黄芪甲苷通过抑制p38 MAPK信号通路改善SD大鼠的肺动脉高压

刘羽 唐柏林 鲁美丽 王洪新 杨育红

刘羽,唐柏林,鲁美丽,等. 黄芪甲苷通过抑制p38 MAPK信号通路改善SD大鼠的肺动脉高压 [J]. 海军军医大学学报,2025,46(8):1009-1017. DOI: 10.16781/j.CN31-2187/R.20230653
引用本文: 刘羽,唐柏林,鲁美丽,等. 黄芪甲苷通过抑制p38 MAPK信号通路改善SD大鼠的肺动脉高压 [J]. 海军军医大学学报,2025,46(8):1009-1017. DOI: 10.16781/j.CN31-2187/R.20230653
LIU Y, TANG B, LU M, et al. Astragaloside Ⅳ improves pulmonary arterial hypertension by inhibiting p38 MAPK signaling pathway in SD rats [J]. Acad J Naval Med Univ, 2025, 46(8): 1009-1017. DOI: 10.16781/j.CN31-2187/R.20230653
Citation: LIU Y, TANG B, LU M, et al. Astragaloside Ⅳ improves pulmonary arterial hypertension by inhibiting p38 MAPK signaling pathway in SD rats [J]. Acad J Naval Med Univ, 2025, 46(8): 1009-1017. DOI: 10.16781/j.CN31-2187/R.20230653

黄芪甲苷通过抑制p38 MAPK信号通路改善SD大鼠的肺动脉高压

doi: 10.16781/j.CN31-2187/R.20230653
基金项目: 

国家自然科学基金 81973553.

详细信息

Astragaloside Ⅳ improves pulmonary arterial hypertension by inhibiting p38 MAPK signaling pathway in SD rats

Funds: 

National Natural Science Foundation of China 81973553.

  • 摘要:  目的 研究黄芪甲苷(AS-Ⅳ)对野百合碱(MCT)/野百合碱吡咯(MCTP)诱导SD大鼠/人肺动脉内皮细胞(HPAEC)肺动脉高压(PAH)模型的保护作用和机制。 方法 体内实验中,取60只雄性SD大鼠随机分为对照组、PAH模型组、AS-Ⅳ低剂量(20 mg/kg)组、AS-Ⅳ中剂量(40 mg/kg)组、AS-Ⅳ高剂量(80 mg/kg)组、西地那非(Sil,100 mg/kg)组,每组10只;除对照组外,其余各组均采用MCT(60 mg/kg)单次腹腔注射的方法建立PAH大鼠模型。体外实验中,将HPAEC随机分为对照组、PAH模型组、AS-Ⅳ低剂量(10 μmol/L)组、AS-Ⅳ中剂量(20 μmol/L)组、AS-Ⅳ高剂量(40 μmol/L)组、p38 MAPK信号通路抑制剂(SB203580,5 μmol/L)组;除对照组外,其余各组均采用MCTP(60 μg/mL)诱导24 h建立体外PAH细胞模型。体内实验中,药物干预4周后,采用血流动力学方法检测大鼠的右心室收缩压(RVSP)、平均肺动脉压(mPAP),采用称重法检测右心室肥厚指数,采用H-E染色观察肺小动脉管壁厚度占血管外径的百分比(WT%)和管壁面积占血管总面积的百分比(WA%),采用免疫组织化学(IHC)法观察肺组织中caspase 3蛋白表达情况,采用TUNEL法检测肺组织细胞凋亡情况。体外实验中,采用JC-1染色测定细胞中线粒体膜电位的变化情况,采用免疫荧光法检测caspase 3蛋白表达。体内、体外实验中,采用蛋白质印迹法检测肺组织、HPAEC中caspase 3、Bcl-2、Bax、p38 MAPK、磷酸化p38 MAPK蛋白的表达。 结果 体内实验中,Sil组与AS-Ⅳ各剂量组RVSP、mPAP、右心室肥厚指数均降低(均P<0.01);AS-Ⅳ各剂量组WA%、WT%均降低(均P<0.01),肺组织中caspase 3蛋白表达降低(均P<0.01),肺组织细胞凋亡降低(均P<0.01)。体外实验中,各剂量AS-Ⅳ和SB203580干预后,HPAEC线粒体膜电位均增高(均P<0.01),caspase 3表达均降低(均P<0.01)。体内、体外实验中,各剂量AS-Ⅳ和SB203580均降低Bax、磷酸化p38 MAPK蛋白表达,增加Bcl-2蛋白表达(均P<0.01)。 结论 AS-Ⅳ通过抑制p38 MAPK信号通路减少细胞凋亡,改善SD大鼠PAH。

     

    Abstract:  Objective To investigate the protective effect and mechanism of astragaloside Ⅳ (AS-Ⅳ) on the pulmonary arterial hypertension (PAH) model induced by monocrotaline (MCT)/monocrotaline pyrrole (MCTP) in SD rats/human pulmonary artery endothelial cell (HPAEC). Methods In vivo experiment, 60 male SD rats were randomly assigned to control group, PAH model group, AS-Ⅳ low-dose (20 mg/kg) group, AS-Ⅳ medium-dose (40 mg/kg) group, AS-Ⅳ high-dose (80 mg/kg) group, or sildenafil (Sil, 100 mg/kg) group, with 10 rats in each group; except for the control group, PAH rat models were established by single intraperitoneal injection of MCT (60 mg/kg) in other groups. In vitro experiment, HPAECs were randomly assigned to control group, PAH model group, AS-Ⅳ low-dose (10 μmol/L) group, AS-Ⅳ medium-dose (20 μmol/L) group, MCTP+AS-Ⅳ high-dose (40 μmol/L) group, or p38 mitogen-activated protein kinase (MAPK) signaling pathway inhibitor (SB203580, 5 μmol/L) group; except for the control group, in vitro PAH cell models were established by MCTP (60 μg/mL) induction for 24 h in other groups. In vivo experiments, after 4 weeks of drug intervention, the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) of rats were measured by hemodynamic methods, the right ventricle hypertrophy index was measured by weighing methods, the percentage of pulmonary arteriole wall thickness to outer diameter (WT%) and percentage of the wall area to total vascular area (WA%) were observed by hematoxylin-eosin staining, the expression of cysteine aspartic acid specific protease 3 (caspase 3) protein in lung tissue was observed by immunohistochemistry (IHC), and the apoptosis of lung tissue cells was detected by TUNEL assay. In vitro experiments, JC-1 staining was used to detect the mitochondrial membrane potential in cells, and immunofluorescence was used to detect caspase 3 protein expression. In vitro and in vivo experiments, Western blotting was used to detect the expression of caspase 3, B-cell lymphoma gene 2 (Bcl-2), Bcl-2 associated X protein (Bax), p38 MAPK, and phosphorylated p38 MAPK proteins in lung tissue and HPAECs. Results In vivo experiments, the RVSP, mPAP, and right ventricle hypertrophy index were decreased in the Sil group and each dose group of AS-Ⅳ (all P < 0.01); the WA% and WT% of each dose group of AS-Ⅳ were decreased (all P < 0.01), the expression of caspase 3 protein in lung tissue was decreased (all P < 0.01), and the apoptosis of lung tissue cells was decreased (all P < 0.01). In vitro experiments showed that after intervention with each dose of AS-Ⅳ and SB203580, the mitochondrial membrane potential of HPAEC was increased (all P < 0.01) and the expression of caspase 3 was decreased (all P < 0.01). In vivo and in vitro experiments, each dose of AS-Ⅳ and SB203580 reduced the expression of Bax and phosphorylated p38 MAPK proteins, and increased the expression of Bcl-2 protein (all P < 0.01). Conclusion AS-Ⅳ reduces apoptosis by inhibiting p38 MAPK signaling pathway, improving PAH in SD rats.

     

  • 肺动脉高压(pulmonary arterial hypertension,PAH)是由多种原因引起的肺血管阻力增加和肺动脉压力增高的慢性肺疾病,血流动力学诊断标准为海平面静息状态下右心导管检测平均肺动脉压(mean pulmonary artery pressure,mPAP)≥25 mmHg(1 mmHg=0.133 kPa)[1-2]。PAH是一种常见的多发病,致残率和病死率均很高[3],但其发病机制复杂,难以治愈,迫切需要开发能够减缓病情的药物。

    p38 MAPK参与不同的细胞过程,在细胞凋亡中起重要作用[4-5],其信号通路的激活通过磷酸化级联反应实现[6]。磷酸化的p38 MAPK可通过调节自噬和凋亡关键蛋白导致细胞死亡,参与细胞凋亡过程[7]

    黄芪甲苷(astragaloside Ⅳ,AS-Ⅳ)是黄芪的主要活性成分之一,研究表明,AS-Ⅳ具有多种药理活性,包括抗凋亡、抗炎、抗氧化、免疫调节等[8-11]。本实验室以往研究发现AS-Ⅳ可以改善PAH[12],但该作用是否与激活p38 MAPK信号通路抑制细胞凋亡有关尚未明确。本研究以野百合碱(monocrotaline,MCT)/野百合碱吡咯(monocrotalinepyrrole,MCTP)诱导SD大鼠/人肺动脉内皮细胞(human pulmonary artery endothelial cell,HPAEC)建立体内/外模型,探讨AS-Ⅳ是否通过抑制p38 MAPK信号通路改善PAH。

    AS-Ⅳ(纯度95%,货号:S1101-01019)购自南京景竹生物科技有限公司,分子量为784.970。将AS-Ⅳ用0.5%羧甲基纤维素钠溶液溶解成所需浓度,体内实验每次灌胃量为2.2~2.5 mL。

    蛋白质提取试剂购于南京建成生物工程研究所。Bax、Bcl-2、caspase 3、p38 MAPK、磷酸化p38 MAPK、β肌动蛋白一抗,以及HRP标记的二抗均购自武汉爱博泰克生物科技有限公司。MCT、MCTP购自美国Sigma公司。TUNEL凋亡检测试剂盒、免疫组织化学(immunohistochemistry,IHC)检测试剂盒购自北京中杉金桥生物技术有限公司。H-E染色试剂盒、免疫荧光二抗、DAPI、JC-1试剂盒购自上海碧云天生物技术研究所。

    BL-420S生物机能实验系统(成都泰盟科技有限公司);低温高速离心机(美国ThermoFisher公司);Leica DMI 3000B倒置显微镜(德国Leica公司);凝胶成像仪、半干转印仪(美国Bio-Rad公司)。

    本实验通过锦州医科大学实验动物伦理委员会审核批准(2021018)。在锦州医科大学动物实验中心取4~6周体重180~200 g的健康雄性SD大鼠60只[动物使用许可证号为SYXK(辽)2022-007]。HPAEC购自青旗(上海)生物技术发展有限公司。

    从60只SD大鼠中随机取10只作为对照组;余50只单次腹腔注射MCT(60 mg/kg)建立PAH大鼠模型,后随机分为5组:PAH模型组(MCT组)、AS-Ⅳ低剂量(20 mg/kg)组、AS-Ⅳ中剂量(40 mg/kg)组、AS-Ⅳ高剂量(80 mg/kg)组、西地那非(sildenafil,Sil;100 mg/kg)组。AS-Ⅳ低中高剂量组和Sil组大鼠每天依据体重分别灌胃相应剂量的AS-Ⅳ和Sil,对照组和MCT组每天灌胃相同体积的生理盐水,共持续4周。喂养期间每日查看大鼠健康状况。喂养4周后,对照组、MCT组、AS-Ⅳ低中高剂量组、Sil组分别存活10、8、9、8、8、9只。

    将HPAEC置于37 ℃、5% CO2、95% N2的细胞培养箱中用含10% FBS的完全培养基进行传代培养。用MCTP(60 μg/mL)诱导24 h建立体外PAH细胞模型,然后采用p38 MAPK信号通路抑制剂SB203580(5 μmol/L)或不同剂量AS-Ⅳ(10、20、40 μmol/L)处理HPAEC 30 min,收集HPAEC和上清液用于后续体外实验。

    SD大鼠喂养4周后,用20%戊巴比妥钠腹腔注射麻醉,分离右颈静脉,将导管插入SD大鼠右心室,采用血流动力学方法检测肺动脉各压力指标,包括右心室收缩压(right ventricular systolic pressure,RVSP)、mPAP,并采用称重法测量右心室肥厚指数[右心室质量/(左心室质量+室间隔质量)]。数据均通过Power Lab软件记录。

    取大鼠肺组织在4%多聚甲醛溶液中浸泡固定48 h,浸蜡包埋后切成3~5 μm厚的切片并进行H-E染色。通过Image Pro Plus软件进行图像分析,计算肺小动脉管壁面积比(WA%,管壁面积占血管总面积的百分比)和管壁厚度比(WT%,管壁厚度占血管外径的百分比)。

    将肺组织石蜡切片进行乙醇梯度脱水、二甲苯脱蜡透明后,用caspase 3一抗(稀释比例为1∶100)4 ℃过夜染色。次日滴加二抗,然后进行DAB显色、苏木精染色。最后在显微镜下观察,用Image Pro Plus软件进行图像分析。

    石蜡切片经乙醇梯度脱水、二甲苯脱蜡透明后,滴加TUNEL试剂,于显微镜下观察,用Image Pro Plus软件进行图像分析。

    收集不同处理组的HPAEC,加入100 µL JC-1试剂在室温下孵育30 min,然后用JC-1缓冲液洗涤细胞2次,在荧光显微镜下观察。用Image Pro Plus软件进行结果分析。

    用含0.5% Triton X-100的PBS渗透HPAEC 30 min,用5%牛血清白蛋白溶液封闭30 min,加入caspase 3一抗(稀释比例为1∶100)4 ℃孵育过夜。次日用FITC标记的二抗和DAPI染色。在荧光显微镜下观察,并用Image Pro Plus软件分析结果。

    用裂解缓冲液提取肺组织和HPAEC蛋白质,通过BCA蛋白测定试剂盒检测蛋白质浓度。用10% SDS-PAGE分离样品蛋白质,然后转移至PVDF膜上。再用1%牛血清白蛋白溶液封闭1.5 h,加Bcl-2、Bax、caspase 3、p38 MAPK、磷酸化p38 MAPK、β肌动蛋白一抗(稀释比例除β肌动蛋白一抗为1∶10 000外,其余均为1∶1 000)4 ℃孵育过夜。次日加入二抗室温孵育1 h,最后用Image Pro Plus软件进行结果分析。

    应用SPSS 25软件进行统计分析。计量资料以x±s表示,多组间比较采用单因素方差分析,并采用最小显著性差异法进行多重比较。检验水准(α)为0.05。

    与对照组相比,MCT组SD大鼠的RVSP、mPAP、右心室肥厚指数升高(均P<0.01),表明PAH模型成立。经Sil治疗后,RVSP、mPAP和右心室肥厚指数较MCT组降低(均P<0.01),表明Sil对PAH具有治疗作用。不同剂量的AS-Ⅳ对PAH大鼠的治疗作用与Sil相似,均可以降低SD大鼠的RVSP、mPAP、右心室肥厚指数,表明AS-Ⅳ与Sil对PAH大鼠具有相同的保护作用。见图 1

    图  1  Sil和AS-Ⅳ对MCT诱导PAH大鼠血流动力学和RVHI的作用
    Fig.  1  Effects of Sil and AS-Ⅳ on hemodynamics and RVHI of MCT-induced PAH rats
    A, B: The RVSP and mPAP were detected by hemodynamic method; C: RVHI was detected by weighing method. 1 mmHg=0.133 kPa. **P < 0.01 vs MCT group. n=8, x±s. Sil: Sildenafil; AS-Ⅳ: Astragaloside Ⅳ; MCT: Monocrotaline; PAH: Pulmonary arterial hypertension; RVSP: Right ventricular systolic pressure; mPAP: Mean pulmonary artery pressure; RVHI: Right ventricle hypertrophy index (ratio of the weight of right ventricle to the total weight of left ventricle and interventricular septum).
    下载: 全尺寸图片

    H-E染色结果(图 2)表明,与对照组相比,MCT组大鼠肺小动脉管壁面积增大(WA%,P<0.01)、管壁增厚(WT%,P<0.01);经不同剂量的AS-Ⅳ治疗后,大鼠肺小动脉管壁增生程度改善(均P<0.01),其中AS-Ⅳ中、高剂量组改善大鼠肺小动脉重构的作用更为明显。结果表明AS-Ⅳ对MCT诱导的PAH大鼠肺小动脉血管重构有明显的改善作用。

    图  2  H-E染色检测大鼠的肺小动脉重构情况
    Fig.  2  Pulmonary arteriole remodeling in rats detected by H-E staining
    The arrows showed pulmonary arterioles. **P < 0.01 vs MCT group. n=6, x±s. H-E: Hematoxylin-eosin; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ; WA%: Percentage of pulmonary arteriole wall area to total vascular area; WT%: Percentage of pulmonary arteriole wall thickness to outer diameter.
    下载: 全尺寸图片

    TUNEL法检测结果(图 3)表明,与对照组相比,MCT组大鼠肺组织中细胞凋亡增加(P<0.01);经不同剂量AS-Ⅳ治疗后,大鼠肺组织细胞凋亡情况改善(均P<0.01)。

    图  3  TUNEL法检测大鼠肺组织细胞凋亡情况
    Fig.  3  Apoptosis of lung tissue cells in rats detected by TUNEL assay
    **P < 0.01 vs MCT group. n=3, x±s. MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    IHC染色结果(图 4A4B)表明,与对照组相比,MCT组大鼠肺组织中caspase 3表达升高(P<0.01);经不同剂量AS-Ⅳ治疗后caspase 3蛋白表达降低(均P<0.01)。蛋白质印迹法检测结果(图 4C4D)显示,与对照组相比,MCT组大鼠肺组织中caspase 3蛋白表达增加(P<0.01);经不同剂量AS-Ⅳ治疗后,caspase 3蛋白表达降低(均P<0.01)。结果表明AS-Ⅳ可以不同程度地抑制MCT诱导的PAH大鼠肺组织中caspase 3蛋白的表达。

    图  4  IHC染色(A、B)和蛋白质印迹法(C、D)检测大鼠肺组织中caspase 3蛋白表达
    Fig.  4  Expression of caspase 3 protein in rat lung tissue detected by IHC staining (A, B) and Western blotting (C, D)
    The arrows showed expression of caspase 3 protein in lung tissue. **P < 0.01 vs MCT group. n=3, x±s. IHC: Immunohistochemistry; caspase 3: Cysteine aspartic acid specific protease 3; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    蛋白质印迹法检测结果(图 5)表明,与对照组相比,MCT组大鼠肺组织中促凋亡蛋白Bax表达增多(P<0.01),抑凋亡蛋白Bcl-2表达降低(P<0.01);经不同剂量的AS-Ⅳ治疗后,上述凋亡相关蛋白的表达情况逆转(均P<0.01)。

    图  5  蛋白质印迹法检测大鼠肺组织中Bax、Bcl-2蛋白表达
    Fig.  5  Expression of Bax and Bcl-2 proteins in rat lung tissue detected by Western blotting
    **P < 0.01 vs MCT group. n=3, x±s. Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma gene 2; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    免疫荧光和蛋白质印迹法检测结果(图 6)均表明,与对照组相比,MCTP组HPAEC中caspase 3蛋白表达增加(P<0.01),经不同剂量的AS-Ⅳ处理后caspase 3蛋白表达降低(均P<0.01),而p38 MAPK信号通路抑制剂SB203580的干预效果与AS-Ⅳ相似,也降低了caspase 3蛋白的表达(P<0.01)。

    图  6  免疫荧光(A、B)和蛋白质印迹法(C、D)检测HPAEC中caspase 3蛋白表达
    Fig.  6  Expression of caspase 3 protein in HPAECs detected by immunofluorescence (A, B) and Western blotting (C, D)
    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; caspase 3: Cysteine aspartic acid specific protease 3; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ; DAPI: 4', 6-diamidino-2-phenylindole.
    下载: 全尺寸图片

    JC-1染色结果(图 7)显示,与对照组相比,MCTP组HPAEC中JC-1单体表达减少、JC-1多聚体表达增加(P<0.01);经不同剂量的AS-Ⅳ处理后上述变化逆转(均P<0.01);p38 MAPK信号通路抑制剂SB203580同样增加了JC-1单体表达、降低了JC-1多聚体表达,改善了HPAEC的线粒体膜电位变化,表现出与AS-Ⅳ相似的干预效果。

    图  7  JC-1染色检测HPAEC中线粒体膜电位
    Fig.  7  HPAEC mitochondrial membrane potential detected by JC-1 staining
    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    蛋白质印迹法检测结果(图 8)显示,与对照组相比,MCTP组HPAEC中促凋亡蛋白Bax表达增多(P<0.01),抑凋亡蛋白Bcl-2表达降低(P<0.01);经不同剂量的AS-Ⅳ处理后上述蛋白的表达均逆转(均P<0.01)。p38 MAPK信号通路抑制剂SB203580对上述凋亡相关蛋白表达的干预效果与AS-Ⅳ相似。

    图  8  蛋白质印迹法检测HPAEC中Bax、Bcl-2蛋白表达
    Fig.  8  Expression of Bax and Bcl-2 proteins in HPAECs detected by Western blotting
    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma gene 2; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    蛋白质印迹法检测结果(图 9)显示,与对照组相比,MCTP组HPAEC中p38 MAPK信号通路激活,磷酸化p38 MAPK蛋白表达升高(P<0.01);经不同剂量的AS-Ⅳ处理后,p38 MAPK信号通路激活被抑制,磷酸化p38 MAPK蛋白表达降低(均P<0.01),且抑制效果与p38 MAPK信号通路抑制剂SB203580相似。

    图  9  蛋白质印迹法检测HPAEC中p-p38 MAPK、p38 MAPK蛋白表达
    Fig.  9  Expression of p-p38 MAPK and p38 MAPK proteins in HPAECs detected by Western blotting
    SB203580 is a p38 MAPK signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; p-p38 MAPK: Phosphorylated p38 MAPK; p38 MAPK: p38 mitogen-activated protein kinase; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.
    下载: 全尺寸图片

    PAH的主要组织病理学表现包括肺血管收缩、内皮细胞凋亡、平滑肌细胞增殖和肺小动脉血栓形成等[13]。MCT一直被广泛应用于PAH大鼠的动物模型制备,作为一种大环吡咯烷核生物碱被吸收至肝脏中,通过细胞色素P450代谢转化为MCTP入血,从而破坏内皮细胞的内膜及膜蛋白结构、减少一氧化氮合成,导致内皮屏障紊乱,加速了免疫细胞的聚集,促进了血管中的促炎反应[14-15]。本研究结果显示,与MCT组大鼠相比,AS-Ⅳ组与Sil组大鼠RVSP、mPAP、右心室肥厚指数均降低,H-E染色显示肺小动脉血管重构和增厚情况改善,结果表明AS-Ⅳ的治疗作用与Sil相似,可以改善MCT诱导PAH大鼠的相关症状。

    本研究结果提示,发生PAH时肺组织细胞凋亡增加,促凋亡蛋白caspase 3、Bax表达增加,抗凋亡蛋白Bcl-2表达降低,经AS-Ⅳ治疗之后促凋亡蛋白表达减少、抗凋亡蛋白表达增加。TUNEL法检测结果同样表明,MCT组肺组织细胞凋亡增加,经AS-Ⅳ治疗之后凋亡减少。IHC和免疫荧光染色结果均表明,MCT/ MCTP使促凋亡蛋白caspase 3表达急剧增加,经不同浓度的AS-Ⅳ治疗之后caspase 3表达均有不同程度的降低。在细胞水平上,p38 MAPK信号通路抑制剂SB203580也降低了caspase 3、Bax蛋白表达,升高了Bcl-2蛋白表达。JC-1染色结果表明,MCTP诱导线粒体膜电位降低,经AS-Ⅳ治疗后线粒体膜电位增高,p38 MAPK信号通路抑制剂SB203580也升高了MCTP作用下的线粒体膜电位。以上结果均表明,AS-Ⅳ和SB203580均有助于改善PAH引起的细胞凋亡。

    发生PAH时p38 MAPK信号通路激活,使磷酸化p38 MAPK表达增加,经AS-Ⅳ治疗或p38 MAPK信号通路抑制剂SB203580干预后,p38 MAPK信号通路被抑制,磷酸化p38 MAPK表达降低。

    综上所述,AS-Ⅳ对MCT诱导的PAH大鼠具有保护作用,具体机制可能是AS-Ⅳ通过抑制p38 MAPK信号通路减少肺组织细胞凋亡,从而改善PAH相关症状。

  • 图  1   Sil和AS-Ⅳ对MCT诱导PAH大鼠血流动力学和RVHI的作用

    Fig.  1   Effects of Sil and AS-Ⅳ on hemodynamics and RVHI of MCT-induced PAH rats

    A, B: The RVSP and mPAP were detected by hemodynamic method; C: RVHI was detected by weighing method. 1 mmHg=0.133 kPa. **P < 0.01 vs MCT group. n=8, x±s. Sil: Sildenafil; AS-Ⅳ: Astragaloside Ⅳ; MCT: Monocrotaline; PAH: Pulmonary arterial hypertension; RVSP: Right ventricular systolic pressure; mPAP: Mean pulmonary artery pressure; RVHI: Right ventricle hypertrophy index (ratio of the weight of right ventricle to the total weight of left ventricle and interventricular septum).

    下载: 全尺寸图片

    图  2   H-E染色检测大鼠的肺小动脉重构情况

    Fig.  2   Pulmonary arteriole remodeling in rats detected by H-E staining

    The arrows showed pulmonary arterioles. **P < 0.01 vs MCT group. n=6, x±s. H-E: Hematoxylin-eosin; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ; WA%: Percentage of pulmonary arteriole wall area to total vascular area; WT%: Percentage of pulmonary arteriole wall thickness to outer diameter.

    下载: 全尺寸图片

    图  3   TUNEL法检测大鼠肺组织细胞凋亡情况

    Fig.  3   Apoptosis of lung tissue cells in rats detected by TUNEL assay

    **P < 0.01 vs MCT group. n=3, x±s. MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片

    图  4   IHC染色(A、B)和蛋白质印迹法(C、D)检测大鼠肺组织中caspase 3蛋白表达

    Fig.  4   Expression of caspase 3 protein in rat lung tissue detected by IHC staining (A, B) and Western blotting (C, D)

    The arrows showed expression of caspase 3 protein in lung tissue. **P < 0.01 vs MCT group. n=3, x±s. IHC: Immunohistochemistry; caspase 3: Cysteine aspartic acid specific protease 3; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片

    图  5   蛋白质印迹法检测大鼠肺组织中Bax、Bcl-2蛋白表达

    Fig.  5   Expression of Bax and Bcl-2 proteins in rat lung tissue detected by Western blotting

    **P < 0.01 vs MCT group. n=3, x±s. Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma gene 2; MCT: Monocrotaline; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片

    图  6   免疫荧光(A、B)和蛋白质印迹法(C、D)检测HPAEC中caspase 3蛋白表达

    Fig.  6   Expression of caspase 3 protein in HPAECs detected by immunofluorescence (A, B) and Western blotting (C, D)

    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; caspase 3: Cysteine aspartic acid specific protease 3; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ; DAPI: 4', 6-diamidino-2-phenylindole.

    下载: 全尺寸图片

    图  7   JC-1染色检测HPAEC中线粒体膜电位

    Fig.  7   HPAEC mitochondrial membrane potential detected by JC-1 staining

    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片

    图  8   蛋白质印迹法检测HPAEC中Bax、Bcl-2蛋白表达

    Fig.  8   Expression of Bax and Bcl-2 proteins in HPAECs detected by Western blotting

    SB203580 is a p38 mitogen-activated protein kinase signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma gene 2; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片

    图  9   蛋白质印迹法检测HPAEC中p-p38 MAPK、p38 MAPK蛋白表达

    Fig.  9   Expression of p-p38 MAPK and p38 MAPK proteins in HPAECs detected by Western blotting

    SB203580 is a p38 MAPK signaling pathway inhibitor. **P < 0.01 vs MCTP group. n=3, x±s. HPAEC: Human pulmonary artery endothelial cell; p-p38 MAPK: Phosphorylated p38 MAPK; p38 MAPK: p38 mitogen-activated protein kinase; MCTP: Monocrotaline pyrrole; AS-Ⅳ: Astragaloside Ⅳ.

    下载: 全尺寸图片
  • [1] LEOPOLD J A, MARON B A. Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension[J]. Int J Mol Sci, 2016, 17(5): 761. DOI: 10.3390/ijms17050761.
    [2] LUNA-LÓPEZ R, RUIZ MARTÍN A, ESCRIBANO SUBÍAS P. Pulmonary arterial hypertension[J]. Med Clínica Engl Ed, 2022, 158(12): 622-629. DOI: 10.1016/j.medcle.2022.05.010.
    [3] ROSENZWEIG E B, ABMAN S H, ADATIA I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management[J]. Eur Respir J, 2019, 53(1): 1801916. DOI: 10.1183/13993003.01916-2018.
    [4] JOHNSON G L, LAPADAT R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science, 2002, 298(5600): 1911-1912. DOI: 10.1126/science.1072682.
    [5] WAGNER E F, NEBREDA A R. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer, 2009, 9(8): 537-549. DOI: 10.1038/nrc2694.
    [6] ZARUBIN T, HAN J. Activation and signaling of the p38 MAP kinase pathway[J]. Cell Res, 2005, 15(1): 11-18. DOI: 10.1038/sj.cr.7290257.
    [7] YUAN F, LIU B, XU Y, et al. TIPE3 is a regulator of cell apoptosis in glioblastoma[J]. Cancer Lett, 2019, 446: 1-14. DOI: 10.1016/j.canlet.2018.12.019.
    [8] JIN H, JIAO Y, GUO L, et al. Astragaloside Ⅳ blocks monocrotaline-induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling[J]. Int J Mol Med, 2021, 47(2): 595-606. DOI: 10.3892/ijmm.2020.4813.
    [9] CAO Y, ZHANG L, WANG Y, et al. Astragaloside Ⅳ attenuates renal fibrosis through repressing epithelial-to-mesenchymal transition by inhibiting microRNA-192 expression: in vivo and in vitro studies[J]. Am J Transl Res, 2019, 11(8): 5029-5038.
    [10] ZHANG X, CHEN J, XU P, et al. Protective effects of astragaloside Ⅳ against hypoxic pulmonary hypertension[J]. MedChemComm, 2018, 9(10): 1715-1721. DOI: 10.1039/c8md00341f.
    [11] YAO J, FANG X, ZHANG C, et al. Astragaloside Ⅳ attenuates hypoxia-induced pulmonary vascular remodeling via the Notch signaling pathway[J]. Mol Med Rep, 2020, 23: 89. DOI: 10.3892/mmr.2020.11726.
    [12] SUN Y, LU M, SUN T, et al. Astragaloside Ⅳ attenuates inflammatory response mediated by NLRP-3/calpain-1 is involved in the development of pulmonary hypertension[J]. J Cell Mol Med, 2021, 25(1): 586-590. DOI: 10.1111/jcmm.15671.
    [13] ZHANG W, LI Y, XI X, et al. microRNA-15a-5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP-2 signaling pathway[J]. Int J Mol Med, 2020, 45(2): 461-474. DOI: 10.3892/ijmm.2019.4434.
    [14] XIAO R, ZHU L, SU Y, et al. Monocrotaline pyrrole induces pulmonary endothelial damage through binding to and release from erythrocytes in lung during venous blood reoxygenation[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(5): L798-L809. DOI: 10.1152/ajplung.00279.2018.
    [15] ZHANG D, WANG X, CHEN S, et al. Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation[J]. Clin Sci (Lond), 2019, 133(20): 2045-2059. DOI: 10.1042/CS20190514.
WeChat 点击查看大图
图(9)
出版历程
  • 收稿日期:  2023-11-12
  • 接受日期:  2024-05-07

目录

    /

    返回文章
    返回