大气颗粒物影响慢性肾脏病患者日住院人次的时间序列分析

吴瑞凯 张莹 马龙 杨浩峰 苏德奇

吴瑞凯, 张莹, 马龙, 等. 大气颗粒物影响慢性肾脏病患者日住院人次的时间序列分析[J]. 海军军医大学学报, 2025, 46(6): 775-783. doi: 10.16781/j.CN31-2187/R.20230377
引用本文: 吴瑞凯, 张莹, 马龙, 等. 大气颗粒物影响慢性肾脏病患者日住院人次的时间序列分析[J]. 海军军医大学学报, 2025, 46(6): 775-783. doi: 10.16781/j.CN31-2187/R.20230377
WU R, ZHANG Y, MA L, et al. Impact of atmospheric particulate matter on daily hospital admissions of patients with chronic kidney disease: a time series analysis[J]. Academic Journal of Naval Medical University, 2025, 46(6): 775-783. doi: 10.16781/j.CN31-2187/R.20230377
Citation: WU R, ZHANG Y, MA L, et al. Impact of atmospheric particulate matter on daily hospital admissions of patients with chronic kidney disease: a time series analysis[J]. Academic Journal of Naval Medical University, 2025, 46(6): 775-783. doi: 10.16781/j.CN31-2187/R.20230377

大气颗粒物影响慢性肾脏病患者日住院人次的时间序列分析

doi: 10.16781/j.CN31-2187/R.20230377
详细信息

Impact of atmospheric particulate matter on daily hospital admissions of patients with chronic kidney disease: a time series analysis

  • 摘要:  目的 探讨大气颗粒物与慢性肾脏病(CKD)住院风险的相关性及其滞后效应。 方法 收集2019年1月1日-2020年12月31日乌鲁木齐市9所医院CKD日住院人次数据,以及同期大气污染和气象数据。采用广义相加模型,控制长期趋势、气象因素和“星期几效应”等潜在混杂因素后,探讨PM2.5和PM10浓度与CKD住院风险的关系,分析单独滞后0~7 d(lag0~lag7)和累积滞后0~7 d(lag01~lag07)的影响,并对性别、年龄、季节进行亚组分析。在单一污染物模型基础上纳入其他污染物(一次最多纳入2个污染物),构建双污染物模型来评价模型的稳定性。 结果 PM2.5浓度每升高10 μg/m3,单独滞后在lag2时CKD住院风险最高(RR=1.014,95% CI 1.006~1.023),累积滞后在lag04时CKD住院风险最高(RR=1.018,95% CI 1.007~1.029)。而PM10浓度每升高10 μg/m3,单独滞后在lag0、累积滞后在lag07时CKD住院风险最高(RR=1.012,95% CI 1.007~1.017;RR=1.024,95% CI 1.016~1.032)。性别分层中,PM2.5浓度每升高10 μg/m3,累积滞后在lag04时男性CKD住院风险最高(RR=1.023,95% CI 1.008~1.038);PM10浓度每升高10 μg/m3,单独滞后在lag0时男性CKD住院风险最高(RR=1.013,95% CI 1.006~1.020),单独滞后在lag1时女性CKD住院风险最高(RR=1.013,95% CI 1.006~1.020)。年龄分层中,PM2.5浓度每升高10 μg/m3,单独滞后在lag3、累积滞后在lag04时<65岁人群CKD住院风险最高(RR=1.016,95% CI 1.007~1.026;RR=1.022,95% CI 1.010~1.035);PM10浓度每升高10 μg/m3,累积滞后在lag07时<65岁、≥65岁人群CKD住院风险最高(RR=1.027,95% CI 1.017~1.037;RR=1.015,95% CI 1.001~1.028)。季节分层中,冷季PM2.5浓度每升高10 μg/m3,单独滞后在lag3、累积滞后在lag07时CKD住院风险最高(RR=1.020,95% CI 1.011~1.029;RR=1.025,95% CI 1.011~1.038)。冷季PM10浓度每升高10 μg/m3,单独滞后在lag2时CKD住院风险最高(RR=1.013,95% CI 1.007~1.019),暖季PM10浓度每升高10 μg/m3,单独滞后在lag7时CKD住院风险最高(RR=1.015,95% CI 1.006~1.024)。双污染物模型中,PM2.5调整PM10、SO2、O3、CO,PM10调整NO2、SO2、O3、CO后,对CKD住院风险的影响效应仍具有统计学意义(P<0.05)。 结论 大气颗粒物PM2.5和PM10浓度升高会导致CKD住院风险增加,且存在滞后效应;男性、年龄<65岁和寒冷季节(采暖期)中人群对PM2.5和PM10的暴露更为敏感。

     

    Abstract:  Objective To investigate the correlation and lag effect between atmospheric particulate matter and the risk of hospitalization for chronic kidney disease (CKD). Methods The daily hospitalization data for CKD in 9 hospitals in Urumqi from Jan. 1, 2019, to Dec. 31, 2020, and the air pollution and meteorological data during the same period were collected. The relationship between PM2.5 and PM10 concentrations and CKD incidence was analyzed after controlling for long-term trends, meteorological factors, and potential confounding factors such as the "day of the week effect" by using the generalized additive model (GAM). The effects of single-day lag of 0-7 d (lag0-lag7) and cumulative lag of 0-7 d (lag01-lag07) were analyzed, and subgroup analyses were conducted for gender, age, and season. On the basis of the single pollutant model, other pollutants were included (at most 2 pollutants were included at a time), and a double pollutant model was constructed to evaluate the stability of the model. Results For every 10 μg/m3 increase in PM2.5 concentration, the highest risk of CKD hospitalization occured when lagged alone at lag2 (relative risk [RR] =1.014, 95% confidence interval [CI] 1.006-1.023) and lagged cumulatively at lag04 (RR=1.018, 95% CI 1.007-1.029). For every 10 μg/m3 increase in PM10 concentration, the risk of CKD hospitalization was highest when lagged alone at lag0 and lagged cumulatively at lag07 (RR=1.012, 95% CI 1.007-1.017; RR=1.024, 95% CI 1.016-1.032). In gender stratification, for every 10 μg/m3 increase in PM2.5 concentration, the cumulative lag at lag04 indicated that males had the highest risk of CKD hospitalization (RR=1.023, 95% CI 1.008-1.038); for every 10 μg/m3 increase in PM10 concentration, the highest risk of CKD hospitalization was observed in males when lagged alone at lag0 (RR=1.013, 95% CI 1.006-1.020), and in females when lagged alone at lag1 (RR=1.013, 95% CI 1.006-1.020). In age stratification, for every 10 μg/m3 increase in PM2.5 concentration, the risk of CKD hospitalization was highest in people 65 years old with single-day lag at lag3 and cumulative lag at lag04 (RR=1.016, 95% CI 1.007-1.026; RR=1.022, 95% CI 1.010-1.035); for every 10 μg/m3 increase in PM10 concentration, the cumulative lag at lag07 indicated that individuals aged < 65 years old and ≥65 years old had the highest risk of CKD hospitalization (RR=1.027, 95% CI 1.017-1.037; RR=1.015, 95% CI 1.001-1.028). In seasonal stratification, for every 10 μg/m3 increase in PM2.5 concentration during the cold season, the risk of CKD hospitalization was highest when lagged alone at lag3 and lagged cumulatively at lag07 (RR=1.020, 95% CI 1.011-1.029; RR=1.025, 95% CI 1.011-1.038). For every 10 μg/m3 increase in PM10 concentration during the cold season, the risk of CKD hospitalization was highest when lagged alone at lag2 (RR=1.013, 95% CI 1.007-1.019). For every 10 μg/m3 increase in PM10 concentration during the warm season, the risk of CKD hospitalization was highest when lagged alone at lag7 (RR=1.015, 95% CI 1.006-1.024). In the dual pollutant model, the effects of PM2.5 adjusting PM10, SO2, O3 and CO, and PM10 adjusting NO2, SO2, O3, and CO on the risk of CKD hospitalization were still significant (P < 0.05). Conclusion The increase in atmospheric particulate matter concentrations of PM2.5 and PM10 can lead to an increased risk of CKD, and there is a lag effect. Men, people under the age of 65 years old, and those in cold seasons (heating periods) are more sensitive to exposure to PM2.5 and PM10.

     

  • WHO报告显示,全世界超过99%的人暴露于有害水平的细颗粒物中,暴露于高水平大气污染的人群罹患呼吸系统、循环系统等疾病风险更高[1]。大气污染在非传染性疾病中已经成为一个关键危险原因。慢性肾脏病(chronic kidney disease,CKD)是全球公共健康问题之一[2]。全球CKD患者达8.5亿,CKD患病率为10%~15%[3]。我国是世界上CKD患者人数最多的国家之一,2023年发布的《中国慢性肾脏病早期评价与管理指南》显示,我国成人CKD患病率为10.8%,CKD患者超过1.3亿[4]。研究发现,只有8.7%的CKD患者知道自己的诊断,4.9%的患者接受治疗[5]。预计至2025年,我国将有1.6亿CKD患者,归因于CKD的经济负担预计1 980亿美元[6]。CKD病程长,伴随并发症、合并症多且复杂,给患者带来较重的疾病负担和经济负担,及早预防CKD对减轻疾病带来的负担具有重要的意义[7]

    近年来,大气污染的健康效应成为全球的研究热点,其对人体健康的影响受到学者的重点关注[8]。研究表明,大气颗粒物中的超微悬浮颗粒物、重金属及有机污染物等有害物质被人体吸入后,不仅会通过氧化应激、炎症反应等机制影响机体特异性及非特异性免疫反应[9],还会引起动脉粥样硬化、诱导血管内皮损伤,导致肾小球硬化、肾小管萎缩和肾小管间质纤维化[10],增加CKD发病、住院及死亡的风险[11-12]。目前,关于新疆地区大气污染暴露对CKD影响的研究相对较少。本研究收集了2019-2020年乌鲁木齐市CKD日住院人次、气象及大气污染物数据,采用时间序列分析方法探讨该市大气污染暴露对CKD发病的影响,为进一步评估大气污染的健康效应提供科学依据。

    收集2019年1月1日-2020年12月31日乌鲁木齐市9所医院(新疆医科大学第二附属医院、新疆医科大学第五附属医院、新疆维吾尔自治区职业病医院、乌鲁木齐市友谊医院、新疆维吾尔自治区儿童医院、新疆维吾尔自治区第一济困医院、乌鲁木齐市米东区人民医院、乌鲁木齐市米东区中医医院、乌鲁木齐市米东区卡子湾社区卫生服务中心)病历档案首页数据,统计CKD日住院人次。纳入标准:(1)符合CKD诊断标准,即肾脏结构或功能异常(出现血尿或蛋白尿)时间>3个月或肾小球滤过率<60 mL/min且时间持续>3个月[13-14];(2)首要诊断为CKD;(3)入院时间为2019年1月1日-2020年12月31日。排除标准:(1)急性肾衰竭者;(2)资料不全者。同期大气污染及气象数据来自乌鲁木齐市主城区的6个国控监测点(乌鲁木齐市天山区收费所、乌鲁木齐市沙依巴克区环境监测站、乌鲁木齐市新市区铁路局、乌鲁木齐市水磨沟区三十一中、乌鲁木齐市乌鲁木齐县水西沟镇环保培训基地、乌鲁木齐市米东区环保局),大气污染数据包括PM2.5、PM10、NO2、CO、SO2的日平均浓度和O3的日最大8 h平均值,气象数据包括日均温度、日均湿度、日均气压和日均风速。研究分析所用数据均来自于乌鲁木齐市疾病预防控制中心汇总的健康数据,皆为脱敏数据,所有处理环节均不涉及个人隐私。

    采用SPSS 26.0软件进行描述性统计分析,CKD日住院人次、大气污染物和气象数据用x±sMQ1Q3)描述。采用R 4.3.1软件的mgcv包构建统计模型,居民每日因CKD住院是一个小概率事件,日住院人次分布符合泊松分布,本研究采用泊松分布的广义相加模型,以平滑样条函数(smoothing splines)控制温度、湿度、气压、风速等长期趋势混杂因素和“星期几效应”(day of week,DOW)对人群的影响[15],基本模型为

    $$ \begin{aligned} & \quad \log E\left(Y_t\right)=\beta X_t+s(\text { 温度, } \mathrm{d} f)+s(\text { 湿度, } \mathrm{d} f)+ \\ & s(\text { 气 压, } \mathrm{d} f)+s(\text { 风 速, } \mathrm{d} f)+s(\text { time, } \mathrm{d} f)+ \\ & \text { as.factor }(\mathrm{DOW}) \end{aligned} $$

    其中,EYt)为第t天CKD日住院人次的期望人数,β为回归系数,Xt为第t天当天大气污染物浓度,s为平滑样条函数,df为自由度,time为长期趋势,as.factor为分类函数,DOW为“星期几效应”。结合模型的偏自相关函数(partial autocorrelation function,PACF)绝对值之和最小的原则选取自由度。

    大气污染物对人体健康影响具有滞后性,故本研究分析了大气颗粒物单独滞后0~7 d(lag0~lag7)和累积滞后0~7 d(lag01~lag07)对居民因CKD住院的影响,并对性别(男和女)、年龄(<65岁、≥65岁)和季节(暖季:5月至10月;冷季:11月至次年4月)进行亚组分析。在单一污染物模型基础上纳入其他污染物(一次最多纳入2个污染物),构建双污染物模型来评价模型的稳定性。检验水准(α)为0.05。

    2019年1月1日-2020年12月31日,乌鲁木齐市9所医院CKD总住院人次为7 305人次,日住院人次为8(5,13)人次。其中男性总住院人次为3 754人次(51.39%),日住院人次为4(2,7)人次;女性总住院人次为3 551人次(48.61%),日住院人次为4(2,7)人次。年龄<65岁者总住院人次为5 140人次(70.36%),日住院人次为6(3,9)人次;≥65岁者总住院人次为2 165人次(29.64%),日住院人次为3(1,4)人次。2019年1月1日-2020年12月31日,乌鲁木齐市日均气压为91.220(90.650,91.695)kPa,日均相对湿度为49.3%(36.3%,72.0%),日均温度为11.1(-5.3,21.1)℃,日均风速为2.00(1.53,2.40)m/s。2019年1月1日-2020年12月31日,乌鲁木齐市PM2.5和PM10年均浓度分别为47.82 μg/m3和83.27 μg/m3,根据《环境空气质量标准》(GB 3095—2012)[16],均超过国家二级年均浓度标准(PM2.5、PM10年均浓度二级标准限值分别为35.0 μg/m3、70.0 μg/m3);监测期间寒冷季节首要污染物为大气颗粒物(PM2.5和PM10),按照国家二级日均浓度标准(PM2.5、PM10日均浓度二级标准限值为75.0 μg/m3、150.0 μg/m3),PM2.5日均浓度超标天数为150 d,PM10日均浓度超标天数为84 d。NO2、SO2年均浓度分别为38.99 μg/m3、8.58 μg/m3,均未超过国家二级年均浓度标准。CO日均浓度和O3日最大8 h平均浓度分别为1.01 mg/m3、81.03 μg/m3,均未超过国家二级日均浓度标准。

    表 1可见,单污染物模型下,单独滞后lag0~lag7和累积滞后lag01~lag07情况下,大气颗粒物对CKD住院风险存在显著影响和累积滞后效应。PM2.5浓度每增加10 μg/m3,在单独滞后lag2时CKD住院风险最高(RR=1.014,95% CI 1.006~1.023),累积滞后在lag04时CKD住院风险最高(RR=1.018,95% CI 1.007~1.029)。PM10浓度每增加10 μg/m3,在单独滞后lag0时CKD住院风险最高(RR=1.012,95% CI 1.007~1.017),累积滞后在lag07时CKD住院风险最高(RR=1.024,95% CI 1.016~1.032)。

    表  1  不同滞后时间条件下大气颗粒物对CKD患者日住院人次的影响
    Table  1  Influence of atmospheric particulate matter on daily hospital admissions of CKD patients with different lag days  RR (95% CI)
    Single-day lag Cumulative lag
    Lag day PM2.5 PM10 Lag day PM2.5 PM10
    lag0 1.008 (0.999, 1.017) 1.012 (1.007, 1.017)* lag0 1.008 (0.999, 1.017) 1.012 (1.007, 1.017)*
    lag1 1.008 (0.999, 1.016) 1.011 (1.006, 1.016)* lag01 1.010 (1.000, 1.019)* 1.014 (1.009, 1.020)*
    lag2 1.014 (1.006, 1.023)* 1.009 (1.004, 1.014)* lag02 1.014 (1.004, 1.024)* 1.017 (1.011, 1.023)*
    lag3 1.012 (1.004, 1.020)* 1.007 (1.002, 1.012)* lag03 1.016 (1.006, 1.027)* 1.019 (1.012, 1.025)*
    lag4 1.009 (1.001, 1.018)* 1.008 (1.003, 1.013)* lag04 1.018 (1.007, 1.029)* 1.020 (1.013, 1.027)*
    lag5 1.002 (0.994, 1.010) 1.004 (0.999, 1.009) lag05 1.017 (1.006, 1.028)* 1.020 (1.013, 1.028)*
    lag6 0.998 (0.990, 1.007) 1.007 (1.002, 1.012)* lag06 1.015 (1.004, 1.027)* 1.023 (1.015, 1.031)*
    lag7 0.997 (0.988, 1.005) 1.004 (0.999, 1.009) lag07 1.014 (1.002, 1.026)* 1.024 (1.016, 1.032)*
    *P<0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    性别分层分析结果显示,PM2.5和PM10对男性CKD发病影响更为明显。PM2.5浓度每升高10 μg/m3,单独滞后在lag2、累积滞后在lag04时,男性CKD住院风险最高(RR=1.018,95% CI 1.007~1.029;RR=1.023,95% CI 1.008~1.038);女性CKD住院风险与PM2.5浓度的关系无统计学意义。PM10浓度每升高10 μg/m3,单独滞后在lag0、累积滞后在lag07时,男性CKD住院风险最高(RR=1.013,95% CI 1.006~1.020;RR=1.023,95% CI 1.012~1.035);PM10浓度每升高10 μg/m3,在单独滞后lag1、累积滞后lag07时,女性CKD住院风险最高(RR=1.013,95% CI 1.006~1.020;RR=1.024,95% CI 1.012~1.036)。见图 1

    图  1  PM2.5、PM10浓度对不同性别CKD患者日住院人次的风险效应
    Fig.  1  Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients with different genders
    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.
    下载: 全尺寸图片

    年龄分层分析结果显示,PM2.5和PM10对年龄<65岁人群CKD发病影响更为明显。PM2.5浓度每升高10 μg/m3,单独滞后在lag3、累积滞后在lag04时,<65岁人群CKD住院风险最高(RR=1.016,95% CI 1.007~1.026;RR=1.022,95% CI1.010~1.035);≥65岁人群CKD住院风险与PM2.5浓度的关系无统计学意义。PM10浓度每升高10 μg/m3,单独滞后在lag0、累积滞后在lag07时,<65岁人群CKD住院风险最高(RR=1.013,95% CI 1.007~1.019;RR=1.027,95% CI1.017~1.037);累积滞后在lag07时,≥65岁人群CKD住院风险最高(RR=1.015,95% CI 1.001~1.028)。见图 2

    图  2  PM2.5、PM10浓度对不同年龄CKD患者日住院人次的风险效应
    Fig.  2  Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients with different ages
    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.
    下载: 全尺寸图片

    季节分层分析结果显示,冷季PM2.5浓度每升高10 μg/m3,单独滞后在lag3、累积滞后在lag07时,CKD住院风险最高(RR=1.020,95% CI 1.011~1.029;RR=1.025,95% CI 1.011~1.038);暖季PM2.5浓度对CKD住院风险影响的累积滞后效应均无统计学意义。冷季PM10浓度每升高10 μg/m3,单独滞后在lag2、累积滞后在lag07时,CKD住院风险最高(RR=1.013,95% CI 1.007~1.019;RR=1.023,95% CI 1.014~1.033);暖季PM10浓度每升高10 μg/m3,单独滞后在lag7时,CKD住院风险最高(RR=1.015,95% CI 1.006~1.024),而累积滞后效应无统计学意义。见图 3

    图  3  冷暖季节PM2.5、PM10浓度对CKD患者日住院人次的风险效应
    Fig.  3  Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients in warm and cold seasons
    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.
    下载: 全尺寸图片

    PM2.5调整PM10、SO2、O3、CO,PM10调整SO2、NO2、O3、CO后,在一定时间的单独滞后和累积滞后情况下,对CKD住院风险的影响仍具有统计学意义(P<0.05),效应值幅度相对不变。见表 2

    表  2  CKD患者日住院人次风险效应的双大气污染物模型分析结果
    Table  2  Risk effect of daily hospital admissions of CKD patients with dual pollutant model
    Atmospheric pollutant Regulatory factor Single-day lag Cumulative lag
    Lag day RR (95% CI) Lag day RR (95% CI)
    PM2.5 PM10 lag2 1.012 (1.003, 1.020)* lag04 1.011 (0.999, 1.022)
    lag3 1.011 (1.002, 1.019)* lag05 1.010 (0.999, 1.022)
    lag4 1.009 (1.001, 1.018)* lag06 1.009 (0.997, 1.021)
    SO2 lag2 1.013 (1.005, 1.021)* lag04 1.015 (1.005, 1.026)*
    lag3 1.012 (1.003, 1.020)* lag05 1.015 (1.004, 1.026)*
    lag4 1.010 (1.002, 1.018)* lag06 1.014 (1.002, 1.026)*
    NO2 lag2 1.003 (0.994, 1.012) lag04 0.997 (0.984, 1.009)
    lag3 1.004 (0.995, 1.012) lag05 0.996 (0.983, 1.008)
    lag4 1.003 (0.995, 1.011) lag06 0.995 (0.982, 1.008)
    O3 lag2 1.015 (1.007, 1.024)* lag04 1.019 (1.008, 1.030)*
    lag3 1.013 (1.005, 1.021)* lag05 1.018 (1.007, 1.029)*
    lag4 1.010 (1.002, 1.019)* lag06 1.017 (1.005, 1.029)*
    CO lag2 1.010 (1.001, 1.019)* lag04 1.008 (0.995, 1.022)
    lag3 1.008 (0.999, 1.017) lag05 1.007 (0.993, 1.020)
    lag4 1.007 (0.999, 1.016) lag06 1.005 (0.991, 1.019)
    PM10 SO2 lag0 1.010 (1.004, 1.015)* lag05 1.019 (1.011, 1.025)*
    lag1 1.009 (1.004, 1.014)* lag06 1.021 (1.013, 1.029)*
    lag2 1.008 (1.003, 1.013)* lag07 1.023 (1.014, 1.031)*
    NO2 lag0 1.004 (0.998, 1.010) lag05 1.012 (1.004, 1.020)*
    lag1 1.006 (1.001, 1.011)* lag06 1.014 (1.006, 1.023)*
    lag2 1.005 (0.999, 1.010) lag07 1.015 (1.006, 1.024)*
    O3 lag0 1.011 (1.006, 1.016)* lag05 1.019 (1.012, 1.027)*
    lag1 1.010 (1.005, 1.015)* lag06 1.022 (1.014, 1.030)*
    lag2 1.009 (1.004, 1.014)* lag07 1.023 (1.014, 1.032)*
    CO lag0 1.009 (1.003, 1.015)* lag05 1.018 (1.010, 1.026)*
    lag1 1.009 (1.003, 1.014)* lag06 1.020 (1.012, 1.028)*
    lag2 1.008 (1.002, 1.013)* lag07 1.021 (1.012, 1.030)*
    *P<0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    全球空气质量监测数据表明,空气污染有害人类健康,甚至可在低于以往所知的浓度水平导致健康损害[17]。2021年9月22日WHO发布的全球空气质量指南,几乎下调了以往指南中所有大气污染物的参考水平[18]。暴露于PM2.5和PM10与CKD发病风险增加相关[19]。本研究发现,PM2.5浓度每增加10 μg/m3,单独滞后lag2时CKD住院风险最高(RR=1.014,95% CI 1.006~1.023);PM10浓度每升高10 μg/m3,单独滞后lag0时CKD住院风险最高(RR=1.012,95% CI 1.007~1.017)。Li等[20]研究发现,在2年平均PM2.5浓度为57.4 μg/m3(范围为31.3~87.5 μg/m3)情况下,PM2.5每升高10 μg/m3,罹患CKD的风险增加28%。其他研究也证实,暴露于较高的PM2.5环境中,CKD患病率升高[21-24]。Beelen等[25]研究发现,即便低于欧洲PM2.5年平均限值25 μg/m3,长期暴露于PM2.5仍可增加自然死亡率。Xu等[26]通过71 151例肾活检标本研究证实,在PM2.5浓度>70 μg/m3的地区,PM2.5每增加10 μg/m3,膜性肾病发病率增加14%。

    本研究还发现,大气颗粒物对CKD发病影响有累积滞后效应,CKD住院风险随着时间的累积增加,PM2.5在累积滞后lag04时CKD住院风险最高,PM10在累积滞后lag07时CKD住院风险最高,提示PM2.5和PM10对人群健康影响具有亚慢性效应,其他地区时间序列研究也有类似发现[27]。Wu等[28]在一项CKD患者回顾性队列研究发现,暴露于PM2.5≥31.44 μg/m3,估算的肾小球滤过率恶化风险随着PM2.5和NO2水平的增加而增加。本研究中PM2.5年均浓度为47.82 μg/m3,高于Wu等[28]研究中的PM2.5浓度阈值和欧洲PM2.5年平均限值(25.0 μg/m3[25],也高于我国国家二级年均浓度标准(PM2.5年均浓度二级标准限值为35.0 μg/m3),表明乌鲁木齐市空气污染现状不容忽视。

    在大气颗粒物导致的健康效应敏感人群识别中,本研究发现PM2.5和PM10浓度升高对男性CKD住院风险的影响高于女性,推测可能有以下原因:根据《中国人群暴露因素手册》,男性和女性的户外活动时间不同(258 min/d vs 210 min/d),男性可能会更多的暴露在户外,大气颗粒物造成的健康风险更高[29];其次,男性吸烟率高于女性,而吸烟是重要的环境危险因素[15]。考虑不同地区居民文化背景和生活习惯的差异,结果不能外推到其他城市。年龄分层中,大气颗粒物PM2.5和PM10对年龄<65岁人群CKD发病的影响较显著。Li等[20]研究发现,长期暴露于高浓度PM2.5与中国人群的CKD和蛋白尿患病风险增加有关,在城市地区、男性、<65岁的人群中更为明显,本研究结果与之一致。年龄<65岁人群因职业特点或生活模式(如工作通勤、户外活动)更容易长期暴露于大气颗粒物,且累积暴露时间更长,导致PM2.5的毒性效应更易在肾脏中积累。季节分层分析结果表明,寒冷季节的大气污染物影响高于温暖季节,乌鲁木齐市地处中国西北地区,冬季寒冷漫长,采暖期供暖长达半年,PM2.5、PM10浓度呈现冬高夏低,通过煤炭取暖会增加PM2.5的浓度,同时山谷型的地理特征不利于大气污染物稀释扩散[30],冬季大气层结构稳定,风速小,形成逆温层,使大气颗粒物难以扩散,致使大气颗粒物对疾病影响的效应增加。

    在双污染物模型中,单污染物模型中PM2.5调整PM10、SO2、O3、CO,PM10调整NO2、SO2、O3、CO后,对CKD发病的影响效应仍具有统计学意义。Lin等[31]研究结果显示,无论是在单污染物还是双污染物模型中,CKD患者生活环境中的PM2.5水平均升高,表明PM2.5水平与CKD患病风险增加有关。这提示主要污染物对CKD发病影响的效应不受调整因素的影响。

    本研究存在一定的局限性。第一,本研究为回顾性研究,时间序列较短,可能受2020年新型冠状病毒感染疫情影响,CKD患者日住院人次样本量较小。第二,国家环境空气质量监测点报告的颗粒物数据虽能反映人群大气颗粒物暴露水平,但未考虑到个体差异。第三,影响CKD的因素有很多,尽管已经消除了部分气象因素的影响,但环境因素影响CKD疾病的效应所占比例较小,不能排除其他混杂因素对人体的影响。期望未来借助卫星反演结合土地使用现状及社区家庭空气质量监测反映大气颗粒物的个体真实暴露水平,从而更科学、客观地评估大气颗粒物对CKD的影响。

    综上所述,大气颗粒物PM2.5和PM10浓度升高会导致CKD住院风险增加,且存在滞后效应,冷季时及男性、年龄<65岁的人群对PM2.5和PM10的暴露更为敏感。早期做好空气防护和健康普及,对预防CKD或改善CKD患者预后具有重要的公共卫生意义。

  • 图  1   PM2.5、PM10浓度对不同性别CKD患者日住院人次的风险效应

    Fig.  1   Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients with different genders

    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    下载: 全尺寸图片

    图  2   PM2.5、PM10浓度对不同年龄CKD患者日住院人次的风险效应

    Fig.  2   Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients with different ages

    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    下载: 全尺寸图片

    图  3   冷暖季节PM2.5、PM10浓度对CKD患者日住院人次的风险效应

    Fig.  3   Risk effect of PM2.5 and PM10 concentrations on daily hospital admissions of CKD patients in warm and cold seasons

    A, B: PM2.5; C, D: PM10. A, C: Single-day lag; B, D: Cumulative lag. *P < 0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    下载: 全尺寸图片

    表  1   不同滞后时间条件下大气颗粒物对CKD患者日住院人次的影响

    Table  1   Influence of atmospheric particulate matter on daily hospital admissions of CKD patients with different lag days  RR (95% CI)

    Single-day lag Cumulative lag
    Lag day PM2.5 PM10 Lag day PM2.5 PM10
    lag0 1.008 (0.999, 1.017) 1.012 (1.007, 1.017)* lag0 1.008 (0.999, 1.017) 1.012 (1.007, 1.017)*
    lag1 1.008 (0.999, 1.016) 1.011 (1.006, 1.016)* lag01 1.010 (1.000, 1.019)* 1.014 (1.009, 1.020)*
    lag2 1.014 (1.006, 1.023)* 1.009 (1.004, 1.014)* lag02 1.014 (1.004, 1.024)* 1.017 (1.011, 1.023)*
    lag3 1.012 (1.004, 1.020)* 1.007 (1.002, 1.012)* lag03 1.016 (1.006, 1.027)* 1.019 (1.012, 1.025)*
    lag4 1.009 (1.001, 1.018)* 1.008 (1.003, 1.013)* lag04 1.018 (1.007, 1.029)* 1.020 (1.013, 1.027)*
    lag5 1.002 (0.994, 1.010) 1.004 (0.999, 1.009) lag05 1.017 (1.006, 1.028)* 1.020 (1.013, 1.028)*
    lag6 0.998 (0.990, 1.007) 1.007 (1.002, 1.012)* lag06 1.015 (1.004, 1.027)* 1.023 (1.015, 1.031)*
    lag7 0.997 (0.988, 1.005) 1.004 (0.999, 1.009) lag07 1.014 (1.002, 1.026)* 1.024 (1.016, 1.032)*
    *P<0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.

    表  2   CKD患者日住院人次风险效应的双大气污染物模型分析结果

    Table  2   Risk effect of daily hospital admissions of CKD patients with dual pollutant model

    Atmospheric pollutant Regulatory factor Single-day lag Cumulative lag
    Lag day RR (95% CI) Lag day RR (95% CI)
    PM2.5 PM10 lag2 1.012 (1.003, 1.020)* lag04 1.011 (0.999, 1.022)
    lag3 1.011 (1.002, 1.019)* lag05 1.010 (0.999, 1.022)
    lag4 1.009 (1.001, 1.018)* lag06 1.009 (0.997, 1.021)
    SO2 lag2 1.013 (1.005, 1.021)* lag04 1.015 (1.005, 1.026)*
    lag3 1.012 (1.003, 1.020)* lag05 1.015 (1.004, 1.026)*
    lag4 1.010 (1.002, 1.018)* lag06 1.014 (1.002, 1.026)*
    NO2 lag2 1.003 (0.994, 1.012) lag04 0.997 (0.984, 1.009)
    lag3 1.004 (0.995, 1.012) lag05 0.996 (0.983, 1.008)
    lag4 1.003 (0.995, 1.011) lag06 0.995 (0.982, 1.008)
    O3 lag2 1.015 (1.007, 1.024)* lag04 1.019 (1.008, 1.030)*
    lag3 1.013 (1.005, 1.021)* lag05 1.018 (1.007, 1.029)*
    lag4 1.010 (1.002, 1.019)* lag06 1.017 (1.005, 1.029)*
    CO lag2 1.010 (1.001, 1.019)* lag04 1.008 (0.995, 1.022)
    lag3 1.008 (0.999, 1.017) lag05 1.007 (0.993, 1.020)
    lag4 1.007 (0.999, 1.016) lag06 1.005 (0.991, 1.019)
    PM10 SO2 lag0 1.010 (1.004, 1.015)* lag05 1.019 (1.011, 1.025)*
    lag1 1.009 (1.004, 1.014)* lag06 1.021 (1.013, 1.029)*
    lag2 1.008 (1.003, 1.013)* lag07 1.023 (1.014, 1.031)*
    NO2 lag0 1.004 (0.998, 1.010) lag05 1.012 (1.004, 1.020)*
    lag1 1.006 (1.001, 1.011)* lag06 1.014 (1.006, 1.023)*
    lag2 1.005 (0.999, 1.010) lag07 1.015 (1.006, 1.024)*
    O3 lag0 1.011 (1.006, 1.016)* lag05 1.019 (1.012, 1.027)*
    lag1 1.010 (1.005, 1.015)* lag06 1.022 (1.014, 1.030)*
    lag2 1.009 (1.004, 1.014)* lag07 1.023 (1.014, 1.032)*
    CO lag0 1.009 (1.003, 1.015)* lag05 1.018 (1.010, 1.026)*
    lag1 1.009 (1.003, 1.014)* lag06 1.020 (1.012, 1.028)*
    lag2 1.008 (1.002, 1.013)* lag07 1.021 (1.012, 1.030)*
    *P<0.05. CKD: Chronic kidney disease; RR: Relative risk; CI: Confidence interval.
  • [1] World Health Organization. Billions of people still breathe unhealthy air: new WHO data[EB/OL]. (2022-04-04)[2023-07-01]. https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data.
    [2] COCKWELL P, FISHER L A. The global burden of chronic kidney disease[J]. Lancet, 2020, 395(10225): 662-664. DOI: 10.1016/S0140-6736(19)32977-0.
    [3] 中国医药教育协会临床肾脏病专委会, 慢性肾脏病多学科临床管理路径专家共识委员会. 慢性肾脏病多学科临床管理路径专家共识[J]. 中华内科杂志, 2024, 63(12): 1216-1227. DOI: 10.3760/cma.j.cn112138-20240910-00566.
    [4] 中华预防医学会肾脏病预防与控制专业委员会. 中国慢性肾脏病早期评价与管理指南[J]. 中华内科杂志, 2023, 62(8): 902-930. DOI: 10.3760/cma.j.cn112138-20221013-00755.
    [5] WANG S, CHEN R, LIU Q, et al. Prevalence, awareness and treatment of chronic kidney disease among middle-aged and elderly: the China Health and Retirement Longitudinal Study[J]. Nephrology (Carlton), 2015, 20(7): 474-484. DOI: 10.1111/nep.12449.
    [6] JIAN Y, ZHU D, ZHOU D, et al. ARIMA model for predicting chronic kidney disease and estimating its economic burden in China[J]. BMC Public Health, 2022, 22(1): 2456. DOI: 10.1186/s12889-022-14959-z.
    [7] CHRONIC KIDNEY DISEASE COLLABORATION G B D. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225): 709-733. DOI: 10.1016/S0140-6736(20)30045-3.
    [8] 林彬彬, 洪新如, 孙庆华. 大气颗粒物对肾脏影响的研究进展[J]. 中国全科医学, 2016, 19(11): 1250-1254. DOI: 10.3969/j.issn.1007-9572.2016.11.004.
    [9] 陈睿, 楚红, 李鹏飞, 等. 大气颗粒物对慢性肾脏病影响的研究进展[J]. 生物医学转化, 2022, 3(2): 2-8. DOI: 10.12287/j.issn.2096-8965.20220201.
    [10] BOWE B, XIE Y, LI T, et al. Particulate matter air pollution and the risk of incident CKD and progression to ESRD[J]. J Am Soc Nephrol, 2018, 29(1): 218-230. DOI: 10.1681/ASN.2017030253.
    [11] 梁琛瑜, 王万州, 马麟, 等. 大气NO2长期暴露与中国成人慢性肾脏病的关联: 基于中国慢性肾脏病流行病学调查[J]. 环境与职业医学, 2021, 38(6): 566-572. DOI: 10.13213/j.cnki.jeom.2021.20597.
    [12] 杨超, 李鹏飞, 张路霞. 大气污染及气候因素对肾脏疾病的影响及其生物学机制研究进展[J]. 解放军医学杂志, 2022, 47(1): 72-77. DOI: 10.11855/j.issn.0577-7402.2022.01.0072.
    [13] 上海慢性肾脏病早发现及规范化诊治与示范项目专家组, 高翔, 梅长林. 慢性肾脏病筛查诊断及防治指南[J]. 中国实用内科杂志, 2017, 37(1): 28-34. DOI: 10.19538/j.nk2017010108.
    [14] LIANG Z, WANG W, WANG Y, et al. Urbanization, ambient air pollution, and prevalence of chronic kidney disease: a nationwide cross-sectional study[J]. Environ Int, 2021, 156: 106752. DOI: 10.1016/j.envint.2021.106752.
    [15] 滕婉莹, 杨浩峰, 马龙. 乌鲁木齐市大气PM2.5和PM10与居民呼吸系统疾病急救人次的关系[J]. 环境与职业医学, 2020, 37(6): 594-598. DOI: 10.13213/j.cnki.jeom.2020.19753.
    [16] 环境保护部, 国家质量监督检验检疫总局. 环境空气质量标准: GB 3095—2012[S/OL]. (2012-02-19) [2023-07-03]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020250407403788086276.pdf.
    [17] VELASCO R P, JAROSIŃSKA D. Update of the WHO global air quality guidelines: systematic reviews—an introduction[J]. Environ Int, 2022, 170: 107556. DOI: 10.1016/j.envint.2022.107556.
    [18] WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide[J]. Geneva: World Health Organization, 2021.
    [19] 刘书馨, 肖佳, 何昕晖, 等. 空气污染与慢性肾病关系的研究进展[J]. 公共卫生与预防医学, 2020, 31(3): 117-121. DOI: 10.3969/j.issn.1006-2483.2020.03.028.
    [20] LI G, HUANG J, WANG J, et al. Long-term exposure to ambient PM2.5 and increased risk of CKD prevalence in China[J]. J Am Soc Nephrol, 2021, 32(2): 448-458. DOI: 10.1681/ASN.2020040517.
    [21] BI J, BARRY V, WEIL E J, et al. Short-term exposure to fine particulate air pollution and emergency department visits for kidney diseases in the Atlanta metropolitan area[J]. Environ Epidemiol, 2021, 5(4): e164. DOI: 10.1097/EE9.0000000000000164.
    [22] BRAGG-GRESHAM J, MORGENSTERN H, MCCLELLAN W, et al. County-level air quality and the prevalence of diagnosed chronic kidney disease in the US Medicare population[J]. PLoS One, 2018, 13(7): e0200612. DOI: 10.1371/journal.pone.0200612.
    [23] BLUM M F, SURAPANENI A, STEWART J D, et al. Particulate matter and albuminuria, glomerular filtration rate, and incident CKD[J]. Clin J Am Soc Nephrol, 2020, 15(3): 311-319. DOI: 10.2215/CJN.08350719.
    [24] MEHTA A J, ZANOBETTI A, BIND M C, et al. Long-term exposure to ambient fine particulate matter and renal function in older men: the veterans administration normative aging study[J]. Environ Health Perspect, 2016, 124(9): 1353-1360. DOI: 10.1289/ehp.1510269.
    [25] BEELEN R, RAASCHOU-NIELSEN O, STAFOGGIA M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project[J]. Lancet, 2014, 383(9919): 785-795. DOI: 10.1016/S0140-6736(13)62158-3.
    [26] XU X, WANG G, CHEN N, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China[J]. J Am Soc Nephrol, 2016, 27(12): 3739-3746. DOI: 10.1681/ASN.2016010093.
    [27] XU Y, ANDERSSON E M, KRAGE CARLSEN H, et al. Associations between long-term exposure to low-level air pollution and risk of chronic kidney disease-findings from the Malmö Diet and Cancer cohort[J]. Environ Int, 2022, 160: 107085. DOI: 10.1016/j.envint.2022.107085.
    [28] WU Y H, WU C D, CHUNG M C, et al. Long-term exposure to fine particulate matter and the deterioration of estimated glomerular filtration rate: a cohort study in patients with pre-end-stage renal disease[J]. Front Public Health, 2022, 10: 858655. DOI: 10.3389/fpubh.2022.858655.
    [29] 吴瑞凯, 张莹, 杨浩峰, 等. 昼夜温差对乌鲁木齐市慢性肾脏病日住院人次影响的时间序列分析[J]. 医学新知, 2024, 34(2): 137-148. DOI: 10.12173/j.issn.1004-5511.202309023.
    [30] 张娣, 陈学刚, 赵直. 乌鲁木齐市采暖期大气污染物浓度时空变化分析[J]. 环境科学与技术, 2021, 44(10): 187-195. DOI: 10.19672/j.cnki.1003-6504.0320.21.338.
    [31] LIN H C, HUNG P H, HSIEH Y Y, et al. Long-term exposure to air pollutants and increased risk of chronic kidney disease in a community-based population using a fuzzy logic inference model[J]. Clin Kidney J, 2022, 15(10): 1872-1880. DOI: 10.1093/ckj/sfac114.
WeChat 点击查看大图
图(3)  /  表(2)
出版历程
  • 收稿日期:  2023-07-04
  • 接受日期:  2024-01-08

目录

    /

    返回文章
    返回