984. DOI: 10.1101/cshperspect.a038984.
    [12] ELSWORTH B, LYON M, ALEXANDER T, et al. The MRC IEU OpenGWAS data infrastructure[J]. bioRxiv, 2020 (2020-08-10) [2025-04-30]. https://doi.org/10.1101/2020.08.10.244293.
    [13] KURILSHIKOV A, MEDINA-GOMEZ C, BACIGALUPE R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. Nat Genet, 2021, 53(2): 156-165. DOI: 10.1038/s41588-020-00763-1.
    [14] MYERS T A, CHANOCK S J, MACHIELA M J. LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations[J]. Front Genet, 2020, 11: 157. DOI: 10.3389/fgene.2020.00157.
    [15] BURGESS S, SMALL D S, THOMPSON S G. A review of instrumental variable estimators for Mendelian randomization[J]. Stat Methods Med Res, 2017, 26(5): 2333-2355. DOI: 10.1177/0962280215597579.
    [16] MACARTHUR J, BOWLER E, CEREZO M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)[J]. Nucleic Acids Res, 2017, 45(D1): D896-D901. DOI: 10.1093/nar/gkw1133.
    [17] HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
    [18] SOLIZ-RUEDA J R, CUESTA-MARTI C, O'MAHONY S M, et al. Gut microbiota and eating behaviour in circadian syndrome[J]. Trends Endocrinol Metab, 2025, 36(1): 15-28. DOI: 10.1016/j.tem.2024.07.008.
    [19] SOCHAL M, BINIENDA A, DITMER M, et al. Correlations between the symptoms of insomnia, depression, sleep quality, antitumor necrosis factor therapy, and disrupted circadian clock gene expression in inflammatory bowel disease[J]. Pol Arch Intern Med, 2023, 133(10): 16487. DOI: 10.20452/pamw.16487.
    [20] ZHOU M, HE J, SHEN Y, et al. New frontiers in genetics, gut microbiota, and immunity: a Rosetta stone for the pathogenesis of inflammatory bowel disease[J]. Biomed Res Int, 2017, 2017: 8201672. DOI: 10.1155/2017/8201672.
    [21] WEISS G A, CHASSARD C, HENNET T. Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice[J]. Br J Nutr, 2014, 111(9): 1602-1610. DOI: 10.1017/S0007114513004200.
    [22] UBEDA C, BUCCI V, CABALLERO S, et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization[J]. Infect Immun, 2013, 81(3): 965-973. DOI: 10.1128/IAI.01197-12.
    [23] DOIK, MORI K, KOMATSU M, et al. Molecular mechanisms of complex-type N-glycan breakdown and metabolism by the human intestinal bacterium Barnesiella intestinihominis[J]. J Biosci Bioeng, 2025, 139(1): 14-22. DOI: 10.1016/j.jbiosc.2024.10.006.
    [24] TANG J, MO S, FAN L, et al. Causal association of gut microbiota on spondyloarthritis and its subtypes: a Mendelian randomization analysis[J]. Front Immunol, 2024, 15: 1284466. DOI: 10.3389/fimmu.2024.1284466.
    [25] SUN D, ZHANG Y, WANG R, et al. Causal effects of gut microbiota on multiple sclerosis: a two-sample Mendelian randomization study[J]. Brain Behav, 2024, 14(6): e3593. DOI: 10.1002/brb3.3593.
    [26] LIU Y, LIU G, FANG J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis[J]. J Nutr Biochem, 2024, 124: 109505. DOI: 10.1016/j.jnutbio.2023.109505.
    [27] WANG W, CHEN L, ZHOU R, et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease[J]. J Clin Microbiol, 2014, 52(2): 398-406. DOI: 10.1128/JCM.01500-13.
    [28] ZHU L, QIAO L, DOU X, et al. Lactobacillus casei ATCC 393 combined with vasoactive intestinal peptide alleviates dextran sodium sulfate-induced ulcerative colitis in C57BL/6 mice via NF-κB and Nrf2 signaling pathways[J]. Biomed Pharmacother, 2023, 165: 115033. DOI: 10.1016/j.biopha.2023.115033.
    [29] YILMAZ B, JUILLERAT P, ØYÅS O, et al. Microbial network disturbances in relapsing refractory Crohn's disease[J]. Nat Med, 2019, 25(2): 323-336. DOI: 10.1038/s41591-018-0308-z.
    [30] YANG Y, YU P, LU Y, et al. Disturbed rhythmicity of intestinal hydrogen peroxide alters gut microbial oscillations in BMAL1-deficient monkeys[J]. Cell Rep, 2023, 42(3): 112183. DOI: 10.1016/j.celrep.2023.112183.
    [31] TOFANI G S S, LEIGH S J, GHEORGHE C E, et al. Gut microbiota regulates stress responsivity via the circadian system[J]. Cell Metab, 2025, 37(1): 138-153. e5. DOI: 10.1016/j.cmet.2024.10.003.
    [32] SU X L, TIAN Q, ZHANG J, et al. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp[J]. Int J Syst Evol Microbiol, 2014, 64(Pt 9): 2986-2991. DOI: 10.1099/ijs.0.063917-0.
    [33] GRAF J. The family Rikenellaceae[M]//ROSENBERG E, DELONG E F, LORY S, et al. The prokaryotes: other major lineages of bacteria and the archaea. Heidelberg: Springer Berlin Heidelberg, 2014: 857-859.
    [34] COSTELLO M E, CICCIA F, WILLNER D, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis[J]. Arthritis Rheumatol, 2015, 67(3): 686-691. DOI: 10.1002/art.38967.
    [35] TENG T, SUN G, DING H, et al. Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure[J]. J Anim Sci Biotechnol, 2023, 14(1): 84. DOI: 10.1186/s40104-023-00886-5.
    [36] TEOFANI A, MARAFINI I, LAUDISI F, et al. Intestinal taxa abundance and diversity in inflammatory bowel disease patients: an analysis including covariates and confounders[J]. Nutrients, 2022, 14(2): 260. DOI: 10.3390/nu14020260.
WeChat 点击查看大图
图(7)  /  表(2)
出版历程
  • 收稿日期:  2025-05-07
  • 接受日期:  2025-08-16

目录

    /

    返回文章
    返回