Value of three dimensional high-resolution vessel wall magnetic resonance imaging in identifying culprit plaques in non-stenotic intracranial atherosclerosis of posterior circulation
-
摘要:
目的 利用三维高分辨率磁共振血管壁成像(3D hr-VW-MRI)分析后循环非狭窄性颅内动脉粥样硬化斑块的影像学特征,明确其在责任斑块评估中的价值。 方法 回顾性纳入2019年1月至2021年1月于我院就诊的93例后循环非狭窄性颅内动脉粥样硬化患者,平均年龄为(62.94±9.70)岁,男67例、女26例。基于T1加权成像(T1WI)和T1WI增强图像分析斑块的影像学特征,包括最狭窄层面管腔面积、最狭窄层面最大管壁厚度、最狭窄层面最小管壁厚度、狭窄率、斑块负荷、血管重构指数、偏心指数、最狭窄层面斑块强化率及斑块内出血情况。对比分析责任斑块组与非责任斑块组影像学特征的差异,其中责任斑块定义为患者出现缺血性脑卒中/短暂性脑缺血发作(TIA)的临床症状,且头颅MRI弥散加权成像(DWI)和液体衰减反转恢复T2加权成像(T2-FLAIR)上相对应的责任血管供血区出现高信号,即新鲜梗死;非责任斑块定义为患者出现可疑缺血性脑卒中/TIA的临床症状,但头颅MRI DWI和T2-FLAIR上相对应的责任血管供血区均未出现异常高信号。 结果 责任斑块组患者61例,非责任斑块组患者32例。责任斑块组的高脂血症患者所占比例、美国国立卫生研究院卒中量表(NIHSS)评分、最狭窄层面斑块强化率及斑块内出血发生率均高于非责任斑块组(均P<0.05)。多因素logistic回归分析显示,NIHSS评分(OR=1.799,95% CI 1.303~2.484,P<0.001)、最狭窄层面斑块强化率(OR=1.076,95% CI 1.027~1.128,P=0.002)及斑块内出血(OR=30.708,95% CI 2.563~367.925,P=0.007)与责任斑块独立相关。 结论 NIHSS评分、最狭窄层面斑块强化率及斑块内出血是后循环非狭窄性动脉粥样硬化患者责任斑块的独立危险因素,这些指标可能有助于识别此类责任斑块,并能够识别具有此类特征斑块的个体,从而为早期预防性干预提供依据。 -
关键词:
- 三维高分辨率磁共振血管壁成像 /
- 非狭窄性颅内动脉粥样硬化斑块 /
- 后循环 /
- 缺血性卒中 /
- 责任斑块
Abstract:Objective To employ three dimensional high-resolution vessel wall magnetic resonance imaging (3D hr-VW-MRI) for analyzing the imaging characteristics of posterior circulation non-stenotic intracranial atherosclerotic plaque and to discuss its diagnostic value in identifying culprit plaques. Methods Ninety-three patients (age [62.94±9.70] years old, 67 males, 26 females) with non-stenotic atherosclerosis in our hospital from Jan. 2019 to Jan. 2021 were retrospectively recruited. The imaging features of plaques, including luminal area, maximum wall thickness and minimum wall thickness at the most stenotic site, stenosis rate, plaque burden, remodeling index, eccentricity index, enhancement ratio at the most stenotic site, and intraplaque hemorrhage, were measured based on T1-weighted imaging (T1WI) and contrast-enhanced T1WI. The culprit plaque was defined as a lesion arising from the responsible vascular supply area to a fresh infarction on the diffusion weighted imaging (DWI) and T2 fluid attenuated inversion recovery (T2-FLAIR) images with accompanying ischemic stroke/transient ischemic attack (TIA). A plaque was considered to be a nonculprit plaque when it occurred in patients with presumed ischemic stroke/TIA, but without an infarct on DWI and T2-FLAIR. Results Sixty-one culprit plaques and 32 non-culprit plaques were analyzed. The proportions of patients with hyperlipidemia, National Institutes of Health stroke scale (NIHSS) score, narrowest plaque enhancement rate, and incidence of intraplaque hemorrhage in the culprit plaque group were significantly higher than those in the non-culprit plaque group (all P < 0.05). Multivariate logistic regression analyses showed that NIHSS score (odds ratio [OR] =1.799, 95% confidence interval [CI] 1.303-2.484, P < 0.001), enhancement ratio (OR=1.076, 95% CI1.027-1.128, P=0.002) and intraplaque hemorrhage (OR=30.708, 95% CI 2.563-367.925, P=0.007) were associated with plaque type. Conclusion NIHSS score, enhancement ratio at the most stenotic site, and intraplaque hemorrhage are independent risk factors for culprit plaques in patients with posterior circulation non-stenotic intracranial atherosclerotic disease. These indicators may help identify such culprit plaques and could be used to screen individuals with plaques having these characteristics, thereby providing a basis for early preventive interventions. -
颅内动脉粥样硬化是缺血性脑卒中的主要病因,约占亚洲人群卒中病因的40%,在中国人群中的发病率亦较高[1]。虽然目前将管腔狭窄程度作为评估发生动脉粥样硬化性缺血性脑卒中风险的主要标准[2],然而在致残及致死性卒中患者中,轻度和中度颅内动脉狭窄在尸检中的发现率越来越高,因此非狭窄性动脉粥样硬化斑块导致严重缺血性脑卒中的风险容易被低估[3-4]。目前,颅内动脉粥样硬化疾病的影像学评估已从通过测量管腔狭窄程度间接评估转向直接评估动脉粥样硬化斑块本身,血管重塑模式的作用和动脉粥样硬化斑块易损性特征的临床意义亦越来越重要[4]。虽然近年来非狭窄性斑块的研究越来越受到重视,然而相关研究报道仍然不足,且大多数集中于前循环的研究[5-8],尚未开展后循环非狭窄性斑块的研究。本研究基于三维高分辨率磁共振血管壁成像(three dimensional high-resolution vessel wall magnetic resonance imaging,3D hr-VW-MRI)研究颅内后循环非狭窄性动脉粥样硬化斑块的影像学特征与责任斑块的相关性,明确其在评估后循环非狭窄性颅内动脉粥样硬化责任斑块方面的临床价值。
1 资料和方法
1.1 病例资料
本研究由海军军医大学第一附属医院伦理委员会审核批准。回顾性分析2019年1月至2021年1月我院收治的脑血管病患者资料。纳入标准:(1)经CT血管成像(computed tomography angiography,CTA)或磁共振血管成像(magnetic resonance angiography,MRA)确定的后循环非狭窄性颅内动脉粥样硬化斑块(即动脉管腔狭窄程度<50%);(2)患者出现症状后的1个月内行3D hr-VW-MRI检查;(3)年龄>18岁。排除标准:(1)经CTA、MRA或超声确定的颅外动脉、前循环动脉狭窄程度≥50%;(2)经CTA或MRA确定的前循环颅内动脉管腔狭窄程度<50%,但前循环供血区弥散加权成像(diffusion weighted imaging,DWI)显示有新鲜梗死灶;(3)非动脉粥样硬化性颅内动脉疾病(如动脉瘤、血管炎、烟雾病或颅内动脉夹层);(4)图像质量差,不能进行诊断评估;(5)存在MRI检查禁忌证。从临床病历系统中收集患者的临床资料,包括性别、年龄、高血压病史、糖尿病史、吸烟史、高脂血症史和冠心病史。在入院时基于美国国立卫生研究院卒中量表(National Institutes of Health stroke scale,NIHSS)评分(范围为0~42分,0分为正常,42分为重度神经受损)对所有患者进行神经功能评估。
1.2 MRI检查
所有患者均使用20通道头颈部线圈在3.0 T MRI检查平台(Skyra,德国Siemens Healthcare公司)完成检查。头颅定位先后行三维时间飞跃法磁共振血管成像(three dimensional time-of-flight magnetic resonance angiography,3D TOF-MRA)、DWI、T1加权成像(T1-weighted imaging,T1WI)、液体衰减反转恢复T2加权成像(T2-fluid attenuated inversion recovery,T2-FLAIR)、T1WI增强扫描。T1WI及T1WI增强扫描均采用矢状面3D头颈联合容积扫描、各向同性可变翻转角快速自旋回波序列。各扫描序列参数如下。3D TOF-MRA序列:重复时间(repetition time,TR)/回波时间(echo time,TE)为21 ms/3.43 ms,层厚为0.7 mm,层数为144,视野(field of view,FOV)为182 mm×200 mm,矩阵为331×384,扫描时间为4 min 58 s。DWI序列:TR/TE为5 300 ms/74.3 ms,FOV为240 mm×240 mm,矩阵为320×256,层数为50,层厚为1.5 mm,体素为1.5 mm×1.5 mm×1.5 mm,扫描时间为5 min 17 s。T2-FLAIR序列:TR/TE为6 000 ms/85 ms,FOV为220 mm×220 mm,矩阵为256×192,层数为21,层厚为5.0 mm,体素为0.4 mm×0.4 mm×5.0 mm,扫描时间为1 min 26 s。T1WI及T1WI增强序列:各向同性分辨率为0.5 mm,TR/TE为800 ms/17 ms,FOV为256 mm×160 mm,矩阵为416×268,层数为240,回波链长度为60,体素为0.5 mm×0.5 mm×0.5 mm,扫描时间为6 min 45 s;静脉注射对比剂(钆喷替酸葡甲胺,德国Bayer公司;注射流速为2 mL/s,注射剂量为0.2 mmol/kg)后进行T1WI增强扫描。
1.3 图像后处理及分析
所有图像均由1名有15年血管壁成像阅片经验的影像医学科医师在不了解患者信息的情况下,在3D hr-VW-MRI图像上对血管壁定量特征进行评估和测量。
动脉粥样硬化斑块定义为高分辨率图像上显示的局限性管壁增厚,伴或不伴有管腔狭窄。责任斑块定义为患者出现缺血性脑卒中/短暂性脑缺血发作(transient ischemic attack,TIA)的临床症状,且头颅MRI DWI和T2-FLAIR上相对应的责任血管供血区出现高信号,即新鲜梗死;非责任斑块定义为患者出现可疑缺血性脑卒中/TIA的临床症状,但头颅MRI DWI和T2-FLAIR上相对应的责任血管供血区均未出现异常高信号[9]。如果责任血管区域内存在多个斑块,则选择最狭窄层面处的斑块作为责任斑块进行分析[9]。
先对图像在三维后处理工作站进行多平面重建获得横断面图像,随后进行测量分析。本研究使用的后处理软件是Horos version 3.3.6软件(macOS 10.11+)。在T1WI横断位图像上手动勾画出最狭窄层面、近端正常层面、远端正常层面的管腔内壁和外壁的边界,将勾画好的轮廓复制到对应相同层面的T1WI增强扫描图像上,测量得到以下定量参数:最狭窄层面管腔直径、正常层面管腔直径[(狭窄近端管腔直径+狭窄远端管腔直径)/2]、最狭窄层面管腔面积、最狭窄层面血管外壁面积、最狭窄层面管壁面积、正常层面管腔面积、正常层面血管外壁面积、正常层面管壁面积、最狭窄层面最大管壁厚度、最狭窄层面最小管壁厚度、最狭窄层面增强前管壁信号强度、最狭窄层面增强后管壁信号强度;同时在相邻大脑皮质中选择15 mm2的圆形感兴趣区,测量增强前相邻皮质信号强度和增强后相邻皮质信号强度。斑块内出血(intraplaque hemorrhage)定义为平扫T1WI图像上斑块内信号强度/邻近肌肉组织信号强度>1.5。计算狭窄率、斑块负荷、血管重构指数、偏心指数、强化率,计算公式参照文献[10]。
为了评估测量的可重复性,从最终入组的93例患者中随机选取30例患者,由另1名有14年血管壁成像阅片经验的影像医学科医师同样运用Horos version 3.3.6软件(macOS 10.11+)在3D hr-VW-MRI图像上对以上所有定量参数进行测量。
1.4 统计学处理
所有统计学分析均采用SPSS 20.0软件完成。运用Shapiro-Wilk检验对计量资料进行正态性检验,服从正态分布的计量资料以x±s表示,两组间比较采用独立样本t检验;偏态分布的计量资料以M(Q1,Q3)表示,两组间比较采用Mann-Whitney U检验。计数资料以例数和百分数表示,两组间比较采用Pearson χ2检验。运用多因素logistic回归分析不同变量与责任斑块的相关性。运用ROC曲线分析进行诊断效能的评价。运用组内相关系数(intraclass correlation coefficient,ICC)评估2位医师的测量一致性,ICC>0.75提示2位医师测量一致性好。检验水准(α)为0.05。
2 结果
2.1 患者基线资料
2019年1月至2021年1月我院共有142例患者符合纳入标准,再按照排除标准排除49例患者,其中经CTA、MRA或超声确定的颅外动脉、前循环动脉狭窄程度≥50%者10例,经CTA或MRA确定的前循环颅内动脉管腔狭窄程度<50%但前循环供血区DWI显示有新鲜梗死灶者4例,动脉瘤11例,血管炎3例,烟雾病4例,颅内动脉夹层11例,图像质量差6例。最终93例患者纳入研究,平均年龄为(62.94±9.70)岁,男67例、女26例。责任斑块61个,非责任斑块32个。责任斑块组患者平均年龄为(63.85±8.53)岁,男43例、女18例;非责任斑块组患者平均年龄为(61.19±11.55)岁,男24例、女8例。责任斑块组的高脂血症患者所占比例、NIHSS评分均高于非责任斑块组(均P<0.05)。其他基线资料如年龄、性别、吸烟史、饮酒史、糖尿病史、高血压病史、冠心病史等在两组间差异均无统计学意义(均P>0.05)。对于斑块位置分布,责任斑块组中斑块位于基底动脉44例(72.1%)、椎动脉17例(27.9%),非责任斑块组中斑块位于基底动脉22例(68.8%)、椎动脉10例(31.2%),两组间差异无统计学意义(P>0.05)。见表 1。
表 1 责任斑块组与非责任斑块组后循环非狭窄性颅内动脉粥样硬化患者的临床特征比较Table 1 Comparison of clinical features between culprit and non-culprit plaque groups in posterior circulationCharacteristic Culprit group N=61 Non-culprit group N=32 Statistic P value Age/year, x±s 63.85±8.53 61.19±11.55 t=1.263 0.210 Gender, n (%) χ2=0.047 0.828 Male 43 (70.5) 24 (75.0) Female 18 (29.5) 8 (25.0) Smoking, n (%) 17 (27.9) 14 (43.8) χ2=1.721 0.190 Alcohol use, n (%) 15 (24.6) 5 (15.6) χ2=0.539 0.463 Diabetes mellitus, n (%) 34 (55.7) 13 (40.6) χ2=1.361 0.243 Hypertension, n (%) 50 (82.0) 23 (71.9) χ2=0.739 0.390 Coronary artery disease, n (%) 4 (6.6) 2 (6.2) χ2=0.000 1.000 Hyperlipidemia, n (%) 45 (73.8) 16 (50.0) χ2=4.254 0.039 NIHSS score, M (Q1, Q3) 5 (2, 6) 0 (1, 2) Z=-5.449 <0.001 Plaque location, n (%) χ2=0.010 0.920 Basilar artery 44 (72.1) 22 (68.8) Vertebral artery 17 (27.9) 10 (31.2) Culprit group: The patient with clinical symptoms of ischemic stroke/TIA, and high signal appeared in the corresponding vascular supply area on head MRI DWI and T2-FLAIR; Non-culprit group: The patient with suspected clinical symptoms of ischemic stroke/TIA, but there was no abnormal high signal of the corresponding vascular supply area on head MRI DWI or T2-FLAIR. NIHSS: National Institutes of Health stroke scale; TIA: Transient ischemic attack; MRI: Magnetic resonance imaging; DWI: Diffusion weighted imaging; T2-FLAIR: T2 fluid attenuated inversion recovery. 2.2 影像学特征
影像学特征分析结果(表 2)显示,责任斑块组最狭窄层面斑块强化率及斑块内出血发生率均高于非责任斑块组(均P<0.05),而两组患者的最狭窄层面管腔面积、最狭窄层面最大管壁厚度、最狭窄层面最小管壁厚度、狭窄率、斑块负荷、血管重构指数、偏心指数差异均无统计学意义(均P>0.05)。
表 2 责任斑块组与非责任斑块组后循环非狭窄性颅内动脉粥样硬化患者的影像学特征比较Table 2 Comparison of imaging features between culprit and non-culprit plaque groups in posterior circulation non-stenotic intracranial atherosclerosis patientsCharacteristic Culprit group N=61 Non-culprit group N=32 Statistic P value Luminal area (stenosis site)/mm2, x±s 5.44±2.56 5.43±2.57 t=0.017 0.986 Maximum wall thickness (stenosis site)/mm, x±s 1.67±0.38 1.66±0.45 t=0.164 0.870 Minimum wall thickness (stenosis site)/mm, x±s 0.69±0.13 0.71±0.15 t=-0.591 0.556 Stenosis rate/%, x±s 29.39±11.70 25.37±13.11 t=1.511 0.134 Plaque burden/%, x±s 68.47±8.85 65.78±8.33 t=1.423 0.158 Remodeling index/%, x±s 103.33±22.87 103.11±27.80 t=0.042 0.967 Eccentricity index/%, x±s 57.52±9.28 55.64±10.68 t=0.881 0.381 Enhancement ratio (stenosis site)/%, x±s 36.49±20.56 19.53±17.75 t=3.955 <0.001 Intraplaque hemorrhage, n (%) 18 (29.5) 1 (3.1) χ2=7.438 0.020 Culprit group: The patient with clinical symptoms of ischemic stroke/TIA, and high signal appeared in the corresponding vascular supply area on head MRI DWI and T2-FLAIR; Non-culprit group: The patient with suspected clinical symptoms of ischemic stroke/TIA, but there was no abnormal high signal of the corresponding vascular supply area on head MRI DWI or T2-FLAIR. TIA: Transient ischemic attack; MRI: Magnetic resonance imaging; DWI: Diffusion weighted imaging; T2-FLAIR: T2 fluid attenuated inversion recovery. 2.3 责任斑块影响因素分析
将是否为责任斑块作为因变量(非责任斑块=0,责任斑块=1),表 1和表 2中P<0.05的参数作为自变量,纳入logistic回归分析,结果见表 3。单因素回归分析显示,NIHSS评分、高脂血症、最狭窄层面斑块强化率、斑块内出血均为责任斑块的影响因素。多因素logistic回归分析显示,NIHSS评分、最狭窄层面斑块强化率、斑块内出血与责任斑块独立相关。回归模型的拟合度(调整R2=0.724)较好。ROC曲线分析结果显示,NIHSS评分预测责任斑块的AUC值为0.842,灵敏度为0.951,特异度为0.594;最狭窄层面斑块强化率预测责任斑块的AUC值为0.790,灵敏度为0.803,特异度为0.781;NIHSS评分联合最狭窄层面斑块强化率预测责任斑块的AUC值提高到0.889,灵敏度为0.875,特异度为0.853。
表 3 后循环非狭窄性颅内动脉粥样硬化患者责任斑块预测因子的logistic回归分析Table 3 Logistic regression analysis of predictors for culprit plaques in posterior circulation non-stenotic intracranial atherosclerosis patientsCharacteristic Univariate analysis Multivariate analysis OR (95% CI) P value OR (95% CI) P value NIHSS score 1.826 (1.382, 2.414) <0.001 1.799 (1.303, 2.484) <0.001 Hyperlipidemia 2.812 (1.146, 6.901) 0.024 1.246 (0.297, 5.234) 0.764 Enhancement ratio (stenosis site) 1.061 (1.025, 1.098) 0.001 1.076 (1.027, 1.128) 0.002 Intraplaque hemorrhage 15.122 (1.924, 118.864) 0.010 30.708 (2.563, 367.925) 0.007 NIHSS: National Institutes of Health stroke scale; OR: Odds ratio; CI: Confidence interval. 2.4 2名医师测量的一致性
2名测量者在斑块影像学特征测量方面的一致性均较好,均ICC>0.75。见表 4。
表 4 2名测量者影像学特征测量结果的一致性分析Table 4 Interreader agreement between 2 readers for imaging characteristicsCharacteristic Reader 1, x±s Reader 2, x±s ICC (95% CI) Luminal area (stenosis site)/mm2 5.12±2.68 5.13±2.71 0.990 (0.978, 0.995) Maximum wall thickness (stenosis site)/mm 1.59±0.36 1.57±0.47 0.890 (0.770, 0.947) Minimum wall thickness (stenosis site)/mm 0.67±0.11 0.66±0.17 0.756 (0.492, 0.884) Stenosis rate/% 30.47±12.27 31.03±13.05 0.975 (0.947, 0.988) Plaque burden/% 67.48±9.43 67.04±10.03 0.983 (0.964, 0.992) Remodeling index/% 96.41±19.38 95.22±18.87 0.985 (0.969, 0.993) Eccentricity index/% 55.84±10.24 54.24±11.99 0.895 (0.782, 0.950) Enhancement ratio (stenosis site)/% 23.22±15.74 23.97±16.16 0.992 (0.983, 0.996) ICC: Intraclass correlation coefficient; CI: Confidence interval. 3 讨论
本研究基于3D hr-VW-MRI评估后循环非狭窄性颅内动脉粥样硬化斑块的血管壁影像学特征与责任斑块的相关性。到目前为止,绝大多数的颅内动脉管壁成像研究仍然集中在中重度狭窄的动脉粥样硬化斑块或者轻中度前循环非狭窄性动脉粥样硬化斑块[5-6, 8, 11-12]。后循环非狭窄性颅内动脉粥样硬化斑块的影像学特征尚未得到广泛研究。
研究表明,斑块强化是颅内动脉和颈动脉中斑块不稳定性的重要影像学特征,而且往往预示着急性缺血性脑卒中的高发生率[13-14]。斑块强化与斑块活动性炎症、新生血管形成、血管内皮通透性增加密切相关,这些特征促进了造影剂的集聚[15]。有研究表明在重度狭窄的颅内动脉粥样硬化患者中,斑块强化与狭窄程度呈正相关,然而,狭窄部位缓慢流动的血流可能会随着管腔狭窄的加重而增加造影剂的滞留,夸大了斑块的强化程度[16]。后期的结果证实斑块增强可作为不稳定斑块的重要MRI特征,与管腔狭窄程度无关[6]。前循环的研究结果表明,非狭窄性粥样硬化斑块的强化与卒中事件密切相关,可以作为非狭窄性粥样硬化斑块易损斑块的预测指标,弥补了非狭窄性动脉粥样硬化斑块所致缺血性脑卒中的危险分层[6, 8]。此外,多项研究提示,斑块强化等级及强化率与缺血性脑血管事件的复发亦密切相关,表明斑块强化程度及斑块强化率在预测缺血性脑卒中复发中有很大潜力[10, 13, 17-19]。斑块强化越强表明斑块越脆弱,越容易破裂,更可能导致远端分支血管阻塞,引起缺血性脑卒中的发生。还有研究结果显示,远端动脉到动脉的栓塞与斑块强化密切相关;该研究提出,当易损斑块的纤维帽破裂时,斑块内容物和附壁血栓可落入下游血管的远端区域,并导致动脉到动脉栓塞[20]。本研究中多因素logistic回归分析显示,后循环非狭窄性颅脑动脉粥样硬化患者的最狭窄层面斑块强化率与责任斑块独立相关,与前期前循环研究结果[6, 8, 10, 13, 17-19]相符,进一步证实了后循环狭窄程度较轻的易损斑块亦可能破裂或引起动脉到动脉栓塞,从而导致缺血性脑卒中的发生。
在颈动脉狭窄程度较轻的情况下,斑块内出血已经被证实为症状性缺血性脑卒中的独立危险因素,而在中重度狭窄性斑块患者中并不是独立危险因素[21]。斑块内出血被认为是由斑块新生血管破裂引起的,在这些斑块中,微血管很脆弱,没有平滑肌细胞的支持,且内皮细胞局灶性不连续,斑块内外渗出和出血的存在被认为是导致脂质沉积和促进炎症发展的特征性表现[22]。因此,斑块内出血是反映动脉粥样硬化斑块易损性的特征,并与斑块突然增大、血栓形成和栓塞密切相关。在非狭窄性斑块中,斑块的这种变化可能会使先前稳定的斑块变成不稳定斑块,从而发生卒中事件。相反,对于狭窄程度较重但无斑块内出血的斑块,通常可能由其他因素引起斑块不稳定,如斑块体积增大、富含脂质的坏死核心新生血管形成或炎症等[23]。对于症状性大脑中动脉斑块进行的研究显示,斑块内出血的比例比无症状性斑块高[23]。Yu等[22]观察到症状性基底动脉粥样硬化斑块中,斑块内出血的发生率高于症状性大脑中动脉斑块(54.5% vs 19.6%)。本研究结果亦显示,症状性后循环非狭窄性颅内动脉粥样硬化斑块的斑块内出血发生率为29.5%。因本研究大部分斑块位于基底动脉,与大脑中动脉相比,基底动脉具有更大的管壁面积,可以更好地显示横断面成像;此外,与大脑中动脉相比,后循环颅内血管具有更大的脑池空间,能更准确地进行可视化显像。
本研究结果显示,后循环非狭窄性颅内动脉粥样硬化患者的NIHSS评分与责任斑块独立相关。关于责任斑块的特征分析中,Liu等[24]报道斑块内出血与NIHSS评分线性相关。亦有研究报道,症状性责任斑块患者较非责任斑块患者NIHSS评分增高[25],本研究结果与之相符。
本研究存在一定的局限性:第一,这是一项仅限于中国人群的单中心研究。第二,本研究中的责任斑块是根据其与既往事件的相关性定义的,需要对其与未来事件的相关性进行前瞻性研究来验证目前的结果。第三,由于颅内斑块病理图片的获取极为困难,本研究未提供斑块相应的病理学验证,故对于斑块内出血、强化特征的标准是参照经验证的颈动脉研究。第四,本研究样本量较小,限制了进一步进行病因分析,后期需要进一步扩大样本量来进行研究。
综上所述,NIHSS评分、最狭窄层面斑块强化率及斑块内出血是后循环非狭窄性颅内动脉粥样硬化患者责任斑块的独立危险因素。这些特征可能有助于识别后循环非狭窄性颅内动脉粥样硬化责任斑块,并能够筛选具有此类特征斑块的个体,从而为早期预防性干预提供依据。
-
表 1 责任斑块组与非责任斑块组后循环非狭窄性颅内动脉粥样硬化患者的临床特征比较
Table 1 Comparison of clinical features between culprit and non-culprit plaque groups in posterior circulation
Characteristic Culprit group N=61 Non-culprit group N=32 Statistic P value Age/year, x±s 63.85±8.53 61.19±11.55 t=1.263 0.210 Gender, n (%) χ2=0.047 0.828 Male 43 (70.5) 24 (75.0) Female 18 (29.5) 8 (25.0) Smoking, n (%) 17 (27.9) 14 (43.8) χ2=1.721 0.190 Alcohol use, n (%) 15 (24.6) 5 (15.6) χ2=0.539 0.463 Diabetes mellitus, n (%) 34 (55.7) 13 (40.6) χ2=1.361 0.243 Hypertension, n (%) 50 (82.0) 23 (71.9) χ2=0.739 0.390 Coronary artery disease, n (%) 4 (6.6) 2 (6.2) χ2=0.000 1.000 Hyperlipidemia, n (%) 45 (73.8) 16 (50.0) χ2=4.254 0.039 NIHSS score, M (Q1, Q3) 5 (2, 6) 0 (1, 2) Z=-5.449 <0.001 Plaque location, n (%) χ2=0.010 0.920 Basilar artery 44 (72.1) 22 (68.8) Vertebral artery 17 (27.9) 10 (31.2) Culprit group: The patient with clinical symptoms of ischemic stroke/TIA, and high signal appeared in the corresponding vascular supply area on head MRI DWI and T2-FLAIR; Non-culprit group: The patient with suspected clinical symptoms of ischemic stroke/TIA, but there was no abnormal high signal of the corresponding vascular supply area on head MRI DWI or T2-FLAIR. NIHSS: National Institutes of Health stroke scale; TIA: Transient ischemic attack; MRI: Magnetic resonance imaging; DWI: Diffusion weighted imaging; T2-FLAIR: T2 fluid attenuated inversion recovery. 表 2 责任斑块组与非责任斑块组后循环非狭窄性颅内动脉粥样硬化患者的影像学特征比较
Table 2 Comparison of imaging features between culprit and non-culprit plaque groups in posterior circulation non-stenotic intracranial atherosclerosis patients
Characteristic Culprit group N=61 Non-culprit group N=32 Statistic P value Luminal area (stenosis site)/mm2, x±s 5.44±2.56 5.43±2.57 t=0.017 0.986 Maximum wall thickness (stenosis site)/mm, x±s 1.67±0.38 1.66±0.45 t=0.164 0.870 Minimum wall thickness (stenosis site)/mm, x±s 0.69±0.13 0.71±0.15 t=-0.591 0.556 Stenosis rate/%, x±s 29.39±11.70 25.37±13.11 t=1.511 0.134 Plaque burden/%, x±s 68.47±8.85 65.78±8.33 t=1.423 0.158 Remodeling index/%, x±s 103.33±22.87 103.11±27.80 t=0.042 0.967 Eccentricity index/%, x±s 57.52±9.28 55.64±10.68 t=0.881 0.381 Enhancement ratio (stenosis site)/%, x±s 36.49±20.56 19.53±17.75 t=3.955 <0.001 Intraplaque hemorrhage, n (%) 18 (29.5) 1 (3.1) χ2=7.438 0.020 Culprit group: The patient with clinical symptoms of ischemic stroke/TIA, and high signal appeared in the corresponding vascular supply area on head MRI DWI and T2-FLAIR; Non-culprit group: The patient with suspected clinical symptoms of ischemic stroke/TIA, but there was no abnormal high signal of the corresponding vascular supply area on head MRI DWI or T2-FLAIR. TIA: Transient ischemic attack; MRI: Magnetic resonance imaging; DWI: Diffusion weighted imaging; T2-FLAIR: T2 fluid attenuated inversion recovery. 表 3 后循环非狭窄性颅内动脉粥样硬化患者责任斑块预测因子的logistic回归分析
Table 3 Logistic regression analysis of predictors for culprit plaques in posterior circulation non-stenotic intracranial atherosclerosis patients
Characteristic Univariate analysis Multivariate analysis OR (95% CI) P value OR (95% CI) P value NIHSS score 1.826 (1.382, 2.414) <0.001 1.799 (1.303, 2.484) <0.001 Hyperlipidemia 2.812 (1.146, 6.901) 0.024 1.246 (0.297, 5.234) 0.764 Enhancement ratio (stenosis site) 1.061 (1.025, 1.098) 0.001 1.076 (1.027, 1.128) 0.002 Intraplaque hemorrhage 15.122 (1.924, 118.864) 0.010 30.708 (2.563, 367.925) 0.007 NIHSS: National Institutes of Health stroke scale; OR: Odds ratio; CI: Confidence interval. 表 4 2名测量者影像学特征测量结果的一致性分析
Table 4 Interreader agreement between 2 readers for imaging characteristics
Characteristic Reader 1, x±s Reader 2, x±s ICC (95% CI) Luminal area (stenosis site)/mm2 5.12±2.68 5.13±2.71 0.990 (0.978, 0.995) Maximum wall thickness (stenosis site)/mm 1.59±0.36 1.57±0.47 0.890 (0.770, 0.947) Minimum wall thickness (stenosis site)/mm 0.67±0.11 0.66±0.17 0.756 (0.492, 0.884) Stenosis rate/% 30.47±12.27 31.03±13.05 0.975 (0.947, 0.988) Plaque burden/% 67.48±9.43 67.04±10.03 0.983 (0.964, 0.992) Remodeling index/% 96.41±19.38 95.22±18.87 0.985 (0.969, 0.993) Eccentricity index/% 55.84±10.24 54.24±11.99 0.895 (0.782, 0.950) Enhancement ratio (stenosis site)/% 23.22±15.74 23.97±16.16 0.992 (0.983, 0.996) ICC: Intraclass correlation coefficient; CI: Confidence interval. -
[1] WU S, WU B, LIU M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI: 10.1016/S1474-4422(18)30500-3. [2] LIN G H, SONG J X, FU N X, et al. Quantitative and qualitative analysis of atherosclerotic stenosis in the middle cerebral artery using high-resolution magnetic resonance imaging[J]. Can Assoc Radial J, 2021, 72(4): 783-788. DOI: 10.1177/0846537120961312. [3] LENG X, WONG K S, LIEBESKIND D S. Evaluating intracranial atherosclerosis rather than intracranial stenosis[J]. Stroke, 2014, 45(2): 645-651. DOI: 10.1161/STROKEAHA.113.002491. [4] WANG Y, LIU X, WU X, et al. Culprit intracranial plaque without substantial stenosis in acute ischemic stroke on vessel wall MRI: a systematic review[J]. Atherosclerosis, 2019, 287: 112-121. DOI: 10.1016/j.atherosclerosis.2019.06.907. [5] SAVASTANO L, BRINJIKJI W, LUTSEP H, et al. Symptomatic no stenotic carotids: a topical review[J]. Stroke, 2024, 55(12): 2921-2931. DOI: 10.1161/STROKEAHA.123.035675. [6] TIAN X, SHI Z, WANG Z, et al. Characteristics of culprit intracranial plaque without substantial stenosis in ischemic stroke using three-dimensional high-resolution vessel wall magnetic resonance imaging[J]. Front Neurosci, 2023, 17: 1160018. DOI: 10.3389/fnins.2023.1160018. [7] XIAO J, POBLETE R A, LERNER A, et al. MRI in the evaluation of cryptogenic stroke and embolic stroke of undetermined source[J]. Radiology, 2024, 311(1): e231934. DOI: 10.1148/radiol.231934. [8] YANG H, JI C, WANG H, et al. Characterizations of symptomatic intracranial plaque without substantial stenosis using high-resolution vessel wall MRI[J]. Clin Radiol, 2021, 76(5): 392. e21-392.392. e26. DOI: 10.1016/j.crad.2021.01.008. [9] SHI Z, LI J, ZHAO M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Stroke, 2020, 51(7): 2161-2169. DOI: 10.1161/STROKEAHA.120.029062. [10] 田霞, 张雪凤, 彭雯佳, 等. 三维高分辨率磁共振管壁成像在评估非狭窄性颅内动脉粥样硬化所致缺血性脑卒中复发中的价值[J]. 海军军医大学学报, 2022, 43(5): 511-518. DOI: 10.16781/j.CN31-2187/R.20220244. TIAN X, ZHANG X F, PENG W J, et al. Value of 3D high resolution vessel wall magnetic resonance imaging in evaluating recurrent ischemic stroke caused by non-stenotic intracranial atherosclerosis[J]. Acad J Naval Med Univ, 2022, 43(5): 511-518. DOI: 10.16781/j.CN31-2187/R.20220244. [11] SHI Z, ZHAO M, LI J, et al. Association of hypertension with both occurrence and outcome of symptomatic patients with mild intracranial atherosclerotic stenosis: a prospective higher resolution magnetic resonance imaging study[J]. J Magn Reson Imaging, 2021, 54(1): 76-88. DOI: 10.1002/jmri.27516. [12] ZHU T, REN L, ZHANG L, et al. Comparison of plaque characteristics of small and large subcortical infarctions in the middle cerebral artery territory using high-resolution magnetic resonance vessel wall imaging[J]. Quant Imaging Med Surg, 2021, 11(1): 57-66. DOI: 10.21037/qims-20-310. [13] YANG D, LIU J, YAO W, et al. The MRI enhancement ratio and plaque steepness may be more accurate for predicting recurrent ischemic cerebrovascular events in patients with intracranial atherosclerosis[J]. Eur Radiol, 2022, 32(10): 7004-7013. DOI: 10.1007/s00330-022-08893-2. [14] GUPTA A, BARADARAN H, AL-DASUQI K, et al. Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis[J]. J Am Heart Assoc, 2016, 5(8): e003816. DOI: 10.1161/JAHA.116.003816. [15] MURY P, CHIRICO E N, MURA M, et al. Oxidative stress and inflammation, key targets of atherosclerotic plaque progression and vulnerability: potential impact of physical activity[J]. Sports Med, 2018, 48(12): 2725-2741. DOI: 10.1007/s40279-018-0996-z. [16] WU F, SONG H, MA Q, et al. Hyperintense plaque on intracranial vessel wall magnetic resonance imaging as a predictor of artery-to-artery embolic infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/STROKEAHA.117.020046. [17] YU J W, ZHAO D L, LI R Y, et al. Association of culprit plaque enhancement ratio, hypoperfusion and HbA1c with recurrent ischemic stroke in patients with atherosclerotic stenosis of the middle cerebral artery[J]. Eur J Radiol, 2023, 168: 111107. DOI: 10.1016/j.ejrad.2023.111107. [18] ZHANG X, CHEN L, LI S, et al. Enhancement characteristics of middle cerebral arterial atherosclerotic plaques over time and their correlation with stroke recurrence[J]. J Magn Reson Imaging, 2021, 53(3): 953-962. DOI: 10.1002/jmri.27351. [19] LV Y, MA X, ZHAO W, et al. Association of plaque characteristics with long-term stroke recurrence in patients with intracranial atherosclerotic disease: a 3D high-resolution MRI-based cohort study[J]. Eur Radiol, 2024, 34(5): 3022-3031. DOI: 10.1007/s00330-023-10278-y. [20] HOU Z, LI M, LYU J, et al. Intraplaque enhancement is associated with artery-to-artery embolism in symptomatic vertebrobasilar atherosclerotic diseases[J]. Front Neurol, 2021, 12: 680827. DOI: 10.3389/fneur.2021.680827. [21] LARSON A S, BRINJIKJI W, SAVASTANO L, et al. Carotid intraplaque hemorrhage and stenosis: at what stage of plaque progression does intraplaque hemorrhage occur, and when is it most likely to be associated with symptoms?[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1285-1290. DOI: 10.3174/ajnr.A7133. [22] YU J H, KWAK H S, CHUNG G H, et al. Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque[J]. Stroke, 2015, 46(10): 2768-2772. DOI: 10.1161/STROKEAHA.115.009412. [23] XU W H, LI M L, GAO S, et al. Middle cerebral artery intraplaque hemorrhage: prevalence and clinical relevance[J]. Ann Neurol, 2012, 71(2): 195-198. DOI: 10.1002/ana.22626. [24] LIU S, TANG R, XIE W, et al. Plaque characteristics and hemodynamics contribute to neurological impairment in patients with ischemic stroke and transient ischemic attack[J]. Eur Radiol, 2021, 31(4): 2062-2072. DOI: 10.1007/s00330-020-07327-1. [25] WEI X, CHENG J, ZHANG L, et al. Association of systemic inflammatory response index and plaque characteristics with the severity and recurrence of cerebral ischemic events[J]. J Stroke Cerebrovasc Dis, 2024, 33(3): 107558. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107558.