Effects of single-session table tennis exercise with different intensities on working memory and event-related potentials in college students with depressive symptoms
-
摘要:
目的 利用事件相关电位(ERP)技术探讨单次不同强度乒乓球运动对抑郁症状大学生工作记忆的影响及其认知神经加工机制。 方法 采用方便抽样法,在某高校招募100名有抑郁症状的大学生,按1∶1∶1∶1比例随机分为低强度运动组、中强度运动组、高强度运动组和对照组,低强度运动组、中强度运动组、高强度运动组分别接受强度为57%~64%最大心率(HRmax)和主观疲劳感觉分级量表(RPE)评分9~11分、65%~75% HRmax和RPE评分12~13分、76%~95% HRmax和RPE评分14~17分的单次乒乓球运动干预30 min(5 min热身、20 min监控锻炼、5 min整理),对照组不接受运动干预。干预前后进行言语工作记忆(VWM)和空间工作记忆(SWM)测量,并记录任务期间的ERP成分(N2、P3的波幅和潜伏期)。 结果 最终纳入91名受试者(低强度运动组20人、中强度运动组25人、高强度运动组23人、对照组23人)进行分析。在VWM任务中,正确率的时间主效应显著(F(1, 89)=5.942,P=0.017,偏η2=0.064),干预后中强度运动组和高强度运动组正确率提高(差值=0.027,95% CI 0.001~0.053,P=0.037;差值=0.029,95% CI 0.002~0.055,P=0.040);反应时的时间主效应显著(F(1, 89)=7.244,P=0.009,偏η2=0.077),组别与时间的交互效应显著(F(3, 87)=2.844,P=0.042,偏η2=0.089),干预后低强度运动组和中强度运动组反应时缩短(差值=-0.095,95% CI -0.183~-0.007,P=0.035;差值=-0.079,95% CI -0.158~0,P=0.049);ERP成分中P3潜伏期的时间与脑区电极位置的交互效应显著(F(3, 87)=5.785,P<0.001,偏η2=0.062),其余各阶交互效应均不显著(均P>0.05)。在SWM任务中,正确率的时间主效应显著(F(1, 89)=5.092,P=0.027,偏η2=0.055),组别与时间的交互效应不显著(F(3, 87)=0.799,P=0.498,偏η2=0.027),干预后中强度运动组正确率提高(差值=0.019,95% CI 0~0.037,P=0.046);反应时的时间主效应显著(F(1, 89)=14.322,P<0.001,偏η2=0.141),组别与时间的交互效应不显著(F(3, 87)=1.521,P=0.215,偏η2=0.050),干预后中强度运动组和高强度运动组反应时缩短(差值=-0.082,95% CI -0.136~-0.027,P=0.004;差值=-0.075,95% CI -0.131~-0.018,P=0.029);ERP成分中P3波幅的时间与脑区电极位置的交互效应显著(F(3, 87)=5.475,P=0.001,偏η2=0.059),其余各阶交互效应均不显著(均P>0.05)。 结论 单次不同强度乒乓球运动对抑郁症状大学生工作记忆具有积极作用:中、高强度运动可提升VWM正确率,低、中强度运动可降低VWM反应时,中强度运动可提升SWM正确率,而中、高强度运动可降低SWM反应时。同时,高强度运动对ERP成分的激活程度更高。 Abstract:Objective To explore the effects of single-session table tennis exercise with different intensities on working memory and the associated cognitive neural processing mechanisms in college students with depressive symptoms by using event-related potential (ERP) technology. Methods A convenience sampling approach was employed to recruit 100 college students with depressive symptoms from a university. Participants were randomly assigned at a 1∶1 ∶1 ∶1 ratio to low-intensity exercise group, moderate-intensity exercise group, high-intensity exercise group, or control group. The exercise groups participated in a single 30-min table tennis intervention at intensities corresponding to 57%-64% of maximum heart rate (HRmax) and rate of perceived exertion (RPE) scores ranging from 9-11, 65%-75% HRmax and RPE scores 12-13, and 76%-95% HRmax and RPE scores of 14-17 (5-min warm-up, 20-min monitored exercise, 5-min cool-down). The control group did not receive any exercise intervention. Pre- and post-intervention assessments of verbal working memory (VWM) and spatial working memory (SWM) were performed, alongside the recording of ERP components, including the amplitude and latency of N2 and P3, during the tasks. Results A total of 91 participants (20 in the low-intensity exercise group, 25 in the moderate-intensity exercise group, 23 in the high-intensity exercise group, and 23 in the control group) were enrolled for analysis. In the VWM task, the main effect of time on accuracy was found to be significant (F(1, 89)=5.942, P=0.017, partial η2=0.064). Post-intervention, accuracy was significantly improved in the moderate-intensity and high-intensity exercise groups (change=0.027, 95% confidence interval [CI] 0.001-0.053, P=0.037; change=0.029, 95% CI 0.002-0.055, P=0.040). The main effect of time on reaction time was also significant (F(1, 89)=7.244, P=0.009, partial η2=0.077). The interaction between group and time was also significant (F(3, 87)=2.844, P=0.042, partial η2=0.089). After the intervention, the reaction time was reduced in the low-intensity and moderate-intensity exercise groups (change=-0.095, 95% CI -0.183--0.007, P=0.035; change=-0.079, 95% CI -0.158-0, P=0.049). The interaction between time and electrode location in the P3 latency in ERP components was significant (F(3, 87)=5.785, P < 0.001, partial η2=0.062), while the interactions for other ERP measures were not significant (all P > 0.05). In the SWM task, the main effect of time on accuracy was significant (F(1, 89)=5.092, P=0.027, partial η2=0.055), while the interaction between group and time was not significant (F(3, 87)=0.799, P=0.498, partial η2=0.027). After the intervention, accuracy was improved in the moderate-intensity exercise group (change=0.019, 95% CI 0-0.037, P=0.046). The main effect of time on reaction time was significant (F(1, 89)=14.322, P < 0.001, partial η2=0.141). The interaction between group and time was not significant (F(3, 87)=1.521, P=0.215, partial η2=0.050). After the intervention, reaction time was shortened in the moderate-intensity and high-intensity exercise groups (change=-0.082, 95% CI -0.136--0.027, P=0.004; change=-0.075, 95% CI -0.131--0.018, P=0.029). The interaction between time and electrode location in the P3 amplitude in ERP components was significant (F(3, 87)=5.475, P=0.001, partial η2=0.059), while the interactions for other ERP measures were not significant (all P > 0.05). Conclusion Single-session table tennis exercise with different intensities has a positive effect on working memory in college students with depressive symptoms. Moderate- to high-intensity exercise can enhance VWM accuracy, while low- to moderate-intensity exercise can reduce VWM reaction time. Furthermore, moderate-intensity exercise can improve SWM accuracy, and moderate- to high-intensity exercise can shorten SWM reaction time. Additionally, high-intensity exercise can lead to greater activation of ERP components. -
当前,抑郁症已成为全球疾病负担的重要因素之一,对个人和社会均造成显著影响[1]。抑郁症状是抑郁症的前期表现,属于未达到诊断标准的心理亚健康状态。大学生正处于从青春期晚期向青年期的过渡阶段,其心理健康问题备受关注。在大学生群体中,抑郁症状不仅会损害学习表现,还可能引发长时间的低落情绪,影响生活质量[2-3]。工作记忆(working memory,WM)是人类认知系统的重要组成部分,负责信息的暂时存储和处理,从而帮助完成复杂的任务。根据信息加工方式,WM分为言语工作记忆(verbal working memory,VWM)和空间工作记忆(spatial working memory,SWM),前者处理语音信息,后者处理视觉和空间信息[4-5]。研究表明,存在抑郁症状的人群在WM任务中的表现较差[6-7]。因此,有抑郁症状的大学生在WM任务中的表现及其干预策略值得探讨。
运动可增强身体应对压力的能力,是改善抑郁症状的潜在有效途径,其机制包括抗炎、调节下丘脑-垂体-肾上腺轴功能、促进神经可塑性与神经再生、改善神经递质、调节神经相关生长因子等[8-9]。运动还可通过调节大脑神经可塑性,促进认知功能发展[10],提升记忆能力[11]。单次运动因其成本低、混杂因素少,适合探索运动方案及生理机制[12]。乒乓球作为一种高认知需求的运动,能激活大脑认知资源,有益于WM[13-14],但运动强度的选择及其干预机制仍需进一步明确。随着认知神经科学的发展,越来越多的证据表明运动能引起神经网络变化,提高大脑处理信息的效率[15-16]。事件相关电位(event-related potential,ERP)是一种通过刺激诱发的脑电活动,其N2成分通常与冲突监测和反应抑制有关,而P3成分则与注意力和记忆有关。研究发现,抑郁症患者ERP的N2、P3波幅降低,P3潜伏期延长,并存在前额叶功能障碍[17-19]。
本研究选择单次乒乓球运动对抑郁症状大学生进行干预,探索不同强度乒乓球运动对抑郁症状大学生WM的影响,并结合ERP技术分析这些影响的认知神经加工机制。
1 对象和方法
1.1 实验设计
采取4组别(低强度运动组、中强度运动组、高强度运动组、对照组)×2实验阶段(干预前、干预后)×4脑区电极位置(Fz、Cz、Pz、Oz)混合因素实验设计,因变量为实验任务(刺激条件的反应时与正确率)和ERP指标(N2、P3成分的波幅和潜伏期)。
1.2 研究对象
本研究采用方便抽样的方式招募抑郁症状大学生。采用G*power软件估算样本量,基于4组前干预后重复测量方差分析的实验设计,效应量f设为0.25(中等),检验水准(α)为0.05,检验效能设为0.9,最后得到需要测试样本总数为64人,每组16人。考虑到可能的样本流失,本研究拟招募100人(每组25人)。
纳入标准:(1)年龄18~23岁的在校大学生;(2)右利手;(3)贝克抑郁量表第2版(Beck depression inventory-Ⅱ,BDI-Ⅱ)得分>13分;(4)无精神病史,未服用过抗精神病类药物;(5)无慢性疾病;(6)自愿参与本研究。排除标准:(1)近期存在身体不适或运动损伤;(2)存在脑部慢性疾病或外伤;(3)存在严重抑郁症,无法与测试人员交流。剔除标准:剔除数据含有缺失值的个体。本研究符合最新版赫尔辛基宣言的伦理要求,并经上海体育大学伦理委员会审查批准(102772023RT075)。所有受试者均签署知情同意书并按照实验设计要求进行测试。
通过量表测试、平衡性别差异、实验室访谈和电话访谈等方法,从某高校招募到符合纳入与排除标准的抑郁症状大学生100人。将招募的受试者进行编号,采用Excel软件生成随机序列,按1∶1∶1∶1的比例随机分为4组(低强度运动组、中强度运动组、高强度运动组、对照组)。
1.3 研究工具与指标采集
(1)一般资料调查表:包括年龄、性别、吸烟习惯、饮酒习惯和人际关系等。(2)匹兹堡睡眠质量指数(Pittsburgh sleep quality index,PSQI)量表[20]:用于评估睡眠质量,总分0~21分,低于7分为正常睡眠。(3)BDI-Ⅱ中文版[21]:用于评估抑郁症状,由21个条目构成,总分0~63分,其中0~13分为无抑郁、14~19分为轻度抑郁、20~28分为中度抑郁、29~63分为重度抑郁,其在大学生中具良好信效度[22]。(4)体育活动等级量表(physical activity rating scale 3,PARS-3)[23]:该量表从强度、时间和频率3个维度考察运动量,得分范围为0~100分,其Cronbach’s α系数为0.85。(5)体成分与身体素质:采用Sonka健康体征检测一体机测量身高、体重、BMI及基础代谢。同时,使用爱动智能体测一体机评估握力、纵跳、肺活量、坐位体前屈和闭眼单脚站立的能力。(6)主观疲劳感觉分级量表(rate of perceived exertion,RPE)[24]:低、中、高强度运动稳态的RPE评分分别为6~12、13~15、16~18分,当个体报告RPE评分超过18分时,实验人员需立即结束运动过程。(7)心率监测:采用Polar-H10心率带对受试者在体育锻炼过程中的心率变化进行监测,每2 min记录1次心率数据,以评估运动强度对心率的影响。(8)WM评估:设计N-back范式实验评估抑郁症状大学生的WM,设置N为2,使用Psychtoolbox 3.0.18.12工具包[25-26]进行实验,刺激为随机出现的字母。VWM任务要求记住字母,而SWM任务则侧重字母位置(流程如图 1所示),记录反应时和正确率[27]。实验包括76次试验和10次练习,要求练习正确率达到70%方可进入正式实验。(9)ERP脑电信号采集与处理:使用上海诺诚电气有限公司生产的32导联脑电诱发电位仪(NCERP-190012)进行脑电信号采集,参考电极设定为双侧乳突(A1、A2)[28]。按照国际10/20标准系统安放头皮电极,测试时要求电极与头皮之间的阻抗小于5 kΩ。数据预处理采用Matlab 2020a软件中的EEGLAB子工具包,具体步骤包括电极定位、删除无用通道、频率滤波(1~30 Hz)、重参考(A1、A2)、差值坏导、分段选择(刺激前-200 ms和刺激后1 000 ms)、降采样至256 Hz、独立主成分分析及ERP信号叠加。
1.4 干预方案
本研究选用上海红双喜(集团)有限公司研发的R2型发球机进行乒乓球练习,以确保训练的标准化和有效性。预实验结果显示,乒乓球的步法和出球速度、落点是运动强度的关键,并且以达到目标心率为基准时女性的平均出球频率较男性约低5次,基于预实验结果设定各组发球机参数(表 1)。在进行运动干预前,先进行1节课的动作和步法教学,确保运动方案的统一性和合理性。
表 1 各组受试者干预方案中发球机的参数设定Table 1 Parameter settings of ball-serving machine in intervention protocol for participants in each groupGroup Rotation speed/(r·s-1) Ball landing zone Ball delivery frequency/min-1 Female Male Low-intensity exercise group 10-20 2 or 10 55±1 60±1 Moderate-intensity exercise group 10-20 3 and 9 60±1 65±1 High-intensity exercise group 10-20 1 and 11 65±1 70±1 The ball-serving machine delivers balls to 11 landing points, numbered from left to right, with zone 6 serving as the central point. Zones 1-5 are located on the left half of the table, and zones 7-11 are on the right half. 低强度运动组受试者目标心率为57%~64%最大心率(maximal heart rate,HRmax;HRmax=207-0.7×年龄[29])、RPE评分为9~11分,练习手段为正手或反手半台;中强度运动组目标心率为65%~75% HRmax、RPE评分为12~13分,练习手段为左推右攻;高强度运动组目标心率为76%~95% HRmax、RPE评分为14~17分,练习手段为左推右攻。3个运动组均要求在5 min准备过程中达到目标心率范围并保持20 min,随后进行5 min的放松活动。对照组在一个安静的房间静坐30 min,其间可自行选择看一些与大学生心理健康教育相关的手册。干预过程中,各组均符合预定设计,其间每隔2 min进行RPE评分,监控主观运动强度、疲劳程度及不适感。
1.5 实验流程
受试者在测试前24 h内避免剧烈运动,测试前12 h内不饮用酒精、咖啡等刺激性饮料,并保持头皮清洁。受试者到达测试场地后,首先填写知情同意书及基本信息,随后进行WM任务测试,并同步检测ERP成分。之后采集体成分与身体素质数据。第1次测试后,研究人员对每位受试者进行乒乓球教学,以确保其动作规范。为了避免运动疲劳及重复测试产生的学习效应,每次测试间隔约72 h。各运动组受试者锻炼结束后,需静坐待心率恢复至安静水平后再进行行为学与ERP测试。每位受试者的测试均由相同的主试完成。对照组静坐30 min后完成同样的测试。
1.6 统计学处理
应用SPSS 29.0软件进行统计学分析。基线资料中的计量数据经Shapiro-Wilk检验确认近似服从正态分布,以x±s形式描述,组间比较采用单因素方差分析,并通过最小显著性差异法进行事后多重比较;计数资料以例数和百分数形式描述,组间比较采用χ2检验。对于行为学实验结果,WM的正确率和反应时进行2(时间:干预前、干预后)×4(组别:低强度运动组、中强度运动组、高强度运动组、对照组)重复测量方差分析,ERP数据中N2和P3的平均波幅及潜伏期则进行2(时间:干预前、干预后)×4(组别:低强度运动组、中强度运动组、高强度运动组、对照组)×4(脑区电极位置:Fz、Cz、Pz、Oz)重复测量方差分析,且对不满足球形检验的统计量采用Greenhouse-Geisser法进行校正,计算干预前和干预后数据的差值及其95% CI,采用Cohen’d评估组间差异程度。所有推断均为双侧检验,检验水准(α)为0.05。
2 结果
2.1 基线资料
实验过程中,低强度运动组脱落5人,中强度运动组脱落0人,高强度运动组脱落2人,对照组脱落2人,最终纳入受试者91人。4组受试者的年龄、性别、BDI-Ⅱ得分、睡眠质量、体育锻炼水平、体成分、身体素质等基线资料差异均无统计学意义(均P>0.05,表 2)。
表 2 各组受试者基线资料Table 2 Baseline characteristics by groupIndicator Low-intensity group N=20 Moderate-intensity group N=25 High-intensity group N=23 Control group N=23 Statistic P value Age/year, x±s 19.40±0.22 19.48±0.26 19.22±0.24 19.78±0.31 F=1.092 0.357 Male, n (%) 12 (60.0) 11 (44.0) 14 (60.9) 9 (39.1) χ2=3.323 0.344 Smoking, n (%) 0 0 1 (4.3) 0 χ2=2.989 0.393 Alcohol use, n (%) 3 (15.0) 7 (28.0) 4 (17.4) 3 (13.0) χ2=3.218 0.359 BDI-Ⅱ, x±s 18.40±0.86 19.96±0.98 18.35±0.99 17.57±0.88 F=0.985 0.404 PSQI, x±s 7.45±2.40 7.38±3.27 7.35±3.94 7.22±3.68 F=0.037 0.990 PARS-3, x±s 14.40±17.64 8.32±7.64 11.17±12.34 12.00±9.32 F=0.982 0.405 BMI/(kg·m-2), x±s 22.09±6.20 21.45±3.66 21.57±3.10 22.37±3.65 F=0.244 0.865 Body fat/%, x±s 20.83±11.79 21.08±11.64 18.63±9.71 22.44±10.35 F=0.482 0.696 BMR /(kcal·d-1), x±s 1 402.20±242.92 1 324.88±141.74 1 372.70±195.91 1 361.52±191.18 F=0.618 0.605 Resting HR/min-1, x±s 80.65±14.05 82.36±11.39 88.57±11.36 82.83±10.00 F=1.931 0.130 Grip strength/kg, x±s 34.72±6.58 28.45±7.13 32.35±8.94 29.32±10.07 F=2.599 0.057 Sit-and-reach/cm, x±s 11.52±7.08 11.43±5.15 11.92±5.77 13.51±5.88 F=0.608 0.611 Single-leg stance/s, x±s 21.11±21.51 21.19±21.60 28.50±37.80 20.19±24.93 F=0.457 0.713 Vertical jump/cm, x±s 29.85±8.34 23.98±6.66 26.50±9.03 26.66±9.26 F=1.831 0.148 VC index/(mL·kg-1), x±s 59.44±21.02 60.82±14.17 61.82±11.21 55.26±16.43 F=0.761 0.519 1 kcal=4.184 kJ. BDI-Ⅱ: Beck depression inventory-Ⅱ; PSQI: Pittsburgh sleep quality index; PARS-3: Physical activity rating scale 3; BMI: Body mass index; BMR: Basal metabolic rate; HR: Heart rate; VC: Vital capacity. 2.2 WM任务的行为学结果
各组受试者一次性运动刺激前后的WM任务的行为学表现结果如表 3所示。VWM正确率分析结果显示,组别主效应不显著(F(3, 87)=0.237,P=0.870,偏η2=0.008),时间主效应显著(F(1, 89)=5.942,P=0.017,偏η2=0.064)。组别与时间的交互效应不显著(F(3, 87)=0.978,P=0.407,偏η2=0.033)。干预前,4组间的VWM正确率差异无统计学意义(P>0.05);干预后,中强度运动组和高强度运动组VWM正确率均提高(差值=0.027,95% CI 0.001~0.053,P=0.037;差值=0.029,95% CI 0.002~0.055,P=0.040),低强度运动组和对照组无显著变化,提示中、高强度一次性运动刺激可暂时提升VWM正确率。
表 3 单次运动前后各组受试者WM任务的行为学表现Table 3 Behavioral performance on WM task pre- and post-exercise by groupx±s Variable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 VWM accuracy Pre-intervention 0.903±0.066 0.899±0.077 0.904±0.064 0.919±0.055 Post-intervention 0.912±0.058 0.926±0.065 0.933±0.044 0.920±0.054 Change 0.009±0.079 0.027±0.060 0.029±0.073 0.002±0.042 Cohen’d 0.111 0.481 0.450 VWM reaction time/s Pre-intervention 0.995±0.191 1.009±0.207 0.957±0.167 0.929±0.187 Post-intervention 0.901±0.171 0.929±0.195 0.888±0.191 0.972±0.196 Change -0.095±0.229 -0.079±0.120 -0.070±0.217 0.043±0.143 Cohen’d -0.723 -0.955 -0.614 SWM accuracy Pre-intervention 0.924±0.055 0.902±0.060 0.915±0.053 0.904±0.057 Post-intervention 0.932±0.039 0.920±0.058 0.932±0.043 0.904±0.061 Change 0.009±0.047 0.019±0.048 0.017±0.049 0.000±0.045 Cohen’d 0.196 0.404 0.362 SWM reaction time/s Pre-intervention 0.889±0.121 0.975±0.197 0.901±0.200 0.880±0.170 Post-intervention 0.832±0.156 0.893±0.178 0.826±0.180 0.875±0.219 Change -0.057±0.176 -0.082±0.110 -0.075±0.128 -0.005±0.133 Cohen’d -0.333 -0.631 -0.534 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values for each group against the control group. WM: Working memory; VWM: Verbal working memory; SWM: Spatial working memory. VWM反应时分析结果显示,组别主效应不显著(F(3, 87)=0.300,P=0.825,偏η2=0.010),时间主效应显著(F(1, 89)=7.244,P=0.009,偏η2=0.077)。组别与时间的交互效应显著(F(3, 87)=2.844,P=0.042,偏η2=0.089)。干预前,4组间的VWM反应时差异无统计学意义(P>0.05);干预后,低强度运动组和中强度运动组VWM反应时均缩短(差值=-0.095,95% CI -0.183~-0.007,P=0.035;差值=-0.079,95% CI -0.158~0,P=0.049),高强度运动组和对照组无显著变化,提示低、中强度一次性运动刺激可暂时降低VWM反应时。见表 3。
SWM正确率分析结果显示,组别主效应不显著(F(3, 87)=1.096,P=0.355,偏η2=0.036),时间主效应显著(F(1, 89)=5.092,P=0.027,偏η2=0.055)。组别与时间的交互效应不显著(F(3, 87)=0.799,P=0.498,偏η2=0.027)。干预前,4组间的SWM正确率差异无统计学意义(P>0.05);干预后,中强度运动组SWM正确率提高(差值=0.019,95% CI 0~0.037,P=0.046),其余组无显著变化,提示中强度一次性运动刺激可暂时提升SWM正确率。见表 3。
SWM反应时分析结果显示,组别主效应不显著(F(3, 87)=1.000,P=0.397,偏η2=0.033),时间主效应显著(F(1, 89)=14.322,P<0.001,偏η2=0.141)。组别与时间的交互效应不显著(F(3, 87)=1.521,P=0.215,偏η2=0.050)。干预前,4组间的SWM反应时差异无统计学意义(P>0.05);干预后,中强度运动组和高强度运动组SWM反应时缩短(差值=-0.082,95% CI -0.136~-0.027,P=0.004;差值=-0.075,95% CI -0.131~-0.018,P=0.029),低强度运动组和对照组无显著变化,提示中、高强度一次性运动刺激可暂时降低SWM反应时。见表 3。
2.3 WM任务的ERP结果
各组受试者一次性运动刺激前后的VWM任务的ERP数据如表 4所示。N2波幅分析结果显示,组别主效应显著(F(3, 87)=2.797,P=0.045,偏η2=0.088),时间主效应不显著(F(1, 89)=3.301,P=0.073,偏η2=0.037),脑区电极位置主效应显著(F(3, 87)=2.797,P=0.045,偏η2=0.088)。各阶交互效应均不显著(均P>0.05)。
表 4 单次运动前后各组受试者VWM任务的ERP结果Table 4 ERP results of VWM task pre- and post-exercise by groupx±s Variable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 Fz N2 amplitude/μV Pre-intervention -3.430±1.696 -3.558±1.785 -4.542±2.032 -4.359±2.190 Post-intervention -4.056±2.298 -3.891±2.281 -4.885±1.879 -4.935±2.553 Change -0.627±2.151 -0.333±1.988 -0.343±2.339 -0.576±2.998 Cohen’d -0.02 0.096 0.087 Cz N2 amplitude/μV Pre-intervention -4.565±1.618 -5.214±1.671 -5.733±1.868 -5.511±2.146 Post-intervention -5.555±2.199 -5.160±1.821 -5.755±2.075 -6.316±2.842 Change -0.990±1.029 0.053±1.760 -0.222±2.515 -0.805±3.468 Cohen’d -0.072 -0.127 0.192 Pz N2 amplitude/μV Pre-intervention -5.221±1.772 -5.160±1.821 -6.145±2.304 -6.419±2.368 Post-intervention -5.905±1.780 -5.610±1.880 -6.806±2.262 -6.203±2.896 Change -0.684±0.824 -0.019±1.676 -0.661±2.702 0.216±3.341 Cohen’d -0.370 -0.089 -0.289 Oz N2 amplitude/μV Pre-intervention -4.003±1.987 -4.256±1.591 -5.243±2.052 -5.034±2.711 Post-intervention -4.876±1.997 -4.186±1.602 -5.590±2.117 -4.857±2.240 Change -0.873±1.065 0.070±1.657 -0.347±2.197 0.178±3.005 Cohen’d -0.466 -0.045 -0.199 Fz N2 latency/ms Pre-intervention 306.64±62.62 297.50±54.82 268.68±58.21 268.68±57.73 Post-intervention 296.09±73.28 296.56±62.52 263.25±58.82 276.49±57.40 Change -10.55±108.24 -0.94±51.10 -5.43±55.16 7.81±67.49 Cohen’d -0.204 -0.146 -0.215 Cz N2 latency/ms Pre-intervention 285.55±55.71 300.62±60.69 288.38±61.74 291.10±58.24 Post-intervention 280.08±68.08 287.50±52.16 282.27±55.16 290.42±50.94 Change -5.47±76.46 -13.13±40.39 -6.11±58.37 -0.68±64.81 Cohen’d -0.068 -0.231 -0.088 Pz N2 latency/ms Pre-intervention 319.53±46.52 314.69±50.25 291.10±45.63 312.16±47.20 Post-intervention 329.53±65.51 297.19±48.50 297.89±53.37 306.73±50.20 Change 10.00±31.56 -17.50±36.52 6.79±47.83 -5.44±51.15 Cohen’d 0.363 -0.271 0.247 Oz N2 latency/ms Pre-intervention 312.89±48.12 305.31±40.84 284.31±39.04 296.88±45.00 Post-intervention 319.45±49.41 295.63±45.26 296.88±48.90 300.95±45.49 Change 6.56±41.07 -9.69±36.52 12.57±49.40 4.08±51.71 Cohen’d 0.053 -0.308 0.168 Fz P3 amplitude/μV Pre-intervention 3.194±1.879 2.950±1.673 3.293±2.092 2.850±2.051 Post-intervention 2.803±1.379 2.431±1.383 2.073±1.465 2.246±1.145 Change -0.392±1.824 -0.519±1.619 -1.219±1.897 -0.604±1.904 Cohen’d 0.114 0.048 -0.324 Cz P3 amplitude/μV Pre-intervention 3.224±1.651 3.054±1.815 2.709±1.440 2.929±2.242 Post-intervention 2.967±1.851 2.235±1.636 2.176±1.576 2.090±1.478 Change -0.255±1.891 -0.818±1.840 -0.533±1.729 -0.839±2.069 Cohen’d 0.295 0.011 0.160 Pz P3 amplitude/μV Pre-intervention 3.718±1.810 3.837±1.879 3.169±1.559 3.741±2.352 Post-intervention 3.127±2.048 2.945±1.336 3.216±1.389 2.742±1.727 Change -0.591±1.918 -0.893±1.842 0.047±1.519 -0.999±2.657 Cohen’d 0.176 0.046 0.483 Oz P3 amplitude/μV Pre-intervention 3.123±1.275 3.858±1.757 3.327±1.756 3.476±1.660 Post-intervention 2.654±1.738 3.138±1.609 3.219±1.629 3.094±2.062 Change -0.468±2.056 -0.720±1.654 -0.108±2.061 -0.382±2.630 Cohen’d -0.036 -0.154 0.116 Fz P3 latency/ms Pre-intervention 486.72±52.87 491.25±49.17 480.30±62.98 479.96±47.22 Post-intervention 500.39±43.50 505.94±48.38 489.81±49.94 504.76±61.82 Change 13.67±62.75 14.69±45.57 9.51±70.98 24.80±66.23 Cohen’d -0.173 -0.178 -0.223 Cz P3 latency/ms Pre-intervention 505.39±49.53 513.42±56.41 480.64±52.61 500.00±54.23 Post-intervention 503.39±41.29 505.56±55.05 479.48±42.01 525.61±51.01 Change -2.27±39.77 -7.88±44.15 -1.15±43.80 25.61±55.50 Cohen’d -0.577 -0.668 -0.535 Pz P3 latency/ms Pre-intervention 509.38±44.53 520.31±59.37 501.70±48.90 522.08±47.91 Post-intervention 506.72±46.65 505.94±56.30 486.75±50.16 508.70±48.49 Change -2.66±31.06 -14.38±46.09 -14.95±56.87 -13.38±63.73 Cohen’d 0.214 -0.018 -0.026 Oz P3 latency/ms Pre-intervention 501.56±42.53 513.75±62.47 503.06±58.97 514.27±56.37 Post-intervention 485.63±45.83 494.69±52.64 485.05±56.14 514.40±52.74 Change -15.94±51.46 -19.06±36.23 -18.00±47.72 0.16±74.34 Cohen’d -0.252 -0.329 -0.291 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values for each group against the control group. VWM: Verbal working memory; ERP: Event-related potential. N2潜伏期分析结果显示,组别主效应不显著(F(3, 87)=1.639,P=0.186,偏η2=0.053),时间主效应不显著(F(1, 89)=0.347,P=0.557,偏η2=0.004),脑区电极位置主效应显著(F(3, 87)=9.331,P<0.001,偏η2=0.097)。各阶交互效应均不显著(均P>0.05)。
P3波幅分析结果显示,组别主效应不显著(F(3, 87)=0.205,P=0.893,偏η2=0.007),时间主效应显著(F(1, 89)=11.869,P<0.001,偏η2=0.120),脑区电极位置主效应显著(F(3, 87)=11.889,P<0.001,偏η2=0.296)。各阶交互效应均不显著(均P>0.05)。
P3潜伏期分析结果显示,组别主效应不显著(F(3, 87)=1.503,P=0.219,偏η2=0.049),时间主效应不显著(F(1, 89)=0.224,P=0.638,偏η2=0.003),脑区电极位置主效应显著(F(3, 87)=3.808,P=0.011,偏η2=0.042)。时间与脑区电极位置交互效应显著(F(3, 87)=5.785,P<0.001,偏η2=0.062),其余各阶交互效应均不显著(均P>0.05)。成对比较结果(表 4)显示,干预后Fz的P3潜伏期高于干预前(差值=15.667,95% CI 2.754~28.579,P=0.018),而Pz和Oz的P3潜伏期均低于干预前(差值=-11.340,95% CI -22.084~-0.597,P<0.001;差值=-13.217,95% CI -24.500~-1.934,P=0.022)。
各组受试者一次性运动刺激前后的SWM任务的ERP数据如表 5所示。N2波幅分析结果显示,组别主效应不显著(F(3, 87)=0.435,P=0.729,偏η2=0.015),时间主效应显著(F(1, 89)=5.616,P=0.020,偏η2=0.061),脑区电极位置主效应显著(F(3, 87)=37.649,P<0.001,偏η2=0.302)。各阶交互效应均不显著(均P>0.05)。
表 5 单次运动前后各组受试者SWM任务的ERP结果Table 5 ERP results of SWM task pre- and post-exercise by groupVariable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 Fz N2 amplitude/μV Pre-intervention -5.074±1.888 -4.899±1.654 -5.584±2.755 -5.556±1.977 Post-intervention -5.200±2.029 -5.991±2.999 -5.929±2.441 -6.038±3.271 Change -0.126±2.479 -1.092±3.201 -0.345±2.419 -0.483±3.290 Cohen’d 0.123 -0.188 0.048 Cz N2 amplitude/μV Pre-intervention -5.773±2.194 -5.741±1.840 -6.407±2.813 -6.285±1.805 Post-intervention -6.479±2.653 -6.361±2.070 -6.898±2.614 -6.916±3.435 Change -0.706±2.739 -0.621±2.323 -0.490±2.819 -0.631±3.303 Cohen’d -0.025 0.004 0.046 Pz N2 amplitude/μV Pre-intervention -6.157±1.962 -5.701±2.133 -6.452±2.951 -6.002±1.882 Post-intervention -6.355±1.874 -6.297±2.221 -6.810±2.832 -6.451±2.932 Change -0.198±1.487 -0.596±2.176 -0.359±2.680 -0.450±2.592 Cohen’d 0.119 -0.061 0.035 Oz N2 amplitude/μV Pre-intervention -4.269±2.142 -4.057±2.015 -4.494±2.438 -4.257±2.288 Post-intervention -4.855±2.518 -4.520±1.947 -4.790±2.443 -5.104±2.018 Change -0.586±2.195 -0.463±1.579 -0.297±2.077 -0.847±2.096 Cohen’d 0.122 0.207 0.264 Fz N2 latency/ms Pre-intervention 288.28±61.04 292.81±60.73 272.42±60.80 282.27±59.09 Post-intervention 268.36±51.15 272.19±53.54 266.64±54.60 269.70±46.45 Change -19.92±75.98 -20.62±42.72 -5.77±62.95 -12.57±42.45 Cohen’d -0.119 -0.189 0.127 Cz N2 latency/ms Pre-intervention 284.38±61.28 295.00±57.55 277.51±49.57 292.80±61.96 Post-intervention 276.17±42.59 273.44±46.05 265.29±45.77 271.40±45.81 Change -8.20±68.93 -21.56±41.05 -12.23±45.24 -21.40±55.75 Cohen’d 0.211 -0.003 0.181 Pz N2 latency/ms Pre-intervention 302.34±52.32 304.37±9.49 299.93±51.81 300.27±48.38 Post-intervention 275.39±34.28 280.94±35.41 288.72±50.38 293.14±49.63 Change -26.95±61.90 -23.44±50.13 -11.21±59.86 -7.13±7.75 Cohen’d -0.449 -0.455 -0.096 Oz N2 latency/ms Pre-intervention 286.72±48.43 296.25±31.24 291.44±40.28 285.67±41.66 Post-intervention 283.20±39.42 289.69±26.10 286.68±35.37 291.78±46.73 Change -3.52±44.16 -6.56±20.26 -4.76±44.62 6.11±46.63 Cohen’d -0.212 -0.352 -0.238 Fz P3 amplitude/μV Pre-intervention 4.344±2.507 4.021±2.061 3.860±2.340 4.099±1.934 Post-intervention 4.251±1.964 3.668±2.207 3.032±1.985 3.126±1.601 Change -0.092±1.156 -0.354±1.750 -0.828±2.057 -0.973±1.549 Cohen’d 0.644 0.374 0.080 Cz P3 amplitude/μV Pre-intervention 4.006±1.931 3.716±1.799 3.106±1.999 3.707±2.221 Post-intervention 3.892±1.965 3.341±1.681 2.780±1.807 3.105±1.542 Change -0.114±1.489 -0.376±1.327 -0.326±2.049 -0.603±1.807 Cohen’d 0.295 0.143 0.143 Pz P3 amplitude/μV Pre-intervention 3.806±2.235 3.318±1.881 3.040±1.799 3.230±2.160 Post-intervention 3.791±2.099 3.210±1.508 2.944±1.860 3.282±1.498 Change -0.015±2.161 -0.108±1.544 -0.097±1.858 0.052±2.049 Cohen’d -0.032 -0.088 -0.076 Oz P3 amplitude/μV Pre-intervention 2.793±1.760 3.129±1.899 2.746±1.610 2.817±1.858 Post-intervention 2.989±1.790 2.92±1.516 2.525±1.641 3.189±1.909 Change 0.196±2.651 -0.206±1.459 -0.221±1.820 0.373±1.812 Cohen’d -0.078 -0.352 -0.327 Fz P3 latency/ms Pre-intervention 502.34±50.06 514.37±53.12 490.83±45.35 505.43±43.72 Post-intervention 489.84±45.91 496.56±49.36 482.34±59.83 481.66±39.67 Change -12.50±47.18 -17.81±52.24 -8.49±73.13 -23.78±52.33 Cohen’d 0.226 0.114 0.240 Cz P3 latency/ms Pre-intervention 505.08±44.07 512.81±48.36 482.68±47.58 499.32±42.66 Post-intervention 495.70±45.45 490.62±41.22 485.73±45.53 496.26±51.71 Change -9.37±52.17 -22.19±45.48 3.06±57.20 -3.06±58.02 Cohen’d -0.114 -0.367 0.106 Pz P3 latency/ms Pre-intervention 500.00±37.68 518.75±52.02 503.40±50.95 500.34±43.08 Post-intervention 502.73±40.10 502.81±39.64 501.36±45.72 512.91±49.67 Change 2.73±51.47 -15.94±43.64 -2.04±57.99 12.57±54.01 Cohen’d -0.187 -0.581 -0.261 Oz P3 latency/ms Pre-intervention 509.38±39.07 508.44±51.62 511.89±44.69 504.08±49.23 Post-intervention 491.41±47.55 491.88±50.96 499.66±46.07 494.90±50.39 Change -17.97±49.16 -16.56±46.78 -12.23±65.52 -9.17±60.50 Cohen’d -0.160 -0.137 -0.049 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values of each group against the control group. SWM: Spatial working memory; ERP: Event-related potential. N2潜伏期分析结果显示,组别主效应不显著(F(3, 87)=0.226,P=0.878,偏η2=0.008),时间主效应显著(F(1, 89)=10.402,P=0.002,偏η2=0.107),脑区电极位置主效应显著(F(3, 87)=4.123,P=0.009,偏η2=0.127)。各阶交互效应均不显著(均P>0.05)。
P3波幅分析结果显示,组别主效应不显著(F(3, 87)=0.931,P=0.429,偏η2=0.031),时间主效应不显著(F(1, 89)=2.080,P=0.153,偏η2=0.023),脑区电极位置主效应显著(F(3, 87)=13.439,P<0.001,偏η2=0.134)。时间与脑区电极位置交互效应显著(F(3, 87)=5.475,P=0.001,偏η2=0.059)。简单效应分析显示,干预后Fz和Cz的P3波幅低于干预前(差值=-0.562,95% CI -0.912~-0.211,P=0.002;差值=-0.355,95% CI -0.708~-0.001,P=0.049),而Pz和Oz的P3波幅与干预前相比差异无统计学意义(均P>0.05)。其余各阶交互效应不显著(均P>0.05)。
P3潜伏期分析结果显示,组别主效应不显著(F(3, 87)=0.416,P=0.742,偏η2=0.014),时间主效应显著(F(1, 89)=5.880,P=0.017,偏η2=0.063),脑区电极位置主效应不显著(F(3, 87)=2.768,P=0.060,偏η2=0.031)。各阶交互效应均不显著(均P>0.05)。
3 讨论
本研究探讨单次不同强度乒乓球运动对抑郁症状大学生WM的影响,结果显示中、高强度运动提高了VWM正确率,而低、中强度运动则缩短了VWM反应时;同时,中强度运动提升了SWM正确率,中、高强度运动则缩短了SWM反应时。这些发现与既往研究结果[30-31]部分一致。已有研究表明,低强度有氧运动可提升健康成年人在低难度任务下的WM表现,并伴随氧合血红蛋白含量增加[32];中等强度有氧运动能缩短健康儿童在2-back任务中的反应时,并激活多个脑区,优化记忆表征更新过程[33];高强度有氧运动能够改善大学生的WM,并提高腹外侧前额叶皮质的激活水平[34]。
ERP结果N2成分分析显示,VWM任务中,组别主效应显著,表现为低、中强度运动组的N2波幅低于高强度运动组,提示抑郁症状大学生在高强度运动时可能投入更多注意资源,从而提升注意决策的准确性[35-36]。而SWM任务中N2波幅的组别主效应不显著,这可能与2-back任务的高难度有关。P3成分分析显示,VWM任务的Pz和Oz位置的P3潜伏期缩短,反映出处理速度加快,这可能与运动调节神经递质释放相关,从而优化神经可塑性和信息处理能力[37]。SWM任务中的Fz和Cz位置的P3波幅降低可能表明完成任务所需认知资源减少,反映出运动诱导的神经激活优化,促进以较低能量消耗完成认知任务。脑区差异分析显示,VWM任务中时间与脑区电极位置交互效应显著,Fz的P3潜伏期在干预后延长,可能与运动后前额叶神经资源重新分配或疲劳效应有关;而Pz和Oz的P3潜伏期在干预后缩短,提示顶叶和枕叶对刺激加工速度的加快,反映这些区域在运动后对认知任务处理效率的提升。这表明不同脑区对运动干预的响应存在差异:前额叶信息整合需要更多时间,而顶叶和枕叶则表现出更高效的晚期认知加工能力。在SWM任务中,干预后Fz和Cz的P3波幅低于干预前,表明前额叶和中央区在运动干预后表现出更高效的早期认知加工能力,反映出运动后更优化的认知资源分配。
综上所述,本研究发现单次中等强度运动在行为表现上效果更佳,而单次高强度运动在ERP成分的激活上更具优势。这种差异可能反映运动强度对认知功能的不同层次影响:中等强度运动通过优化认知资源分配和神经效率实现更好表现,而高强度运动则通过增强神经激活应对更高的认知负荷。本研究为理解单次乒乓球运动强度对大学生抑郁症状和WM改善的作用提供了重要证据,并为未来研究与干预方案设计提供了参考。
-
表 1 各组受试者干预方案中发球机的参数设定
Table 1 Parameter settings of ball-serving machine in intervention protocol for participants in each group
Group Rotation speed/(r·s-1) Ball landing zone Ball delivery frequency/min-1 Female Male Low-intensity exercise group 10-20 2 or 10 55±1 60±1 Moderate-intensity exercise group 10-20 3 and 9 60±1 65±1 High-intensity exercise group 10-20 1 and 11 65±1 70±1 The ball-serving machine delivers balls to 11 landing points, numbered from left to right, with zone 6 serving as the central point. Zones 1-5 are located on the left half of the table, and zones 7-11 are on the right half. 表 2 各组受试者基线资料
Table 2 Baseline characteristics by group
Indicator Low-intensity group N=20 Moderate-intensity group N=25 High-intensity group N=23 Control group N=23 Statistic P value Age/year, x±s 19.40±0.22 19.48±0.26 19.22±0.24 19.78±0.31 F=1.092 0.357 Male, n (%) 12 (60.0) 11 (44.0) 14 (60.9) 9 (39.1) χ2=3.323 0.344 Smoking, n (%) 0 0 1 (4.3) 0 χ2=2.989 0.393 Alcohol use, n (%) 3 (15.0) 7 (28.0) 4 (17.4) 3 (13.0) χ2=3.218 0.359 BDI-Ⅱ, x±s 18.40±0.86 19.96±0.98 18.35±0.99 17.57±0.88 F=0.985 0.404 PSQI, x±s 7.45±2.40 7.38±3.27 7.35±3.94 7.22±3.68 F=0.037 0.990 PARS-3, x±s 14.40±17.64 8.32±7.64 11.17±12.34 12.00±9.32 F=0.982 0.405 BMI/(kg·m-2), x±s 22.09±6.20 21.45±3.66 21.57±3.10 22.37±3.65 F=0.244 0.865 Body fat/%, x±s 20.83±11.79 21.08±11.64 18.63±9.71 22.44±10.35 F=0.482 0.696 BMR /(kcal·d-1), x±s 1 402.20±242.92 1 324.88±141.74 1 372.70±195.91 1 361.52±191.18 F=0.618 0.605 Resting HR/min-1, x±s 80.65±14.05 82.36±11.39 88.57±11.36 82.83±10.00 F=1.931 0.130 Grip strength/kg, x±s 34.72±6.58 28.45±7.13 32.35±8.94 29.32±10.07 F=2.599 0.057 Sit-and-reach/cm, x±s 11.52±7.08 11.43±5.15 11.92±5.77 13.51±5.88 F=0.608 0.611 Single-leg stance/s, x±s 21.11±21.51 21.19±21.60 28.50±37.80 20.19±24.93 F=0.457 0.713 Vertical jump/cm, x±s 29.85±8.34 23.98±6.66 26.50±9.03 26.66±9.26 F=1.831 0.148 VC index/(mL·kg-1), x±s 59.44±21.02 60.82±14.17 61.82±11.21 55.26±16.43 F=0.761 0.519 1 kcal=4.184 kJ. BDI-Ⅱ: Beck depression inventory-Ⅱ; PSQI: Pittsburgh sleep quality index; PARS-3: Physical activity rating scale 3; BMI: Body mass index; BMR: Basal metabolic rate; HR: Heart rate; VC: Vital capacity. 表 3 单次运动前后各组受试者WM任务的行为学表现
Table 3 Behavioral performance on WM task pre- and post-exercise by group
x±s Variable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 VWM accuracy Pre-intervention 0.903±0.066 0.899±0.077 0.904±0.064 0.919±0.055 Post-intervention 0.912±0.058 0.926±0.065 0.933±0.044 0.920±0.054 Change 0.009±0.079 0.027±0.060 0.029±0.073 0.002±0.042 Cohen’d 0.111 0.481 0.450 VWM reaction time/s Pre-intervention 0.995±0.191 1.009±0.207 0.957±0.167 0.929±0.187 Post-intervention 0.901±0.171 0.929±0.195 0.888±0.191 0.972±0.196 Change -0.095±0.229 -0.079±0.120 -0.070±0.217 0.043±0.143 Cohen’d -0.723 -0.955 -0.614 SWM accuracy Pre-intervention 0.924±0.055 0.902±0.060 0.915±0.053 0.904±0.057 Post-intervention 0.932±0.039 0.920±0.058 0.932±0.043 0.904±0.061 Change 0.009±0.047 0.019±0.048 0.017±0.049 0.000±0.045 Cohen’d 0.196 0.404 0.362 SWM reaction time/s Pre-intervention 0.889±0.121 0.975±0.197 0.901±0.200 0.880±0.170 Post-intervention 0.832±0.156 0.893±0.178 0.826±0.180 0.875±0.219 Change -0.057±0.176 -0.082±0.110 -0.075±0.128 -0.005±0.133 Cohen’d -0.333 -0.631 -0.534 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values for each group against the control group. WM: Working memory; VWM: Verbal working memory; SWM: Spatial working memory. 表 4 单次运动前后各组受试者VWM任务的ERP结果
Table 4 ERP results of VWM task pre- and post-exercise by group
x±s Variable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 Fz N2 amplitude/μV Pre-intervention -3.430±1.696 -3.558±1.785 -4.542±2.032 -4.359±2.190 Post-intervention -4.056±2.298 -3.891±2.281 -4.885±1.879 -4.935±2.553 Change -0.627±2.151 -0.333±1.988 -0.343±2.339 -0.576±2.998 Cohen’d -0.02 0.096 0.087 Cz N2 amplitude/μV Pre-intervention -4.565±1.618 -5.214±1.671 -5.733±1.868 -5.511±2.146 Post-intervention -5.555±2.199 -5.160±1.821 -5.755±2.075 -6.316±2.842 Change -0.990±1.029 0.053±1.760 -0.222±2.515 -0.805±3.468 Cohen’d -0.072 -0.127 0.192 Pz N2 amplitude/μV Pre-intervention -5.221±1.772 -5.160±1.821 -6.145±2.304 -6.419±2.368 Post-intervention -5.905±1.780 -5.610±1.880 -6.806±2.262 -6.203±2.896 Change -0.684±0.824 -0.019±1.676 -0.661±2.702 0.216±3.341 Cohen’d -0.370 -0.089 -0.289 Oz N2 amplitude/μV Pre-intervention -4.003±1.987 -4.256±1.591 -5.243±2.052 -5.034±2.711 Post-intervention -4.876±1.997 -4.186±1.602 -5.590±2.117 -4.857±2.240 Change -0.873±1.065 0.070±1.657 -0.347±2.197 0.178±3.005 Cohen’d -0.466 -0.045 -0.199 Fz N2 latency/ms Pre-intervention 306.64±62.62 297.50±54.82 268.68±58.21 268.68±57.73 Post-intervention 296.09±73.28 296.56±62.52 263.25±58.82 276.49±57.40 Change -10.55±108.24 -0.94±51.10 -5.43±55.16 7.81±67.49 Cohen’d -0.204 -0.146 -0.215 Cz N2 latency/ms Pre-intervention 285.55±55.71 300.62±60.69 288.38±61.74 291.10±58.24 Post-intervention 280.08±68.08 287.50±52.16 282.27±55.16 290.42±50.94 Change -5.47±76.46 -13.13±40.39 -6.11±58.37 -0.68±64.81 Cohen’d -0.068 -0.231 -0.088 Pz N2 latency/ms Pre-intervention 319.53±46.52 314.69±50.25 291.10±45.63 312.16±47.20 Post-intervention 329.53±65.51 297.19±48.50 297.89±53.37 306.73±50.20 Change 10.00±31.56 -17.50±36.52 6.79±47.83 -5.44±51.15 Cohen’d 0.363 -0.271 0.247 Oz N2 latency/ms Pre-intervention 312.89±48.12 305.31±40.84 284.31±39.04 296.88±45.00 Post-intervention 319.45±49.41 295.63±45.26 296.88±48.90 300.95±45.49 Change 6.56±41.07 -9.69±36.52 12.57±49.40 4.08±51.71 Cohen’d 0.053 -0.308 0.168 Fz P3 amplitude/μV Pre-intervention 3.194±1.879 2.950±1.673 3.293±2.092 2.850±2.051 Post-intervention 2.803±1.379 2.431±1.383 2.073±1.465 2.246±1.145 Change -0.392±1.824 -0.519±1.619 -1.219±1.897 -0.604±1.904 Cohen’d 0.114 0.048 -0.324 Cz P3 amplitude/μV Pre-intervention 3.224±1.651 3.054±1.815 2.709±1.440 2.929±2.242 Post-intervention 2.967±1.851 2.235±1.636 2.176±1.576 2.090±1.478 Change -0.255±1.891 -0.818±1.840 -0.533±1.729 -0.839±2.069 Cohen’d 0.295 0.011 0.160 Pz P3 amplitude/μV Pre-intervention 3.718±1.810 3.837±1.879 3.169±1.559 3.741±2.352 Post-intervention 3.127±2.048 2.945±1.336 3.216±1.389 2.742±1.727 Change -0.591±1.918 -0.893±1.842 0.047±1.519 -0.999±2.657 Cohen’d 0.176 0.046 0.483 Oz P3 amplitude/μV Pre-intervention 3.123±1.275 3.858±1.757 3.327±1.756 3.476±1.660 Post-intervention 2.654±1.738 3.138±1.609 3.219±1.629 3.094±2.062 Change -0.468±2.056 -0.720±1.654 -0.108±2.061 -0.382±2.630 Cohen’d -0.036 -0.154 0.116 Fz P3 latency/ms Pre-intervention 486.72±52.87 491.25±49.17 480.30±62.98 479.96±47.22 Post-intervention 500.39±43.50 505.94±48.38 489.81±49.94 504.76±61.82 Change 13.67±62.75 14.69±45.57 9.51±70.98 24.80±66.23 Cohen’d -0.173 -0.178 -0.223 Cz P3 latency/ms Pre-intervention 505.39±49.53 513.42±56.41 480.64±52.61 500.00±54.23 Post-intervention 503.39±41.29 505.56±55.05 479.48±42.01 525.61±51.01 Change -2.27±39.77 -7.88±44.15 -1.15±43.80 25.61±55.50 Cohen’d -0.577 -0.668 -0.535 Pz P3 latency/ms Pre-intervention 509.38±44.53 520.31±59.37 501.70±48.90 522.08±47.91 Post-intervention 506.72±46.65 505.94±56.30 486.75±50.16 508.70±48.49 Change -2.66±31.06 -14.38±46.09 -14.95±56.87 -13.38±63.73 Cohen’d 0.214 -0.018 -0.026 Oz P3 latency/ms Pre-intervention 501.56±42.53 513.75±62.47 503.06±58.97 514.27±56.37 Post-intervention 485.63±45.83 494.69±52.64 485.05±56.14 514.40±52.74 Change -15.94±51.46 -19.06±36.23 -18.00±47.72 0.16±74.34 Cohen’d -0.252 -0.329 -0.291 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values for each group against the control group. VWM: Verbal working memory; ERP: Event-related potential. 表 5 单次运动前后各组受试者SWM任务的ERP结果
Table 5 ERP results of SWM task pre- and post-exercise by group
Variable Measurement time Low-intensity group n=20 Moderate-intensity group n=25 High-intensity group n=23 Control group n=23 Fz N2 amplitude/μV Pre-intervention -5.074±1.888 -4.899±1.654 -5.584±2.755 -5.556±1.977 Post-intervention -5.200±2.029 -5.991±2.999 -5.929±2.441 -6.038±3.271 Change -0.126±2.479 -1.092±3.201 -0.345±2.419 -0.483±3.290 Cohen’d 0.123 -0.188 0.048 Cz N2 amplitude/μV Pre-intervention -5.773±2.194 -5.741±1.840 -6.407±2.813 -6.285±1.805 Post-intervention -6.479±2.653 -6.361±2.070 -6.898±2.614 -6.916±3.435 Change -0.706±2.739 -0.621±2.323 -0.490±2.819 -0.631±3.303 Cohen’d -0.025 0.004 0.046 Pz N2 amplitude/μV Pre-intervention -6.157±1.962 -5.701±2.133 -6.452±2.951 -6.002±1.882 Post-intervention -6.355±1.874 -6.297±2.221 -6.810±2.832 -6.451±2.932 Change -0.198±1.487 -0.596±2.176 -0.359±2.680 -0.450±2.592 Cohen’d 0.119 -0.061 0.035 Oz N2 amplitude/μV Pre-intervention -4.269±2.142 -4.057±2.015 -4.494±2.438 -4.257±2.288 Post-intervention -4.855±2.518 -4.520±1.947 -4.790±2.443 -5.104±2.018 Change -0.586±2.195 -0.463±1.579 -0.297±2.077 -0.847±2.096 Cohen’d 0.122 0.207 0.264 Fz N2 latency/ms Pre-intervention 288.28±61.04 292.81±60.73 272.42±60.80 282.27±59.09 Post-intervention 268.36±51.15 272.19±53.54 266.64±54.60 269.70±46.45 Change -19.92±75.98 -20.62±42.72 -5.77±62.95 -12.57±42.45 Cohen’d -0.119 -0.189 0.127 Cz N2 latency/ms Pre-intervention 284.38±61.28 295.00±57.55 277.51±49.57 292.80±61.96 Post-intervention 276.17±42.59 273.44±46.05 265.29±45.77 271.40±45.81 Change -8.20±68.93 -21.56±41.05 -12.23±45.24 -21.40±55.75 Cohen’d 0.211 -0.003 0.181 Pz N2 latency/ms Pre-intervention 302.34±52.32 304.37±9.49 299.93±51.81 300.27±48.38 Post-intervention 275.39±34.28 280.94±35.41 288.72±50.38 293.14±49.63 Change -26.95±61.90 -23.44±50.13 -11.21±59.86 -7.13±7.75 Cohen’d -0.449 -0.455 -0.096 Oz N2 latency/ms Pre-intervention 286.72±48.43 296.25±31.24 291.44±40.28 285.67±41.66 Post-intervention 283.20±39.42 289.69±26.10 286.68±35.37 291.78±46.73 Change -3.52±44.16 -6.56±20.26 -4.76±44.62 6.11±46.63 Cohen’d -0.212 -0.352 -0.238 Fz P3 amplitude/μV Pre-intervention 4.344±2.507 4.021±2.061 3.860±2.340 4.099±1.934 Post-intervention 4.251±1.964 3.668±2.207 3.032±1.985 3.126±1.601 Change -0.092±1.156 -0.354±1.750 -0.828±2.057 -0.973±1.549 Cohen’d 0.644 0.374 0.080 Cz P3 amplitude/μV Pre-intervention 4.006±1.931 3.716±1.799 3.106±1.999 3.707±2.221 Post-intervention 3.892±1.965 3.341±1.681 2.780±1.807 3.105±1.542 Change -0.114±1.489 -0.376±1.327 -0.326±2.049 -0.603±1.807 Cohen’d 0.295 0.143 0.143 Pz P3 amplitude/μV Pre-intervention 3.806±2.235 3.318±1.881 3.040±1.799 3.230±2.160 Post-intervention 3.791±2.099 3.210±1.508 2.944±1.860 3.282±1.498 Change -0.015±2.161 -0.108±1.544 -0.097±1.858 0.052±2.049 Cohen’d -0.032 -0.088 -0.076 Oz P3 amplitude/μV Pre-intervention 2.793±1.760 3.129±1.899 2.746±1.610 2.817±1.858 Post-intervention 2.989±1.790 2.92±1.516 2.525±1.641 3.189±1.909 Change 0.196±2.651 -0.206±1.459 -0.221±1.820 0.373±1.812 Cohen’d -0.078 -0.352 -0.327 Fz P3 latency/ms Pre-intervention 502.34±50.06 514.37±53.12 490.83±45.35 505.43±43.72 Post-intervention 489.84±45.91 496.56±49.36 482.34±59.83 481.66±39.67 Change -12.50±47.18 -17.81±52.24 -8.49±73.13 -23.78±52.33 Cohen’d 0.226 0.114 0.240 Cz P3 latency/ms Pre-intervention 505.08±44.07 512.81±48.36 482.68±47.58 499.32±42.66 Post-intervention 495.70±45.45 490.62±41.22 485.73±45.53 496.26±51.71 Change -9.37±52.17 -22.19±45.48 3.06±57.20 -3.06±58.02 Cohen’d -0.114 -0.367 0.106 Pz P3 latency/ms Pre-intervention 500.00±37.68 518.75±52.02 503.40±50.95 500.34±43.08 Post-intervention 502.73±40.10 502.81±39.64 501.36±45.72 512.91±49.67 Change 2.73±51.47 -15.94±43.64 -2.04±57.99 12.57±54.01 Cohen’d -0.187 -0.581 -0.261 Oz P3 latency/ms Pre-intervention 509.38±39.07 508.44±51.62 511.89±44.69 504.08±49.23 Post-intervention 491.41±47.55 491.88±50.96 499.66±46.07 494.90±50.39 Change -17.97±49.16 -16.56±46.78 -12.23±65.52 -9.17±60.50 Cohen’d -0.160 -0.137 -0.049 Effect size Cohen’s d represents the comparison of the pre-post intervention difference values of each group against the control group. SWM: Spatial working memory; ERP: Event-related potential. -
[1] LIU J, LIU Y, MA W, et al. Temporal and spatial trend analysis of all-cause depression burden based on Global Burden of Disease (GBD) 2019 study[J]. Sci Rep, 2024, 14(1): 12346. DOI: 10.1038/s41598-024-62381-9. [2] Autumn Asher BlackDeer Msw PhD Candidate, PHD E M, et al. Depression and anxiety among college students: understanding the impact on grade average and differences in gender and ethnicity[J]. J Am Coll Health, 2023, 71(4): 1091-1102. DOI: 10.1080/07448481.2021.1920954. [3] FREITAS P H B, MEIRELES A L, RIBEIRO I K D S, et al. Symptoms of depression, anxiety and stress in health students and impact on quality of life[J]. Rev Lat Am Enfermagem, 2023, 31: e3884. DOI: 10.1590/1518-8345.6315.3884. [4] 陈九, 刘培钰, 孔哲, 等. 不同类型急性运动对久坐大学生工作记忆的影响[J]. 中国学校卫生, 2025, 46(3): 330-334. DOI: 10.16835/j.cnki.1000-9817.2025090. [5] MILLER E K, LUNDQVIST M, BASTOS A M. Working memory 2.0[J]. Neuron, 2018, 100(2): 463-475. DOI: 10.1016/j.neuron.2018.09.023. [6] D'ESPOSITO M, POSTLE B R. The cognitive neuroscience of working memory[J]. Annu Rev Psychol, 2015, 66: 115-142. DOI: 10.1146/annurev-psych-010814-015031. [7] LEMOULT J, GOTLIB I H. Depression: a cognitive perspective[J]. Clin Psychol Rev, 2019, 69: 51-66. DOI: 10.1016/j.cpr.2018.06.008. [8] MAHDIREJEI H A, PEERI M, ALI AZARBAYJANI M, et al. Fluoxetine combined with swimming exercise synergistically reduces lipopolysaccharide-induced depressive-like behavior by normalizing the HPA axis and brain inflammation in mice[J]. Pharmacol Biochem Behav, 2023, 232: 173640. DOI: 10.1016/j.pbb.2023.173640. [9] REN J, XIAO H. Exercise for mental well-being: exploring neurobiological advances and intervention effects in depression[J]. Life (Basel), 2023, 13(7): 1505. DOI: 10.3390/life13071505. [10] HÖTTING K, RÖDER B. Beneficial effects of physical exercise on neuroplasticity and cognition[J]. Neurosci Biobehav Rev, 2013, 37(9 Pt B): 2243-2257. DOI: 10.1016/j.neubiorev.2013.04.005. [11] UYSAL N, TUGYAN K, KAYATEKIN B M, et al. The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory[J]. Neurosci Lett, 2005, 383(3): 241-245. DOI: 10.1016/j.neulet.2005.04.054. [12] 王芃, 蔡治东, 江婉婷, 等. 单次运动对中老年人执行功能作用的网状meta分析[J]. 中国心理卫生杂志, 2023, 37(2): 151-159. [13] ZAGATTO A M, LEITE J V, PAPOTI M, et al. Energetics of table tennis and table tennis-specific exercise testing[J]. Int J Sports Physiol Perform, 2016, 11(8): 1012-1017. DOI: 10.1123/ijspp.2015-0746. [14] 王丽岩, 王洪彪, 朴忠淑, 等. 乒乓球运动员发球动作识别的时间进程及半球效应: 一项ERP研究[J]. 中国运动医学杂志, 2014, 33(8): 804-812. DOI: 10.16038/j.1000-6710.2014.08.010. [15] BRAY N W, PIERUCCINI-FARIA F, BARTHA R, et al. The effect of physical exercise on functional brain network connectivity in older adults with and without cognitive impairment. A systematic review[J]. Mech Ageing Dev, 2021, 196: 111493. DOI: 10.1016/j.mad.2021.111493. [16] ZHAO J L, JIANG W T, WANG X, et al. Exercise, brain plasticity, and depression[J]. CNS Neurosci Ther, 2020, 26(9): 885-895. DOI: 10.1111/cns.13385. [17] ZHOU L, WANG G, NAN C, et al. Abnormalities in P300 components in depression: an ERP-sLORETA study[J]. Nord J Psychiatry, 2019, 73(1): 1-8. DOI: 10.1080/08039488.2018.1478991. [18] 朱敏, 张阳, 鲁晓波, 等. 难治性和一般性抑郁症患者记忆功能及事件相关电位P300的对比研究[J]. 山西医科大学学报, 2014, 45(12): 1189-1192. DOI: 10.13753/j.issn.1007-6611.2014.12.020. [19] 陈婷婷, 王雪杰, 余凤琼, 等. 难治性抑郁症反应抑制能力研究[J]. 阜阳师范学院学报(自然科学版), 2020, 37(3): 44-48. DOI: 10.14096/j.cnki.cn34-1069/n/1004-4329(2020)03-0044-05. [20] LIU D, KAHATHUDUWA C, VAZSONYI A T. The Pittsburgh sleep quality index (PSQI): psychometric and clinical risk score applications among college students[J]. Psychol Assess, 2021, 33(9): 816-826. DOI: 10.1037/pas0001027. [21] 杨文辉, 吴多进, 彭芳. 贝克抑郁量表第2版中文版在大一学生中的试用[J]. 中国临床心理学杂志, 2012, 20(6): 762-764. DOI: 10.16128/j.cnki.1005-3611.2012.06.020. [22] 杨文辉, 吴多进, 彭芳. 贝克抑郁量表第2版中文版在大一学生中的试用[J]. 中国临床心理学杂志, 2012, 20(6): 762-764. DOI: 10.16128/j.cnki.1005-3611.2012.06.020. [23] 梁德清. 我国大学生应激及体育锻炼研究[D]. 武汉: 武汉体育学院, 1992. [24] BORG G A. Psychophysical bases of perceived exertion[J]. Med Sci Sports Exerc, 1982, 14(5): 377-381. [25] HARTMANN T, WEISZ N. An introduction to the objective psychophysics toolbox[J]. Front Psychol, 2020, 11: 585437. DOI: 10.3389/fpsyg.2020.585437. [26] KLEINER M, BRAINARD D H, PELLI D, et al. What's new in Psychtoolbox-3?[J]. Perception, 2007, 36(2): 301-307. DOI: 10.1068/v070821. [27] 王柳雁. 体育锻炼对大学生工作记忆影响的实验研究[D]. 上海: 华东师范大学, 2020. [28] 马喆喆, 巩尊科, 温炜婷, 等. 脑卒中注意障碍患者事件相关电位P300与注意评定量表的相关性分析[J]. 中国康复医学杂志, 2022, 37(8): 1113-1115. [29] GELLISH R L, GOSLIN B R, OLSON R E, et al. Longitudinal modeling of the relationship between age and maximal heart rate[J]. Med Sci Sports Exerc, 2007, 39(5): 822-829. DOI: 10.1097/mss.0b013e31803349c6. [30] 裘莎丽, 刘伟志, 周晓静, 等. 单次高强度间歇运动对抑郁群体大学生情绪及额叶α频段偏侧化的影响[J]. 海军军医大学学报, 2022, 43(10): 1211-1216. DOI: 10.16781/j.CN31-2187/R.20210986. QIU S L, LIU W Z, ZHOU X J, et al. Effects of single high-intensity interval exercise on emotion and lateralization of frontal lobe α frequency bandin depressed college students[J]. Acad J Naval Med Univ, 2022, 43(10): 1211-1216. DOI: 10.16781/j.CN31-2187/R.20210986. [31] 宋一锐, 漆昌柱, 王淙一, 等. 乒乓球运动员时距知觉的优势特征及神经机制: 来自ERP和EEG的证据[J]. 中国体育科技, 2024, 60(9): 23-30. DOI: 10.16470/j.csst.2024095. [32] YAMAZAKI Y, SATO D, YAMASHIRO K, et al. Inter-individual differences in exercise-induced spatial working memory improvement: a near-infrared spectroscopy study[J]. Adv Exp Med Biol, 2017, 977: 81-88. DOI: 10.1007/978-3-319-55231-6_12. [33] 周术锋, 单丽, 蔡治东, 等. 急性有氧运动对学龄儿童工作记忆影响的研究[J]. 中国体育科技, 2025, 61(2): 38-48. DOI: 10.16470/j.csst.2025011. [34] 史慧. 高强度间歇运动对高低心肺功能年轻人执行功能影响的时程效应: 来自fNIRS的证据[D]. 济南: 山东体育学院, 2021. DOI: 10.27725/d.cnki.gsdty.2021.000108. [35] HILL H, STRUBE M, ROESCH-ELY D, et al. Automatic vs. controlled processes in semantic priming: differentiation by event-related potentials[J]. Int J Psychophysiol, 2002, 44(3): 197-218. DOI: 10.1016/s0167-8760(01)00202-1. [36] FOLSTEIN J R, VAN PETTEN C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review[J]. Psychophysiology, 2008, 45(1): 152-170. DOI: 10.1111/j.1469-8986.2007.00602.x. [37] POLICH J. Updating P300: an integrative theory of P3a and P3b[J]. Clin Neurophysiol, 2007, 118(10): 2128-2148. DOI: 10.1016/j.clinph.2007.04.019.
下载: