载脂蛋白B mRNA编辑酶催化多肽样3A蛋白在宫颈癌进化发育中的研究进展

贺海威 徐明娟

贺海威, 徐明娟. 载脂蛋白B mRNA编辑酶催化多肽样3A蛋白在宫颈癌进化发育中的研究进展[J]. 海军军医大学学报, 2025, 46(6): 798-802. doi: 10.16781/j.CN31-2187/R.20220047
引用本文: 贺海威, 徐明娟. 载脂蛋白B mRNA编辑酶催化多肽样3A蛋白在宫颈癌进化发育中的研究进展[J]. 海军军医大学学报, 2025, 46(6): 798-802. doi: 10.16781/j.CN31-2187/R.20220047
HE H, XU M. Apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3A protein in the evolution and development of cervical cancer: research progress[J]. Academic Journal of Naval Medical University, 2025, 46(6): 798-802. doi: 10.16781/j.CN31-2187/R.20220047
Citation: HE H, XU M. Apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3A protein in the evolution and development of cervical cancer: research progress[J]. Academic Journal of Naval Medical University, 2025, 46(6): 798-802. doi: 10.16781/j.CN31-2187/R.20220047

载脂蛋白B mRNA编辑酶催化多肽样3A蛋白在宫颈癌进化发育中的研究进展

doi: 10.16781/j.CN31-2187/R.20220047
基金项目: 

国家自然科学基金面上项目 8177020692.

详细信息
    作者简介:

    贺海威,博士,住院医师. E-mail: hehaiwei0117@126.com.

    通讯作者:

    徐明娟, E-mail: 13636373419@163.com.

Apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3A protein in the evolution and development of cervical cancer: research progress

Funds: 

General Program of National Natural Science Foundation of China 8177020692.

  • 摘要: 载脂蛋白B mRNA编辑酶催化多肽样3A(APOBEC3A)突变是宫颈癌的一个主要驱动因素。APOBEC3A与人乳头瘤病毒(HPV)关系密切:一方面可以有效抑制HPV感染,另一方面又可以促进HPV DNA整合入宫颈角质细胞。本文综述了HPV与APOBEC3A错综复杂的相互作用,并分析了其所涉及的病毒机制和细胞信号通路。大量研究证实,APOBEC3A基因可以有效诱导包括宫颈癌在内的多种恶性肿瘤的进化发育,而在临床样本中,癌细胞中APOBEC3A蛋白的表达水平却并不太高。本文还展望了宫颈癌中的APOBEC3A活性的意义以及潜在的治疗价值。

     

    Abstract: Apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3A (APOBEC3A) mutation is a major driver of cervical cancer. APOBEC3A and human papilloma virus (HPV) is closely related. On the one hand, APOBEC3A can effectively inhibit HPV infection; on the other hand, it can promote the integration of HPV DNA into cervical keratinocytes. This paper reviews the complex interaction between HPV and APOBEC3A, and analyzes the involved viral mechanism and cellular signal pathway. A large number of studies have confirmed that APOBEC3A gene can effectively induce the evolution and development of a variety of malignant tumors, including cervical cancer. However, APOBEC3A protein level is not so high in cancer cells in clinic. This paper also discusses the significance and the potential therapeutic value of APOBEC3A activity in cervical cancer.

     

  • 载脂蛋白B mRNA编辑酶催化多肽样3(apolipoprotein B mRNA editing enzyme catalytic polypeptide like 3,APOBEC3)家族是一个将DNA和RNA中的胞嘧啶转化为尿嘧啶的酶家族。APOBEC3的胞嘧啶脱氨基如果不修复,会导致DNA降解或突变[1]。APOBEC3家族成员APOBEC3A(以下简称为A3A)最初被认为是病毒限制因子,可抑制内源性逆转录病毒和逆转录酶元件的复制[2-3]。然而,研究发现,A3A是人乳头瘤病毒(human papilloma virus,HPV)阳性角质形成细胞和癌细胞中转录上调的APOBEC3家族成员[4]。在HPV阳性细胞中,HPV癌蛋白E7和E6驱动A3A上调[4-7]

    APOBEC3家族成员介导的细胞基因组突变或许是导致癌症基因畸变的重要因素[8-9],其中A3A最为突出。A3A定位于细胞核,并诱导DNA损伤[10],突变负荷与A3A mRNA表达水平相关[11],A3A诱导的突变特征与其他诱变剂引起的突变特征不同[12]。一些研究发现,HPV持续存在期间E6和E7的高水平表达可能是A3A介导突变的主要触发因素。作为HPV感染和宫颈癌基因突变的主要参与者,A3A诱导的突变在宫颈癌进化发育中扮演着重要角色[13]。然而,有研究表明,癌细胞中A3A蛋白的表达水平并不高[14]。这种差异表明在肿瘤中有一个受到严格控制的过程来调节偶发性A3A的表达,并在宫颈癌的进化发育中起到“四两拨千斤”的效果。此外,A3A与HPV之间博弈、A3A在宫颈癌发生和发展中主要起促进作用还是抑制作用目前仍不清楚。

    人A3A(human A3A,hA3A)是人类基因组中APOBEC3家族的7个成员之一[3]。A3A位于人类基因组的22号染色体[15]。APOBEC3蛋白质的特征是1个或2个锌配合域(Z域),序列为H-xE-x23 28-PC-x2 4-C,hA3A有1个Z域[3]。核磁共振光谱解析发现,hA3A的结构(aa 10 194/199 aa)[16]与其他APOBEC(A2和一些A3成员)蛋白质类似。hA3A由6个螺旋体围绕5条链形成的中心B-折叠组成。

    A3A靶向单链DNA(single-stranded DNA,ssDNA)中的TpC基序[17-18],在DNA和/或RNA中脱氨胞嘧啶为尿嘧啶,是肿瘤患者APOBEC特征突变的主要来源[19]。hA3A对单链RNA(single-stranded RNA,ssRNA)的结合亲和力略高于ssDNA,并对TTCA和CCCA底物显示出类似的催化活性[16]。研究发现A3A偏好YTCA基序(其中Y是嘧啶)[19]。此外,A3A在ssDNA间隙或线性DNA的发夹上更为活跃[20]

    A3A限制HPV感染[4],但HPV亦可逃避A3A介导的限制[15]。A3A定位于整个细胞的细胞质和核区[21],以高亲和力与ssDNA结合[22],并在经历转录或复制的瞬时ssDNA中脱氨基胞苷[23]。有鉴于底物特异性(Tc二核苷酸靶点)和角质形成细胞(HPV感染的宿主细胞)中A3A的高表达水平,Vartanian等[24]首次证明A3A是HPV基因组的突变子,并可能在限制HPV感染方面发挥重要作用。

    HPV持续感染过程中,A3A可介导从细胞中清除外来环状DNA。研究表明,A3A过度表达会导致转染的外源质粒DNA脱氨基和降解,提示A3A可能介导HPV DNA在持续感染细胞中的清除[25]。然而,A3A也可能通过促进HPV DNA整合到宿主染色体而加速HPV诱导的癌症进展。譬如,A3A的表达与口咽癌中的HPV整合密切相关[26-28]。干扰素β或干扰素γ在治疗HPV过程中可通过A3A增强HPV DNA整合宫颈角质形成细胞的能力[29]。因此,A3A与HPV的关系错综复杂。

    HPV E7癌蛋白和A3A蛋白密切相关。研究表明,增强的A3A通过基因高突变抑制HPV11 E6的表达[30]。HPV E7癌蛋白通过抑制泛素依赖性蛋白降解以泛素连接酶依赖性方式稳定人类角质形成细胞中的A3A蛋白[6]。这提示,HPV E7稳定的A3A蛋白保持其脱氨酶活性。但是也有研究发现,高危HPV E7在角质形成细胞中表达增加时A3A蛋白水平也升高[6, 28]

    近年来,A3A对于HPV的整合作用受到更多的关注。对80个宫颈癌样本测序(HPV全基因组测序协议TaME-seq)发现,HPV16病变组织中观察到APOBEC3特征,而在HPV18病变组织中未检测到类似的突变模式;HPV16和HPV18阳性样本中整合样本的比例分别为13%和59%[31]

    研究表明,A3A是一种内源性致病因子,其可引起体细胞基因组DNA的突变[32-34]。究其原因,A3A通过在ssDNA的TCW三核苷酸基序(W为A或T)上使主要的胞嘧啶核苷脱去氨基,进而促进CG到TA转换,使得此种突变得以发生[32]。众所周知,体细胞DNA的突变在肿瘤发生、发展中扮演了重要角色。既往研究亦显示,在宫颈癌、乳腺癌、头颈癌、肺癌等癌症[24]基因组中,A3A在肿瘤发生中起促进作用,这与它促进体细胞基因组DNA突变的结果相一致。那么,A3A在宫颈癌中的特征突变是怎么样的?该突变特征的形成有赖于A3A在单链非结构DNA底物[35]或短病毒序列中脱氨基胞嘧啶的能力。宫颈癌中,A3A对TC序列基序有明显偏向性[36]

    A3A不仅对ssDNA有突变促进作用,其过度表达还可引起线粒体基因组DNA的超突变。已有研究者证实,宫颈癌细胞中有线粒体DNA(mitochondrial DNA,mtDNA)突变,常为C-to-T或G-to-A[27]。HeLa细胞中A3A的过度表达导致mtDNA过度突变[21]。有意思的是,在宫颈发育不良细胞系W12中,A3A过表达同样可以引起mtDNA超突变[27]。因此,在宫颈癌的发生、发展中,A3A在促进HPV整合、染色体损伤以及mtDNA突变上的作用值得探索,也应进一步研究A3A与线粒体DNA超突变和活性氧的关系及在肿瘤发生中的作用。

    A3A表达可诱导复制应激和DNA损伤,产生超越突变的基因组不稳定性[22, 37]。当A3A在癌细胞中过度表达时,会以一种催化活性依赖的方式诱导DNA复制应激、DNA双链断裂和细胞周期停滞。研究发现,A3A表达细胞依赖共济失调毛细血管扩张和Rad3相关蛋白(ataxia telangiectasia and Rad3-related protein,ATR)检查点通路来耐受A3A表达引起的DNA损伤[22, 37]。在表达A3A的细胞中,ATR抑制剂(ATR inhibitor,ATRi)导致复制分叉处的无碱基位点激增,与ssDNA(A3A的底物)的积累增加有关,触发A3A驱动的前馈环,最终导致细胞复制灾难[22, 37]。此外,赖氨酰氧化酶样蛋白2(lysyl oxidase-like 2,LOXL2)高表达与较低的肿瘤突变密度呈负相关,尤其是在E1A结合蛋白基因、表皮生长因子受体2、表皮生长因子受体和Notch2中,与APOBEC3家族基因(如A3A)的低表达呈负相关[38]。因此,LOXL2可能是宫颈癌中APOBEC3基因失调的触发因素。

    在癌症组学中,A3A可调节肿瘤细胞中程序性死亡受体配体1(programmed death-ligand 1,PD-L1)mRNA和蛋白水平以及PD-L1细胞表面表达水平。A3A诱导的PD-L1表达依赖于复制相关的DNA损伤和c-Jun氨基末端激酶/细胞Jun原癌基因产物信号通路[39]。A3A催化活性诱导复制相关DNA损伤以促进PD-L1的表达。信号转导和转录激活因子2通过视黄酸诱导基因1、线粒体抗病毒信号蛋白、干扰素调节因子3和干扰素介导的信号通路促进A3A表达[39]。该过程通过DNA损伤和DNA复制应激触发NF-κB(p65/IkBα)依赖性反应。A3A与含有伴侣蛋白的T复合多肽1复合物相互作用,后者是一种协助蛋白质折叠和功能的细胞机器[40],它的消耗导致A3A诱导的DNA损伤和细胞毒性,破坏其功能导致A3A突变活性增加。

    APOBEC3诱导的突变可能促进肿瘤异质性,增加肿瘤转移或产生抗药性的能力[41]。研究发现,抑制ATR或其效应激酶Chk1以A3A依赖性方式导致细胞死亡增加,这表明ATRi或Chk1抑制剂可能用于靶向具有高A3A活性的肿瘤[37, 39]。此外,抑制易位合成[42]或碱基切除修复,这涉及耐受和去除DNA中的尿嘧啶,使表达A3A的癌细胞对ATRi高度敏感。A3A诱导的基因组不稳定性为靶向治疗提供了机会。很多学者认为,A3A可作为免疫逃避机制和免疫检查点阻断治疗效果的潜在生物标志物[43]

    总之,A3A是宫颈癌发病机制中的潜在蛋白分子。通过与HPV的相互作用和癌症驱动基因突变的积累,A3A蛋白在宫颈癌进化、发育中起着举足轻重的作用。然而,A3A在宫颈癌中的确切功能尚不清楚,A3A可限制HPV感染,但HPV亦可逃避A3A介导的限制[15]。目前的研究均只是片面地展示了A3A与HPV之间可能存在的关系以及可能涉及的信号通路。A3A在宫颈癌的突变特征发现,A3A基因诱导的突变很常见,但在癌细胞中检测到的A3A蛋白表达水平却并不高。造成这一“反常”现象的原因可能包括:(1)A3A基因突变在宫颈癌中是以偶发的方式发生的。(2)A3A持续高表达的宫颈癌细胞会致死。(3)ATRi导致表达A3A的宫颈癌细胞发生细胞复制灾难。

  • [1] BARKA A, BERRÍOS K N, BAILER P, et al. The base-editing enzyme APOBEC3A catalyzes cytosine deamination in RNA with low proficiency and high selectivity[J]. ACS Chem Biol, 2022, 17(3): 629-636. DOI: 10.1021/acschembio.1c00919.
    [2] GREEN A M, WEITZMAN M D. The spectrum of APOBEC3 activity: from anti-viral agents to anti-cancer opportunities[J]. DNA Repair (Amst), 2019, 83: 102700. DOI: 10.1016/j.dnarep.2019.102700.
    [3] WANG Y, SCHMITT K, GUO K, et al. Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer[J]. J Gen Virol, 2016, 97(1): 1-17. DOI: 10.1099/jgv.0.000320.
    [4] WARREN C J, XU T, GUO K, et al. APOBEC3A functions as a restriction factor of human papillomavirus[J]. J Virol, 2015, 89(1): 688-702. DOI: 10.1128/JVI.02383-14.
    [5] CHEN S, LI X, QIN J, et al. APOBEC3A possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer[J]. Int J Clin Exp Med, 2015, 8(7): 10548-10557.
    [6] WESTRICH J A, WARREN C J, KLAUSNER M J, et al. Human papillomavirus 16 E7 stabilizes APOBEC3A protein by inhibiting cullin 2-dependent protein degradation[J]. J Virol, 2018, 92(7): e01318-17. DOI: 10.1128/JVI.01318-17.
    [7] KONO T, HOOVER P, POROPATICH K, et al. Activation of DNA damage repair factors in HPV positive oropharyngeal cancers[J]. Virology, 2020, 547: 27-34. DOI: 10.1016/j.virol.2020.05.003.
    [8] DEWEERD R A, NÉMETH E, PÓTI Á, et al. Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers[J]. Cell Rep, 2022, 38(12): 110555. DOI: 10.1016/j.celrep.2022.110555.
    [9] GREEN A M, LANDRY S, BUDAGYAN K, et al. APOBEC3A damages the cellular genome during DNA replication[J]. Cell Cycle, 2016, 15(7): 998-1008. DOI: 10.1080/15384101.2016.1152426.
    [10] CAVAL V, SUSPÈNE R, VARTANIAN J P, et al. Orthologous mammalian APOBEC3A cytidine deaminases hypermutate nuclear DNA[J]. Mol Biol Evol, 2014, 31(2): 330-340. DOI: 10.1093/molbev/mst195.
    [11] VURAL S, SIMON R, KRUSHKAL J. Correlation of gene expression and associated mutation profiles of APOBEC3A APOBEC3B REV1 UNG and FHIT with chemosensitivity of cancer cell lines to drug treatment[J]. Hum Genomics, 2018, 12(1): 20. DOI: 10.1186/s40246-018-0150-x.
    [12] MUSSIL B, SUSPÈNE R, AYNAUD M M, et al. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death[J]. PLoS One, 2013, 8(8): e73641. DOI: 10.1371/journal.pone.0073641.
    [13] SEPLYARSKIY V B, SOLDATOV R A, POPADIN K Y, et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication[J]. Genome Res, 2016, 26(2): 174-182. DOI: 10.1101/gr.197046.115.
    [14] MAROUF C, GÖHLER S, DA SILVA FILHO M I, et al. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population[J]. BMC Cancer, 2016, 16: 165. DOI: 10.1186/s12885-016-2210-8.
    [15] CHENG A Z, MORAES S N, SHABAN N M, et al. APOBECs and Herpesviruses[J]. Viruses, 2021, 13(3): 390. DOI: 10.3390/v13030390.
    [16] BYEON I L, AHN J, MITRA M, et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity[J]. Nat Commun, 2013, 4: 1890. DOI: 10.1038/ncomms2883.
    [17] LANGENBUCHER A, BOWEN D, SAKHTEMANI R, et al. An extended APOBEC3A mutation signature in cancer[J]. Nat Commun, 2021, 12(1): 1602. DOI: 10.1038/s41467-021-21891-0.
    [18] SILVAS T V, HOU S, MYINT W, et al. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions[J]. Sci Rep, 2018, 8(1): 7511. DOI: 10.1038/s41598-018-25881-z.
    [19] CHAN K, ROBERTS S A, KLIMCZAK L J, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers[J]. Nat Genet, 2015, 47(9): 1067-1072. DOI: 10.1038/ng.3378.
    [20] BROWN A L, COLLINS C D, THOMPSON S, et al. Single-stranded DNA binding proteins influence APOBEC3A substrate preference[J]. Sci Rep, 2021, 11(1): 21008. DOI: 10.1038/s41598-021-00435-y.
    [21] SUSPÈNE R, MUSSIL B, LAUDE H, et al. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage[J]. Nucleic Acids Res, 2017, 45(6): 3231-3241. DOI: 10.1093/nar/gkx001.
    [22] GREEN A M, BUDAGYAN K, HAYER K E, et al. Cytosine deaminase APOBEC3A sensitizes leukemia cells to inhibition of the DNA replication checkpoint[J]. Cancer Res, 2017, 77(17): 4579-4588. DOI: 10.1158/0008-5472.CAN-16-3394.
    [23] HOOPES J I, CORTEZ L M, MERTZ T M, et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication[J]. Cell Rep, 2016, 14(6): 1273-1282. DOI: 10.1016/j.celrep.2016.01.021.
    [24] VARTANIAN J P, GUÉTARD D, HENRY M, et al. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions[J]. Science, 2008, 320(5873): 230-233. DOI: 10.1126/science.1153201.
    [25] STENGLEIN M D, BURNS M B, LI M, et al. APOBEC3 proteins mediate the clearance of foreign DNA from human cells[J]. Nat Struct Mol Biol, 2010, 17(2): 222-229. DOI: 10.1038/nsmb.1744.
    [26] KONDO S, WAKAE K, WAKISAKA N, et al. APOBEC3A associates with human papillomavirus genome integration in oropharyngeal cancers[J]. Oncogene, 2017, 36(12): 1687-1697. DOI: 10.1038/onc.2016.335.
    [27] WAKAE K, NISHIYAMA T, KONDO S, et al. Keratinocyte differentiation induces APOBEC3A, 3B, and mitochondrial DNA hypermutation[J]. Sci Rep, 2018, 8(1): 9745. DOI: 10.1038/s41598-018-27930-z.
    [28] KANO M, KONDO S, WAKISAKA N, et al. Expression of estrogen receptor alpha is associated with pathogenesis and prognosis of human papillomavirus-positive oropharyngeal cancer[J]. Int J Cancer, 2019, 145(6): 1547-1557. DOI: 10.1002/ijc.32500.
    [29] LACE M J, ANSON J R, HAUGEN T H, et al. Interferon treatment of human keratinocytes harboring extrachromosomal, persistent HPV-16 plasmid genomes induces de novo viral integration[J]. Carcinogenesis, 2015, 36(1): 151-159. DOI: 10.1093/carcin/bgu236.
    [30] WANG Y, LI X, SONG S, et al. HPV11 E6 mutation by overexpression of APOBEC3A and effects of interferon-ω on APOBEC3s and HPV11 E6 expression in HPV11. HaCaT cells[J]. Virol J, 2017, 14(1): 211. DOI: 10.1186/s12985-017-0878-2.
    [31] LAGSTRÖM S, LØVESTAD A H, UMU S U, et al. HPV16 and HPV18 type-specific APOBEC3 and integration profiles in different diagnostic categories of cervical samples[J]. Tumour Virus Res, 2021, 12: 200221. DOI: 10.1016/j.tvr.2021.200221.
    [32] CORTEZ L M, BROWN A L, DENNIS M A, et al. APOBEC3A is a prominent cytidine deaminase in breast cancer[J]. PLoS Genet, 2019, 15(12): e1008545. DOI: 10.1371/journal.pgen.1008545.
    [33] LAW E K, LEVIN-KLEIN R, JARVIS M C, et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo[J]. J Exp Med, 2020, 217(12): e20200261. DOI: 10.1084/jem.20200261.
    [34] VENKATESAN S, ROSENTHAL R, KANU N, et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution[J]. Ann Oncol, 2018, 29(3): 563-572. DOI: 10.1093/annonc/mdy003.
    [35] SHI K, CARPENTER M A, BANERJEE S, et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B[J]. Nat Struct Mol Biol, 2017, 24(2): 131-139. DOI: 10.1038/nsmb.3344.
    [36] GEORGAKOPOULOS-SOARES I, MORGANELLA S, JAIN N, et al. Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis[J]. Genome Res, 2018, 28(9): 1264-1271. DOI: 10.1101/gr.231688.117.
    [37] BUISSON R, LAWRENCE M S, BENES C H, et al. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition[J]. Cancer Res, 2017, 77(17): 4567-4578. DOI: 10.1158/0008-5472.CAN-16-3389.
    [38] CAO C, LIN S, ZHI W, et al. LOXL2 expression status is correlated with molecular characterizations of cervical carcinoma and associated with poor cancer survival via epithelial-mesenchymal transition (EMT) phenotype[J]. Front Oncol, 2020, 10: 284. DOI: 10.3389/fonc.2020.00284.
    [39] ZHAO K, ZHANG Q, FLANAGAN S A, et al. Cytidine deaminase APOBEC3A regulates PD-L1 expression in cancer cells in a JNK/c-JUN-dependent manner[J]. Mol Cancer Res, 2021, 19(9): 1571-1582. DOI: 10.1158/1541-7786.MCR-21-0219.
    [40] GREEN A M, DEWEERD R A, O'LEARY D R, et al. Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity[J]. EMBO Rep, 2021, 22(9): e52145. DOI: 10.15252/embr.202052145.
    [41] LAW E K, SIEUWERTS A M, LAPARA K, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer[J]. Sci Adv, 2016, 2(10): e1601737. DOI: 10.1126/sciadv.1601737.
    [42] MEHTA K P M, LOVEJOY C A, ZHAO R, et al. HMCES maintains replication fork progression and prevents double-strand breaks in response to APOBEC deamination and abasic site formation[J]. Cell Rep, 2020, 31(9): 107705. DOI: 10.1016/j.celrep.2020.107705.
    [43] CHEN Z, WEN W, BAO J, et al. Integrative genomic analyses of APOBEC-mutational signature, expression and germline deletion of APOBEC3 genes, and immunogenicity in multiple cancer types[J]. BMC Med Genomics, 2019, 12(1): 131. DOI: 10.1186/s12920-019-0579-3.
WeChat 点击查看大图
出版历程
  • 收稿日期:  2022-01-12
  • 接受日期:  2022-04-29

目录

    /

    返回文章
    返回