Stroke etiology and infarction characteristics in patients with acute ischemic stroke
-
摘要:
目的 探究经血管内取栓治疗的大血管闭塞急性缺血性脑卒中(AIS)患者的卒中病因与临床、影像学特征之间的相关性。 方法 回顾性连续纳入2016年10月至2018年6月我院收治的多模态CT检查提示大血管闭塞AIS且行血管内取栓治疗的患者213例。根据Org 10172急性脑卒中治疗试验(TOAST)病因分型标准,心源性栓塞116例,非心源性栓塞97例。采用多因素logistic回归分析筛选能够区分心源性与非心源性栓塞分型的临床及影像学特征。 结果 与非心源性栓塞AIS相比,心源性栓塞AIS与美国国立卫生研究院卒中量表(NIHSS)评分较高(校正OR=1.09,95%CI 1.01~1.18,P=0.02)、有心房颤动病史(校正OR=76.46,95%CI 26.75~218.51,P<0.01)、无高血压病史(校正OR=0.32,95%CI 0.12~0.84,P=0.02)、有抗血小板药物使用史(校正OR=5.03,95%CI 1.22~20.63,P=0.03)、发病到股动脉穿刺时间较短(校正OR=0.998,95%CI 0.996~1.000,P=0.04)、存在动脉高密度征(HAS)(校正OR=4.45,95%CI 1.47~13.49,P=0.01)有关。 结论 心源性与非心源性栓塞AIS患者的临床和影像学特征存在部分差异。HAS的出现预示AIS患者的病因为心源性栓塞的概率较大。 Abstract:Objective To explore the correlation between stroke etiology and clinical and imaging features in patients with acute ischemic stroke (AIS) due to large vessel occlusion treated by intravascular thrombectomy. Methods A total of 213 patients with AIS and endovascular embolectomy in our hospital from Oct. 2016 to Jun. 2018 were enrolled retrospectively. According to the etiological classification criteria of Trial of Org 10172 in Acute Stroke Treatment (TOAST), there were 116 cases of cardioembolism and 97 cases of non-cardioembolism. Multivariate logistic regression analysis was used to screen the clinical and imaging characteristics for identifying cardioembolism and non-cardioembolism. Results Compared with non-cardioembolism AIS, cardioembolism AIS was associated with higher NIHSS scores (adjusted odds ratio [OR]=1.09, 95% confidence interval [95%CI] 1.01-1.18, P=0.02), atrial fibrillation (adjusted OR=76.46, 95%CI 26.75-218.51, P<0.01), absence of hypertension (adjusted OR=0.32, 95%CI 0.12-0.84, P=0.02), antiplatelet drug use (adjusted OR=5.03, 95%CI 1.22-20.63, P=0.03), shorter onset-to-puncture time (adjusted OR=0.998, 95%CI 0.996-1.000, P=0.04), and presence of hyperdense artery sign (HAS) (adjusted OR=4.45, 95%CI 1.47-13.49, P=0.01). Conclusion There are some differences in clinical and imaging characteristics between patients with cardioembolism and non-cardioembolism AIS. The occurrence of HAS suggests a higher probability of cardioembolism in AIS patients. -
急性缺血性脑卒中(acute ischemic stroke,AIS)具有较高的致死和致残率,自2015年以来已成为中国人的首要死因[1]。血管内治疗是大血管闭塞AIS患者的主要治疗方式[2],但其疗效受诸多因素影响,其中病因是影响患者预后的重要因素[3]。目前AIS病因判断主要依据传统的急性脑卒中Org 10172治疗试验(Trial of Org 10172 in Acute Stroke Treatment,TOAST)分型[4],心源性栓塞和大动脉粥样硬化是AIS最常见的两大病因,并且心房颤动所致的心源性栓塞比例更高,而小血管病变、其他已知或不明原因栓塞性脑卒中所占比例较低。尽管不同病因所致AIS患者的血管狭窄程度相似,但由于病理生理变化不同,患者对治疗(机械取栓、静脉溶栓)的反应可能存在差异[5]。因此,准确、及时地确定病因是制定个体化血管再通策略的先决条件。近期已有研究分析出血栓的部分组织学及CT特征,然而,这些研究结果的一致性较差,并且许多血栓的影像学特征仍未得到充分探究和检测。本研究的目的是探究AIS患者的常见卒中病因(心源性栓塞和非心源性栓塞)与临床及CT特征之间的关系,以证实或质疑现有发现并探究新的关联,从而更好地指导临床实践并制定精准的治疗方案。
1 资料和方法
1.1 病例资料
回顾性连续纳入2016年10月至2018年6月我院收治的多模态CT检查提示颅内前循环大血管闭塞且接受血管内取栓治疗的AIS患者213例。纳入标准:(1)年龄>18岁;(2)发生急性脑卒中事件(如肢体偏瘫、言语不能等);(3)入院后行完整多模态CT检查、12导联心电图、24 h动态心电监测及临床量表评估;(4)影像学检查提示颅内前循环大血管闭塞;(5)行血管内取栓治疗。排除标准:(1)影像学检查提示脑出血或蛛网膜下腔出血者;(2)行药物治疗者;(3)图像质量差、无法评估者;(4)临床信息不完善者。收集并分析以下数据:美国国立卫生研究院卒中量表(National Institutes of Health stroke scale,NIHSS)评分、脑卒中改良Rankin量表(modified Rankin scale,mRS)评分、临床病史(缺血性脑卒中病史、心房颤动病史、糖尿病史和/或高血压病史)、抗凝和/或抗血小板药物使用史、阿替普酶使用情况、入院时收缩压和血糖水平、从卒中发病到入院影像学检查的时间、从卒中发病到股动脉穿刺的时间、闭塞部位、动脉高密度征(hyperdense artery sign,HAS)的存在情况、Alberta脑卒中计划早期CT评分(Alberta Stroke Program early computed tomography score,ASPECTS)、梗死特征(核心梗死区和半暗带体积)及血栓负荷评分(clot burden score,CBS)。本研究通过我院医学伦理委员会审核批准(CHEC2018-003)。
1.2 影像学检查
采用256层CT机(Brilliance iCT Elite FHD,荷兰Philips Healthcare公司)进行多模态CT检查,包括CT平扫(non-contrast computed tomography,NCCT)、CT血管造影(computed tomography angiography,CTA)及CT灌注成像(computed tomography perfusion,CTP)。NCCT检查条件:管电压为120 kV,管电流为350 mA,层厚为5 mm。CTP检查条件:管电压为80 kV,管电流为180 mA,共扫描15个循环,每个循环时长为0.33 s,间隔时间为4 s,层厚为5 mm,扫描范围为128 mm,视野为220 mm×220 mm。通过肘静脉置入留置针(20 G),使用双筒高压注射器以5 mL/s的速率推注50 mL非离子型造影剂碘帕醇(碘含量为370 mg/mL),注射结束后以相同速率推注20 mL 0.5%氯化钠溶液冲管。CTP检查之后立即行CTA扫描,采用自动触发技术,管电压为120 kV,管电流为300 mA,层厚为1 mm,以5 mL/s的速率推注45 mL碘帕醇注射液,随后以相同速率推注20 mL 0.5%氯化钠注射液冲管。
1.3 图像后处理与分析
NCCT图像由设备后台自动重建生成,层厚和层间距均为5 mm,用于排除脑出血及判定HAS是否存在。
CTA图像采用256层CT机配套的软件进行重建,重建后的层厚和层间距均为1 mm。重建图像传输至工作站进行后处理以获得容积再现和最大密度投影图像,用于评估颅内大动脉(包括颈内动脉的颅外段和颅内段、大脑前动脉A1段、大脑中动脉M1和M2段)是否存在闭塞(依据CTA上显示的最接近闭塞段来判断),并确定CBS以量化血栓累及范围,CBS为0~10分,10分表示正常,0分则意味着完全的多节段血管闭塞。
CTP原始数据经重建后自动传输至RAPID软件(美国iSchemaView公司)进行定量分析,以获取脑血流量(cerebral blood flow,CBF)<30%及达峰时间(time to maximum,Tmax)>6 s的脑组织体积,CBF<30%的区域为核心梗死区,Tmax>6 s的区域为缺血低灌注区。CBF<30%与Tmax>6 s之间不匹配的脑组织区域即缺血半暗带。此外,ASPECTS通过RAPID软件自动化后处理获取。
1.4 统计学处理
使用SPSS 22.0软件进行数据分析。呈正态分布的计量资料以x±s表示,两组间比较采用独立样本t检验。呈偏态分布的计量资料以M(Q1,Q3)表示,两组间比较采用Mann-Whitney U检验。计数资料以例数和百分数表示,两组间比较采用χ2检验。将单因素分析中P<0.15的变量纳入多因素logistic回归模型,以筛选能够鉴别脑卒中病因的临床和影像学特征。检验水准(α)为0.05。
2 结果
2.1 基线临床特征
2016年10月至2018年6月符合纳排标准的患者共213例,依据TOAST分型,116例为心源性栓塞AIS患者,97例为非心源性栓塞AIS患者。在心源性栓塞组中,患者年龄为72(63,79)岁,其中男性58例(50.0%)。在非心源性栓塞组中,患者年龄为68(60,77)岁,男性患者69例(71.1%)。两组患者在年龄方面差异无统计学意义(P=0.05),然而非心源性栓塞组中男性所占比例更高(P<0.01)。见表 1。
表 1 按卒中病因分类AIS患者的基线临床特征Table 1 Baseline characteristics of AIS patients classified by stroke causeCharacteristic Cardioembolism N=116 Non-cardioembolism N=97 Statistic P value Age/year, M (Q1, Q3) 72 (63, 79) 68 (60, 77) Z=-1.95 0.05 Male, n (%) 58 (50.0) 69 (71.1) χ2=9.80 <0.01 NIHSS score, M (Q1, Q3) 17 (13, 22) 14 (8, 19) Z=-3.26 <0.01 mRS score of 1 or 2 before stroke onset, n (%) 10 (8.6) 14 (14.4) χ2=1.79 0.78 History of ischemic stroke, n (%) 15 (12.9) 11 (11.3) χ2=0.13 0.72 History of atrial fibrillation, n (%) 95 (81.9) 10 (10.3) χ2=108.30 <0.01 History of diabetes, n (%) 13 (11.2) 21 (21.6) χ2=4.29 0.04 History of hypertension, n (%) 60 (51.7) 64 (66.0) χ2=4.41 0.04 Use of alteplase, n (%) 27 (23.3) 24 (24.7) χ2=0.06 0.80 History of anticoagulant drug usea, n (%) 11 (9.5) 1 (1.1) χ2=5.44 0.02 History of antiplatelet drug usea, n (%) 21 (18.1) 7 (7.4) χ2=5.23 0.02 Systolic blood pressure at hospital arrivalb/mmHg, M (Q1, Q3) 130 (120, 145) 130 (120, 141) Z=-0.10 0.92 Blood glucose level at hospital arrivalc/(mmol·L-1), M (Q1, Q3) 7.3 (5.9, 10.0) 7.1 (5.9, 9.2) Z=-0.61 0.54 Onset-to-imaging time/min, M (Q1, Q3) 237 (124, 339) 290 (152, 601) Z=2.42 0.02 Onset-to-puncture time/min, M (Q1, Q3) 307 (192, 396) 375 (234, 690) Z=2.96 <0.01 1 mmHg=0.133 kPa. a: Data pertaining to the history of anticoagulant and antiplatelet drug use were missing for 2 patients with non-cardioembolic stroke; b: Data pertaining to systolic blood pressure at hospital arrival were missing for 5 patients (2 with cardioembolic stroke and 3 with non-cardioembolic stroke); c: Data pertaining to blood glucose levels at hospital arrival were missing for 17 patients (7 with cardioembolic stroke and 10 with non-cardioembolic stroke). AIS: Acute ischemic stroke; NIHSS: National Institutes of Health stroke scale; mRS: Modified Rankin scale. 心源性栓塞组NIHSS评分高于非心源性栓塞组(Z=-3.26,P<0.01)。心房颤动是心源性栓塞AIS最常见的病因(95例,81.9%)。心源性栓塞AIS患者有糖尿病和高血压病史的比例低于非心源性栓塞组,有抗凝和抗血小板药物使用史的比例高于非心源性栓塞组(均P<0.05)。心源性栓塞组患者发病到入院影像学检查时间和发病到股动脉穿刺时间分别为237(124,339)min和307(192,396)min,非心源性栓塞组分别为290(152,601)min和375(234,690)min,两组之间差异有统计学意义(均P<0.05)。见表 1。
2.2 影像学特征
心源性栓塞组有25.9%(30/116)的患者存在HAS,而非心源性栓塞组中该比例为12.4%(12/97),两组间差异有统计学意义(P=0.01)。两组的核心梗死区体积差异存在统计学意义[20(4,48)mL vs 9(0,34)mL,Z=-2.43,P=0.02]。两组闭塞部位最常位于大脑中动脉M1段远端,其次是颅内颈内动脉段及大脑中动脉M1段近端,闭塞部位的分布在两组间差异无统计学意义(P=0.37)。两组ASPECTS、缺血半暗带体积差异均无统计学意义(均P>0.05)。此外,两组的CBS分别为6(4,7)分与6(4,8)分,差异有统计学意义(Z=-2.30,P=0.02)。见表 2。典型病例影像学特征见图 1、2。
表 2 按卒中病因分类AIS患者的影像学特征Table 2 Imaging characteristics of AIS patients classified by stroke causeCharacteristic Cardioembolism N=116 Non-cardioembolism N=97 Statistic P value Occlusion location, n (%) χ2=6.52 0.37 Intracranial ICA 25 (21.6) 25 (25.8) ICA-terminus 18 (15.5) 10 (10.3) Proximal M1 segment of MCA 25 (21.6) 22 (22.7) Distal M1 segment of MCA 29 (25.0) 28 (28.9) M2 branch (temporal) of MCA 5 (4.3) 7 (7.2) M2 branch (frontoparietal) of MCA 10 (8.6) 5 (5.2) Proximal ACA 4 (3.4) 0 Hyperdense artery sign, n (%) 30 (25.9) 12 (12.4) χ2=6.07 0.01 ASPECTS, M (Q1, Q3) 9 (8, 10) 9 (8, 10) Z=-0.43 0.67 Infarct core volume/mL, M (Q1, Q3) 20 (4, 48) 9 (0, 34) Z=-2.43 0.02 Tmax>6 s volume/mL, M (Q1, Q3) 162 (107, 204) 140 (104, 212) Z=-0.54 0.59 Penumbra volume/mL, M (Q1, Q3) 127 (81, 159) 120 (90, 166) Z=-0.41 0.68 Clot burden score, M (Q1, Q3) 6 (4, 7) 6 (4, 8) Z=-2.30 0.02 AIS: Acute ischemic stroke; ICA: Internal carotid artery; MCA: Middle cerebral artery; ACA: Anterior cerebral artery; ASPECTS: Alberta Stroke Program early computed tomography score; Tmax: Time to maximum. 图 1 1例心源性栓塞AIS患者的多模态CT图像分析Fig. 1 Multimodal CT image analysis of a cardioembolic AIS patientFemale, 75 years old, sudden left limb weakness for 2 h. National Institutes of Health stroke scale score was 18 and modified Rankin scale score was 0. A: Non-contrast CT scan of the patient with HAS in the right proximal M1 segment of MCA; B: CT angiogram showed the corresponding occlusion in the right proximal M1 segment of MCA; C: Alberta Stroke Program early CT score was 9; D: CT perfusion showed that the volumes of infarction core (brain tissue region with CBF<30%) and ischemic penumbra (brain tissue region with mismatch between CBF<30% and Tmax>6 s) were 47 mL and 132 mL, respectively. AIS: Acute ischemic stroke; CT: Computed tomography; HAS: Hyperdense artery sign; MCA: Middle cerebral artery; CBF: Cerebral blood flow; Tmax: Time to maximum.图 2 1例非心源性栓塞AIS患者的多模态CT图像分析Fig. 2 Multimodal CT image analysis of a non-cardioembolic AIS patientMale, 38 years old, right limb weakness for 3 h. National Institutes of Health stroke scale score was 6 and modified Rankin scale score was 0. A: Non-contrast CT scan of the patient without HAS in the left proximal M1 segment of MCA; B: CT angiogram showed the corresponding occlusion in the left proximal M1 segment of MCA; C: Alberta Stroke Program early CT score was 9; D: CT perfusion showed that the volumes of infarction core (brain tissue region with CBF<30%) and ischemic penumbra (brain tissue region with mismatch between CBF<30% and Tmax>6 s) were 0 mL and 75 mL, respectively. AIS: Acute ischemic stroke; CT: Computed tomography; HAS: Hyperdense artery sign; MCA: Middle cerebral artery; CBF: Cerebral blood flow; Tmax: Time to maximum.2.3 心源性栓塞与非心源性栓塞分型的鉴别因素分析
多因素logistic回归分析结果显示,与非心源性栓塞AIS相比,心源性栓塞AIS患者的NIHSS评分较高(校正OR=1.09,95%CI 1.01~1.18,P=0.02),心房颤动病史占比较高(校正OR=76.46,95%CI 26.75~218.51,P<0.01),高血压病史占比较低(校正OR=0.32,95%CI 0.12~0.84,P=0.02),抗血小板药物使用史占比较高(校正OR=5.03,95%CI 1.22~20.63,P=0.03),存在HAS的比例较高(校正OR=4.45,95%CI 1.47~13.49,P=0.01),发病到股动脉穿刺时间较短(校正OR=0.998,95%CI 0.996~1.000,P=0.04)。
3 讨论
心源性栓塞和大动脉粥样硬化是AIS最常见的病因[4]。AIS的病因不仅会影响血管狭窄或闭塞后侧支循环的形成及治疗效果,而且在决定临床治疗方案(如血管再通后是否进行抗血小板治疗)方面也至关重要[5]。本研究表明,在因AIS接受血管内取栓治疗的患者中,心源性与非心源性栓塞AIS患者的梗死特征存在部分差异,心源性栓塞AIS患者NIHSS评分更高,心房颤动病史、抗血小板药物使用史、存在HAS的患者占比更高,高血压病史占比更低。值得注意的是,HAS的存在对AIS病因为心源性栓塞有独立预测价值,其作为一种风险因素出现在心源性栓塞性AIS中的可能性大约是非心源性栓塞性AIS的4倍。
然而,本研究影像学结果与Boodt等[6]的研究结果相悖。Boodt等[6]得出的结论是心源性栓塞卒中与HAS的缺失相关,这与既往组织学研究结果描述的心源性栓塞血栓中的红细胞含量低于非心源性栓塞血栓、而纤维蛋白含量更高[7-9]相符。但是,HAS代表富含红细胞、新形成的“新鲜”血栓[10],这又与之前报道的心源性栓塞血栓的组织学特征不符。Kuo等[11]和Kim等[12]的研究结果显示,尽管不同卒中亚型中都可能有HAS出现,但在心源性栓塞病因中最为常见,其次是大动脉粥样硬化病因。Brinjikji等[13]研究显示,卒中病因与HAS之间并无关联。推测相关研究结果的不一致性可能与于纳入患者的差异、因对HAS认知不同而导致较大的观察者间视觉差异、对TOAST标准的解读混淆以及所获取血栓的组织病理学特征缺乏一致性有关[14]。尽管不同研究的结果不一致,但HAS在病因预测方面仍具有提示作用,需要研究者们开展更大规模的多中心研究以得出更明确的结论。
NIHSS评分是临床上评估AIS患者神经功能缺损程度常用且有效的工具[15]。本研究结果显示,心源性栓塞AIS患者的NIHSS评分高于非心源性栓塞AIS患者,这表明心源性栓塞AIS患者的神经功能缺损更为严重。缺血半暗带和核心梗死区体积是AIS患者脑缺血的重要指标。AIS患者的核心梗死区体积可用于评估血管内治疗的风险,而缺血半暗带体积可用于预测患者的预后[16]。在临床实践中,通常将最小绝对不匹配率作为血管内治疗的纳入标准,以帮助临床医生决定是否采取手术治疗[17]。本研究表明,心源性栓塞AIS患者的核心梗死区体积显著大于非心源性栓塞AIS患者;然而,在多因素logistic回归分析中,核心梗死区体积并非AIS病因的预测因素。而不同病因患者的缺血半暗带体积差异无统计学意义。本研究结果显示,心源性栓塞AIS患者的卒中病情更为严重(NIHSS评分更高)且梗死体积更大,这与Kim等[18]的研究结果一致,表明区分AIS的病因可能对血管内治疗具有指导意义,而且心源性栓塞AIS患者可能从手术治疗中获益更多。
ASPECT评分与临床预后高度相关,其在一定程度上能够反映侧支循环的代偿情况[19]。CBS基于CTA或磁共振血管成像得出,它包含2个方面:血栓的长度和位置。CBS评分越低,血栓的范围越大[20]。高CBS评分与AIS的良好预后相关,因此CBS可能是卒中预后的一个指标。mRS用于量化卒中后患者的神经功能缺损及恢复情况,可指导预后判断。ASPECT评分、CBS和mRS评分这3个因素都与预后相关。根据本研究结果,心源性栓塞和非心源性栓塞2种病因的AIS患者在ASPECT评分和卒中发病前mRS评分方面差异均无统计学意义。有趣的是,本研究根据CBS的中位数和四分位间距进行分析,结果差异有统计学意义,但通过肉眼无法观察到比较明显的差异。本研究还发现,两组患者的血栓最常位于大脑中动脉M1段远端(这与Boodt等[6]的研究结果一致),其次是颅内颈内动脉和大脑中动脉M1段近端,且在这些部位的分布上两组间差异无统计学意义。
心房颤动是心源性栓塞的一个强有力的预测因素[21]。本研究表明,有心房颤动病史作为一个风险因素导致心源性栓塞的可能性约为非心源性栓塞病因的76倍。然而,缺血性卒中病史、阿替普酶使用情况及入院时的收缩压和血糖水平在不同病因的AIS患者之间差异并无统计学意义。值得一提的是,在本研究中男性在非心源性栓塞组中所占比例更高。男性可能更易有诸如吸烟等不良生活习惯和不良饮食习惯。此外,由于雌激素对动脉粥样硬化有抵抗作用[22],女性患动脉粥样硬化的可能性比男性略低,但在绝经后患病概率增加。时间是影响AIS临床结局的重要因素之一[23]。心源性栓塞AIS患者从卒中发病到入院影像学检查及到股动脉穿刺的时间均短于非心源性栓塞AIS患者。这些结果或许可以用Kim等[18]的研究结果来解释,该研究表明大动脉粥样硬化AIS患者的侧支循环较为丰富,可能是因为动脉粥样硬化AIS中血管狭窄和闭塞的速度相对较慢,这为侧支循环的开放和形成提供了充足的时间[18],所以与心源性栓塞AIS患者相比,这类患者通常发病较晚。最后,心源性栓塞AIS患者有糖尿病和高血压病史的比例低于非心源性栓塞AIS患者,这与Sangpetch等[24]的研究结果一致。根据多因素logistic回归分析结果,高血压在心源性栓塞AIS患者中是一个保护因素,而在非心源性栓塞AIS患者中则是一个风险因素。然而,在有使用抗凝和抗血小板药物病史的患者中,心源性栓塞AIS的发生更为常见,这可能是因为本研究纳入的患者心源性栓塞卒中的发生较为频繁,他们可能有共同的用药史。
本研究存在一些局限性。首先,这是一项回顾性、单中心研究,样本量有限。其次,TOAST分类法有5种亚型:大动脉粥样硬化、心源性栓塞、小血管病变、其他已确定病因的卒中和不明原因栓塞性卒中。在本研究中,没有患者有小血管病变,因此将大动脉粥样硬化及其他已确定和不明原因的卒中合并为非心源性栓塞性卒中。在未来的研究中,需要扩大样本量、纳入详细的分类以便全面评估AIS的缺血状况,从而指导临床治疗方案。最后,对于血栓并未进行诸如长度和体积等的定量评估,而这些定量评估指标在临床环境中能够提供更多信息。
AIS患者的临床及影像学特征在心源性栓塞性卒中和非心源性栓塞性卒中之间存在部分差异。值得注意的是,HAS的存在在心源性栓塞性卒中患者中可能是一个风险因素,其出现的概率约为在非心源性栓塞性卒中患者中的4倍。因此,HAS的存在可能是一种能够预测卒中病因的工具,提示心源性栓塞的可能性。然而,HAS的存在不能作为确定卒中病因的唯一因素,临床病史、患者的风险因素及全面的检查仍然是确定卒中病因的主要策略。
-
图 1 1例心源性栓塞AIS患者的多模态CT图像分析
Fig. 1 Multimodal CT image analysis of a cardioembolic AIS patient
Female, 75 years old, sudden left limb weakness for 2 h. National Institutes of Health stroke scale score was 18 and modified Rankin scale score was 0. A: Non-contrast CT scan of the patient with HAS in the right proximal M1 segment of MCA; B: CT angiogram showed the corresponding occlusion in the right proximal M1 segment of MCA; C: Alberta Stroke Program early CT score was 9; D: CT perfusion showed that the volumes of infarction core (brain tissue region with CBF<30%) and ischemic penumbra (brain tissue region with mismatch between CBF<30% and Tmax>6 s) were 47 mL and 132 mL, respectively. AIS: Acute ischemic stroke; CT: Computed tomography; HAS: Hyperdense artery sign; MCA: Middle cerebral artery; CBF: Cerebral blood flow; Tmax: Time to maximum.
图 2 1例非心源性栓塞AIS患者的多模态CT图像分析
Fig. 2 Multimodal CT image analysis of a non-cardioembolic AIS patient
Male, 38 years old, right limb weakness for 3 h. National Institutes of Health stroke scale score was 6 and modified Rankin scale score was 0. A: Non-contrast CT scan of the patient without HAS in the left proximal M1 segment of MCA; B: CT angiogram showed the corresponding occlusion in the left proximal M1 segment of MCA; C: Alberta Stroke Program early CT score was 9; D: CT perfusion showed that the volumes of infarction core (brain tissue region with CBF<30%) and ischemic penumbra (brain tissue region with mismatch between CBF<30% and Tmax>6 s) were 0 mL and 75 mL, respectively. AIS: Acute ischemic stroke; CT: Computed tomography; HAS: Hyperdense artery sign; MCA: Middle cerebral artery; CBF: Cerebral blood flow; Tmax: Time to maximum.
表 1 按卒中病因分类AIS患者的基线临床特征
Table 1 Baseline characteristics of AIS patients classified by stroke cause
Characteristic Cardioembolism N=116 Non-cardioembolism N=97 Statistic P value Age/year, M (Q1, Q3) 72 (63, 79) 68 (60, 77) Z=-1.95 0.05 Male, n (%) 58 (50.0) 69 (71.1) χ2=9.80 <0.01 NIHSS score, M (Q1, Q3) 17 (13, 22) 14 (8, 19) Z=-3.26 <0.01 mRS score of 1 or 2 before stroke onset, n (%) 10 (8.6) 14 (14.4) χ2=1.79 0.78 History of ischemic stroke, n (%) 15 (12.9) 11 (11.3) χ2=0.13 0.72 History of atrial fibrillation, n (%) 95 (81.9) 10 (10.3) χ2=108.30 <0.01 History of diabetes, n (%) 13 (11.2) 21 (21.6) χ2=4.29 0.04 History of hypertension, n (%) 60 (51.7) 64 (66.0) χ2=4.41 0.04 Use of alteplase, n (%) 27 (23.3) 24 (24.7) χ2=0.06 0.80 History of anticoagulant drug usea, n (%) 11 (9.5) 1 (1.1) χ2=5.44 0.02 History of antiplatelet drug usea, n (%) 21 (18.1) 7 (7.4) χ2=5.23 0.02 Systolic blood pressure at hospital arrivalb/mmHg, M (Q1, Q3) 130 (120, 145) 130 (120, 141) Z=-0.10 0.92 Blood glucose level at hospital arrivalc/(mmol·L-1), M (Q1, Q3) 7.3 (5.9, 10.0) 7.1 (5.9, 9.2) Z=-0.61 0.54 Onset-to-imaging time/min, M (Q1, Q3) 237 (124, 339) 290 (152, 601) Z=2.42 0.02 Onset-to-puncture time/min, M (Q1, Q3) 307 (192, 396) 375 (234, 690) Z=2.96 <0.01 1 mmHg=0.133 kPa. a: Data pertaining to the history of anticoagulant and antiplatelet drug use were missing for 2 patients with non-cardioembolic stroke; b: Data pertaining to systolic blood pressure at hospital arrival were missing for 5 patients (2 with cardioembolic stroke and 3 with non-cardioembolic stroke); c: Data pertaining to blood glucose levels at hospital arrival were missing for 17 patients (7 with cardioembolic stroke and 10 with non-cardioembolic stroke). AIS: Acute ischemic stroke; NIHSS: National Institutes of Health stroke scale; mRS: Modified Rankin scale. 表 2 按卒中病因分类AIS患者的影像学特征
Table 2 Imaging characteristics of AIS patients classified by stroke cause
Characteristic Cardioembolism N=116 Non-cardioembolism N=97 Statistic P value Occlusion location, n (%) χ2=6.52 0.37 Intracranial ICA 25 (21.6) 25 (25.8) ICA-terminus 18 (15.5) 10 (10.3) Proximal M1 segment of MCA 25 (21.6) 22 (22.7) Distal M1 segment of MCA 29 (25.0) 28 (28.9) M2 branch (temporal) of MCA 5 (4.3) 7 (7.2) M2 branch (frontoparietal) of MCA 10 (8.6) 5 (5.2) Proximal ACA 4 (3.4) 0 Hyperdense artery sign, n (%) 30 (25.9) 12 (12.4) χ2=6.07 0.01 ASPECTS, M (Q1, Q3) 9 (8, 10) 9 (8, 10) Z=-0.43 0.67 Infarct core volume/mL, M (Q1, Q3) 20 (4, 48) 9 (0, 34) Z=-2.43 0.02 Tmax>6 s volume/mL, M (Q1, Q3) 162 (107, 204) 140 (104, 212) Z=-0.54 0.59 Penumbra volume/mL, M (Q1, Q3) 127 (81, 159) 120 (90, 166) Z=-0.41 0.68 Clot burden score, M (Q1, Q3) 6 (4, 7) 6 (4, 8) Z=-2.30 0.02 AIS: Acute ischemic stroke; ICA: Internal carotid artery; MCA: Middle cerebral artery; ACA: Anterior cerebral artery; ASPECTS: Alberta Stroke Program early computed tomography score; Tmax: Time to maximum. -
[1] TU W J, WANG L D, Special Writing Group of China Stroke Surveillance Report. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. DOI: 10.1186/s40779-023-00463-x. [2] POWERS W J, DERDEYN C P, BILLER J, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2015, 46(10): 3020-3035. DOI: 10.1161/STR.0000000000000074. [3] BALAMI J S, WHITE P M, MCMEEKIN P J, et al. Complications of endovascular treatment for acute ischemic stroke: prevention and management[J]. Int J Stroke, 2018, 13(4): 348-361. DOI: 10.1177/1747493017743051. [4] ADAMS H P Jr, BENDIXEN B H, KAPPELLE L J, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment[J]. Stroke, 1993, 24(1): 35-41. DOI: 10.1161/01.str.24.1.35. [5] TIAN C, CAO X, WANG J. Recanalisation therapy in patients with acute ischaemic stroke caused by large artery occlusion: choice of therapeutic strategy according to underlying aetiological mechanism?[J]. Stroke Vasc Neurol, 2017, 2(4): 244-250. DOI: 10.1136/svn-2017-000090. [6] BOODT N, COMPAGNE K C J, DUTRA B G, et al. Stroke etiology and thrombus computed tomography characteristics in patients with acute ischemic stroke: a MR CLEAN registry substudy[J]. Stroke, 2020, 51(6): 1727-1735. DOI: 10.1161/STROKEAHA.119.027749. [7] SPORNS P B, HANNING U, SCHWINDT W, et al. Ischemic stroke: what does the histological composition tell us about the origin of the thrombus?[J]. Stroke, 2017, 48(8): 2206-2210. DOI: 10.1161/STROKEAHA.117.016590. [8] BOECKH-BEHRENS T, KLEINE J F, ZIMMER C, et al. Thrombus histology suggests cardioembolic cause in cryptogenic stroke[J]. Stroke, 2016, 47(7): 1864-1871. DOI: 10.1161/STROKEAHA.116.013105. [9] BENSON J C, FITZGERALD S T, KADIRVEL R, et al. Clot permeability and histopathology: is a clot's perviousness on CT imaging correlated with its histologic composition?[J]. J Neurointerv Surg, 2020, 12(1): 38-42. DOI: 10.1136/neurintsurg-2019-014979. [10] ZHOU Y, JING Y, OSPEL J, et al. CT hyperdense artery sign and the effect of alteplase in endovascular thrombectomy after acute stroke[J]. Radiology, 2022, 305(2): 410-418. DOI: 10.1148/radiol.212358. [11] KUO K H, CHANG F C, LAI Y J, et al. Hyperdense artery sign, clot characteristics, and response to intravenous thrombolysis in Han Chinese people with acute large arterial infarction[J]. J Stroke Cerebrovasc Dis, 2016, 25(3): 695-701. DOI: 10.1016/j.jstrokecerebrovasdis.2015.11.031. [12] KIM S K, BAEK B H, LEE Y Y, et al. Clinical implications of CT hyperdense artery sign in patients with acute middle cerebral artery occlusion in the era of modern mechanical thrombectomy[J]. J Neurol, 2017, 264(12): 2450-2456. DOI: 10.1007/s00415-017-8655-0. [13] BRINJIKJI W, DUFFY S, BURROWS A, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review[J]. J Neurointerv Surg, 2017, 9(6): 529-534. DOI: 10.1136/neurintsurg-2016-012391. [14] FITZGERALD S, MEREUTA O M, DOYLE K M, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome[J]. J Neurosurg Sci, 2019, 63(3): 292-300. DOI: 10.23736/S0390-5616.18.04629-5. [15] BROTT T, ADAMS H P Jr, OLINGER C P, et al. Measurements of acute cerebral infarction: a clinical examination scale[J]. Stroke, 1989, 20(7): 864-870. DOI: 10.1161/01.str.20.7.864. [16] LANSBERG M G, CHRISTENSEN S, KEMP S, et al. Computed tomographic perfusion to predict response to recanalization in ischemic stroke[J]. Ann Neurol, 2017, 81(6): 849-856. DOI: 10.1002/ana.24953. [17] CAMPBELL B C V, MITCHELL P J, KLEINIG T J, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection[J]. N Engl J Med, 2015, 372(11): 1009-1018. DOI: 10.1056/NEJMoa1414792. [18] KIM H J, YUN S C, CHO K H, et al. Differential patterns of evolution in acute middle cerebral artery infarction with perfusion-diffusion mismatch: atherosclerotic vs. cardioembolic occlusion[J]. J Neurol Sci, 2008, 273(1/2): 93-98. DOI: 10.1016/j.jns.2008.06.039. [19] BARBER P A, DEMCHUK A M, ZHANG J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme early CT score[J]. Lancet, 2000, 355(9216): 1670-1674. DOI: 10.1016/s0140-6736(00)02237-6. [20] PUETZ V, DZIALOWSKI I, HILL M D, et al. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score[J]. Int J Stroke, 2008, 3(4): 230-236. DOI: 10.1111/j.1747-4949.2008.00221.x. [21] SAPOSNIK G, GLADSTONE D, RAPTIS R, et al. Atrial fibrillation in ischemic stroke: predicting response to thrombolysis and clinical outcomes[J]. Stroke, 2013, 44(1): 99-104. DOI: 10.1161/STROKEAHA.112.676551. [22] KAPLAN J R, ADAMS M R, CLARKSON T B, et al. Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models[J]. Psychosom Med, 1996, 58(6): 598-611. DOI: 10.1097/00006842-199611000-00008. [23] TIAN B, TIAN X, SHI Z, et al. Clinical and imaging indicators of hemorrhagic transformation in acute ischemic stroke after endovascular thrombectomy[J]. Stroke, 2022, 53(5): 1674-1681. DOI: 10.1161/STROKEAHA.121.035425. [24] SANGPETCH S, WANTANEEYAWONG C, SOONTORNPUN A, et al. Implications of the presence of hyperdense middle cerebral artery sign in determining the subtypes of stroke etiology[J]. Stroke Res Treat, 2021, 2021: 6593541. DOI: 10.1155/2021/6593541.