CDP-二酰基甘油合酶1表达下调诱导自噬体与溶酶体融合障碍促进小鼠海马β-淀粉样蛋白沉积

张立飞 王宁 田园 师姝 张稳稳 杜凯丽 刘婷 王丽 王晓晖

张立飞, 王宁, 田园, 等. CDP-二酰基甘油合酶1表达下调诱导自噬体与溶酶体融合障碍促进小鼠海马β-淀粉样蛋白沉积[J]. 海军军医大学学报, 2025, 46(6): 719-727. doi: 10.16781/j.CN31-2187/R.20230697
引用本文: 张立飞, 王宁, 田园, 等. CDP-二酰基甘油合酶1表达下调诱导自噬体与溶酶体融合障碍促进小鼠海马β-淀粉样蛋白沉积[J]. 海军军医大学学报, 2025, 46(6): 719-727. doi: 10.16781/j.CN31-2187/R.20230697
ZHANG L, WANG N, TIAN Y, et al. CDP-diacylglycerol synthase 1 down-regulation induced dysfusion of autophagosome and lysosome promotes β-amyloid protein deposition in hippocampus of mice[J]. Academic Journal of Naval Medical University, 2025, 46(6): 719-727. doi: 10.16781/j.CN31-2187/R.20230697
Citation: ZHANG L, WANG N, TIAN Y, et al. CDP-diacylglycerol synthase 1 down-regulation induced dysfusion of autophagosome and lysosome promotes β-amyloid protein deposition in hippocampus of mice[J]. Academic Journal of Naval Medical University, 2025, 46(6): 719-727. doi: 10.16781/j.CN31-2187/R.20230697

CDP-二酰基甘油合酶1表达下调诱导自噬体与溶酶体融合障碍促进小鼠海马β-淀粉样蛋白沉积

doi: 10.16781/j.CN31-2187/R.20230697
基金项目: 

国家自然科学基金 82271523;

中央引导地方科技发展资金项目 YDZJSX20231A053;

细胞生理学教育部重点实验室开放课题 KLMEC/SXMU-201904;

山西省回国留学人员科研资助项目 2024-077.

详细信息
    作者简介:

    张立飞, 硕士生. E-mail: superfayor@163.com.

    通讯作者:

    王晓晖, E-mail: 163.wangxh@163.com.

CDP-diacylglycerol synthase 1 down-regulation induced dysfusion of autophagosome and lysosome promotes β-amyloid protein deposition in hippocampus of mice

Funds: 

National Natural Science Foundation of China 82271523;

Project of Local Sci-Tech Development Guided by Central Government YDZJSX20231A053;

Open Project of Key Laboratory of Cell Physiology of Ministry of Education KLMEC/SXMU-201904;

Scientific Program for Returned Overseas Scholars of Shanxi Province 2024-077.

  • 摘要:  目的 探究CDP-二酰基甘油合酶1(CDS1)对小鼠海马神经细胞自噬和淀粉样蛋白沉积的影响及机制。 方法 使用刚果红和免疫组织化学染色观察淀粉样前体蛋白(APP)/早老蛋白1(PS1)双转基因小鼠海马组织淀粉样物质的沉积情况;慢病毒介导HT22细胞内APP过表达,刚果红染色观察细胞内淀粉样物质沉积情况;蛋白质印迹法检测APP/PS1双转基因小鼠海马组织和APP过表达HT22细胞的微管相关蛋白1轻链3(LC3)-Ⅱ、P62蛋白表达情况;通过APP/PS1双转基因小鼠海马蛋白质组学结果,筛选出差异表达蛋白CDS1;蛋白质印迹法检测APP/PS1双转基因小鼠海马组织和APP过表达HT22细胞中的CDS1蛋白表达情况;慢病毒介导HT22细胞APP过表达后,再过表达CDS1,采用蛋白质印迹法检测LC3-Ⅱ、P62蛋白表达情况。 结果 APP/PS1双转基因小鼠海马组织及APP过表达HT22细胞中均有β-淀粉样蛋白的沉积。在APP/PS1双转基因小鼠海马组织和APP过表达HT22细胞中LC3-Ⅱ、P62蛋白均升高。从APP/PS1双转基因小鼠蛋白质组学结果中的京都基因与基因组百科全书通路分析筛选到其中一条差异代谢通路——甘油磷脂代谢通路,从该通路中获取到差异表达蛋白CDS1。与野生型C57BL/6小鼠相比,APP/PS1双转基因小鼠海马组织中CDS1蛋白表达量下降(0.46±0.07 vs 1.00±0.25,P<0.01);与感染空载病毒载体的HT22细胞相比,慢病毒过表达APP的HT22细胞中CDS1蛋白表达量下降(0.68±0.18 vs 1.00±0.13,P<0.01)。在APP过表达的HT22细胞过表达CDS1后,神经细胞的自噬流明显恢复(LC3-Ⅱ:1.00±0.15 vs 0.21±0.05,P<0.01;P62:1.00±0.16 vs 0.67±0.10,P<0.01),并且Aβ沉积明显减少。 结论 CDS1表达下调诱导自噬体与溶酶体融合障碍,促进阿尔茨海默病小鼠海马淀粉样物质沉积。

     

    Abstract:  Objective To explore the effects of CDP-diacylglycerol synthase 1 (CDS1) on autophagy and amyloid deposition in hippocampal neurons of mice and the related mechanism. Methods Congo red and immunohistochemical staining were used to observe the amyloid deposition in hippocampus of amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mice. Lentivirus-mediated overexpression of APP was induced in HT22 cells, and Congo red staining was used to observe the amyloid deposition in HT22 cells. The protein expression levels of microtubule-associated protein 1 light chain 3 (LC3)-Ⅱ and P62 in the hippocampus of APP/PS1 double-transgenic mice and APP-overexpressed HT22 cells were detected by Western blotting. The differential protein CDS1 was screened based on the hippocampal proteomics results of APP/PS1 double-transgenic mice. The expression of CDS1 protein in hippocampal tissue of APP/PS1 transgenic mice and APP-overexpressed HT22 cells was detected by Western blotting. After lentivirus-mediated APP overexpression in HT22 cells, CDS1 was overexpressed, and the protein expression levels of LC3-Ⅱ and P62 were detected by Western blotting. Results β-amyloid protein (Aβ) was deposited in the hippocampus of APP/PS1 mice and in HT22 cells overexpressing APP. The levels of LC3-Ⅱ and P62 protein in the hippocampus of APP/PS1 double-transgenic mice and APP-overexpressed HT22 cells were significantly increased. A differential metabolic pathway, glycerophospholipid metabolic pathway, was screened by Kyoto Encyclopedia of Genes and Genomes pathway analysis in the proteomic results of APP/PS1 double-transgenic mice, and the differential protein CDS1 was obtained. Compared with wild-type C57BL/6 mice, APP/PS1 double-transgenic mice exhibited a significantly decrease in CDS1 protein expression in the hippocampus (0.46±0.07 vs 1.00±0.25, P < 0.01). Similarly, lentivirus-mediated overexpression of APP in HT22 cells resulted in decreased CDS1 protein levels compared to cells infected with empty viral vector controls (0.68±0.18 vs 1.00±0.13, P < 0.01). The autophagy flow of nerve cells was significantly restored after the CDS1 overexpression in APP-overexpressed HT22 cells (LC3-Ⅱ: 1.00±0.15 vs 0.21±0.05, P < 0.01; P62: 1.00±0.16 vs 0.67±0.10, P < 0.01), and Aβ deposition was significantly decreased. Conclusion Downregulationof CDS1 expression can induce dysfusion of autophagosome and lysosome, promoting amyloid deposition in hippocampus of mice with Alzheimer's disease.

     

  • 阿尔茨海默病(Alzheimer’s disease,AD)是一种常见的慢性神经系统退行性疾病,其临床特征表现以认知和记忆功能下降为主。随着我国人口老龄化不断加剧,AD患者持续增加[1],然而AD的发病机制仍不明确。

    β-淀粉样蛋白(β-amyloid protein,Aβ)毒性假说依然是AD发病的主流学说,Aβ的沉积在AD的发生、发展中发挥重要作用。Aβ具有很强的神经毒性,会造成神经元缺失,并且AD的发生与海马组织结构和功能异常密切相关[2]。Aβ的产生和清除失衡是AD发病的主要机制。细胞内Aβ的产生与细胞外Aβ的聚集密切相关,细胞内Aβ的出现先于细胞外Aβ,淀粉样前体蛋白(amyloid precursor protein,APP)在细胞膜或细胞器膜上经β分泌酶和γ分泌酶的作用而产生[3]。有证据显示AD模型小鼠在3个月龄时就出现了认知障碍,提示细胞内Aβ在AD早期就发挥着神经毒性作用[4]。通过降低细胞内Aβ水平可以同时减少细胞外的Aβ聚集,从而减轻AD的症状。研究发现,细胞内Aβ的聚集主要是Aβ清除受损所致[5],然而目前细胞内Aβ清除异常的机制仍不清楚。

    细胞自噬对细胞内受损、变性、衰老的细胞器以及异常折叠蓄积蛋白质的清除降解发挥重要作用。有研究证实,AD患者脑内存在自噬过程异常,表现为自噬体与溶酶体融合障碍[6],可能影响了Aβ沉积,但其机制不清。前期我们在表达嵌合小鼠/人APP和突变人早老蛋白1(presenilin 1,PS1)的APP/PS1双转基因小鼠海马的四维无标记定量蛋白质组学(four-dimensional label-free quantitative proteomics,4D-label-free)结果中,筛选出差异表达通路甘油磷脂代谢通路中的差异表达蛋白CDP-二酰基甘油合酶1(CDP-diacylglycerol synthase 1,CDS1)。CDS1在蛋白质组学结果中表达下调,是磷脂酰肌醇合成的限速酶。磷脂酰肌醇分子结构上有3个不同的磷酸位点,可以被不同位点的磷酸激酶磷酸化成不同小分子,产生磷酸肌醇、二磷酸肌醇、三磷酸肌醇,它们分别发挥不同的作用。有研究表明磷脂酰肌醇4-磷酸(phosphatidyl inositol 4-phosphate,PI4P)可与γ-氨基丁酸受体相关蛋白(γ-aminobutyric acid receptor-associated protein,GABARAP)结合,促进自噬体与溶酶体的融合[7],磷脂酰肌醇-4, 5-二磷酸[phosphatidylinositol-4, 5-diphosphate,PI(4, 5)P2]的缺乏会导致自噬体溶酶体融合缺陷[8]。AD中,磷脂酰肌醇水平显著下降[9]。因此,我们推测CDS1的下调会影响PI4P、PI(4, 5)P2水平的下调,从而导致自噬的阻滞,然而,目前CDS1是否在AD海马神经细胞自噬中发挥作用尚不清楚。

    本实验首先在动物和细胞水平验证AD模型中自噬阻滞以及Aβ的沉积,然后通过从蛋白质组学筛选出的差异表达通路及差异表达蛋白中选出CDS1蛋白,最后对目的蛋白CDS1进行过表达干预,探讨CDS1在AD海马神经细胞自噬中的作用及对Aβ沉积的影响,为AD防治提供新的实验依据。

    20只9个月龄雄性APP/PS1双转基因小鼠及20只雄性野生型C57BL/6小鼠,体重为20~26 g,购于上海南方模式生物科技股份有限公司[动物生产许可证号:SCXK(沪)2019-0002],饲养环境温度20~26 ℃、湿度40%~70%,自由饮食。本研究动物实验过程严格遵循国家实验动物使用规定,经山西医科大学伦理委员会批准(SYDL2023038)。HT22小鼠海马神经元细胞系由广州吉尼欧生物科技有限公司提供。

    CDS1抗体(货号ab278496)、Aβ抗体(货号ab120974)、微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)抗体(货号ab192890)和P62抗体(货号ab56416)购自英国Abcam公司,GAPDH抗体(货号bsm-33033)购自北京博奥森生物技术有限公司;慢病毒过表达(lentiviral over-expression,LV-OE)APP和LV-OE CDS1购自上海吉凯基因化学技术有限公司;淀粉样物质染色液购自北京索莱宝科技有限公司。RNAiso Plus购自日本TaKaRa公司,CO2恒温细胞培养箱购自美国ThermoFisher Scientific公司,酶联免疫检测仪(SoftMax)购自美谷分子仪器(上海)有限公司,PCR扩增仪购自美国Agilent Technologies公司,低温高速离心机购自德国Eppendorf公司,倒置荧光显微镜购自日本Nikon公司,光学显微镜购自日本Olympus公司,垂直电泳仪、半干转膜仪及凝胶成像系统购自美国Bio-Rad公司。

    4D-label-free结果由上海中科新生命生物科技有限公司提供,将APP/PS1双转基因小鼠和野生型小鼠海马组织为提取样本,从众多差异表达通路中找出甘油磷脂代谢中低表达蛋白CDS1。

    从-80 ℃冰箱中取出装有HT22神经细胞的冻存管并立即放入42 ℃水浴锅中融解,230×g离心5 min,弃去上清并加入新的完全培养基制成细胞悬液,将悬液转移到提前加入有完全培养基的培养瓶中,放入37 ℃、5% CO2培养箱中培养。用胰蛋白酶-EDTA消化液消化生长密度达到80%以上的细胞,制备成单细胞悬液,以3×105/孔接种到6孔板,次日观察细胞生长状态,如状态良好即可进行后续实验操作。

    将状态良好的HT22细胞接种到96孔板中,当细胞密度达到20%~30%时,使用1/2小体积感染法,设置感染复数(multiplicity of infection,MOI)分别为10、20、30、50的病毒原液和助转剂加入培养基中,混匀后继续培养,14 h后更换成完全培养基,72~96 h期间选择生长良好的细胞在荧光显微镜下观察,感染效率80%以上的分组选为最佳的MOI。嘌呤霉素和潮霉素分别作为筛选LV-OE APP和LV-OE CDS1稳定感染细胞的药物。将感染APP病毒载体的细胞命名为过表达APP组(LV-OE APP组),将感染空载病毒的细胞命名为空载对照组(LV-NC APP组);另外在过表达APP细胞的基础上,再次感染CDS1慢病毒载体,得到两组新细胞,将同时过表达CDS1和APP的细胞命名为LV-OE CDS1+LV-OE APP组,将感染CDS1空载病毒与APP过表达的细胞命名为LV-NC CDS1+LV-OE APP组。

    对于细胞爬片,用固定液(甲醇与丙酮体积比=1∶1)固定细胞10 min,蒸馏水轻轻冲洗1~2次;对于组织切片,将制作好的石蜡脑组织切片进行脱蜡水化。接下来,石蜡脑组织切片和细胞爬片放入改良的Highman染色液浸染5 min,滴加分化液2 s,自来水缓慢冲洗,加入Mayer苏木精染液染0.5~1 min,自来水缓慢冲洗,梯度乙醇脱水,二甲苯透明,中性树胶封片。

    将APP/PS1双转基因小鼠及同窝对照野生型小鼠取材脑组织,并将脑组织经过中性甲醛充分固定,梯度乙醇脱水,二甲苯透明,浸蜡,包埋,最终在组织切片机上切片并捞片,厚度约6 μm。接着放入65 ℃烘箱进行时长为1 h的烤片,然后将切片脱蜡至水(二甲苯、梯度乙醇);PBS冲洗3次,每次5 min;将切片放入3% H2O2在室温静置10 min;PBS冲洗3次,每次5 min;将切片置于柠檬酸钠缓冲液中,一并放入微波炉中,中火3 min,刚到沸腾即可,冷却至室温,重复加热1次,再冷却至室温,使其充分暴露抗原位点;PBS冲洗3次,每次5 min;滴加5% BSA在37 ℃条件下封闭30 min,甩干;滴加PBS稀释好的一抗(稀释比例:CDS1抗体为1∶500,Aβ抗体为1∶1 000),切片放置到湿盒中4 ℃过夜;室温平衡30 min,PBS冲洗3次,每次5 min;滴加二抗在37 ℃下孵育30 min;PBS冲洗3次,每次5 min;滴加SABC在37 ℃下孵育30 min;PBS冲洗3次,每次5 min;DAB稀释好后滴加在切片组织上,显色,清水冲洗;苏木精复染0.5~1 min,自来水冲洗;最后梯度乙醇脱水,二甲苯,中性树胶封片。

    制备脑组织样品时,在放有脑组织的EP管中加入500 μL RIPA裂解液,放入5颗磁珠,将其放到研磨仪后调整参数至65 Hz、60 s;制备细胞样品时,使用RIPA裂解液和蛋白酶抑制剂将细胞置于冰上裂解40 min。接下来脑组织样品和细胞样品均进行低温高速(4 ℃、13 400×g)离心10 min后收集上清,用BCA法进行蛋白定量。配制12%分离胶和5%浓缩胶,按分组顺序将标记物和蛋白样品加入已配制好的SDS-PAGE胶孔中,设置80 V电压待能清晰看到标记物全部条带后更改电压至120 V;使用PVDF膜进行转膜,将膜放置到装有5%脱脂奶粉的孵育盒中进行2 h封闭,TBST洗膜3次,每次5 min;分别加入一抗(CDS1抗体,1∶5 000;P62抗体,1∶5 000;LC3抗体,1∶2 000;GAPDH抗体,1∶5 000)孵育4 ℃过夜,洗膜;加入相对应二抗,4 ℃孵育2 h,洗膜;配制适量ECL超敏发光液滴加到膜上进行曝光显影,保存采集图像,使用ImageJ软件(版本为1.4.3.67)分析。

    制备脑组织样品时,在加有脑组织和磁珠的EP管中加入500 μL RNAiso Plus,并将其放入调整好参数(65 Hz、60 s)的研磨仪上充分研磨;制备细胞样品时,各组细胞加入500 μL RNAiso Plus,置于冰上裂解充分并收集到1.5 mL EP管中。脑组织和细胞样品进行总RNA提取、并检测其浓度;按照试剂盒体系进行RNA的反转录,然后以cDNA为模板进行扩增。CDS1的PCR上游引物序列为5’’-AGACGGTGGCAGATTACTTCGC-3’,下游引物序列为5’-GCTTCTTCACCAGGCTCAGGAC-3’。以GAPDH为内参,采用2-ΔΔCt法对目的基因mRNA水平进行相对定量。

    采用SPSS 24.0统计软件进行分析。计量资料以x±s表示。两组间比较采用独立样本t检验;多组间比较采用单因素方差分析,多重比较采用最小显著性差异法。检验水准(α)为0.05。

    刚果红染色结果(图 1A)显示,在APP/PS1双转基因小鼠海马组织有多处明显的红色淀粉样物质沉积,同时在高倍镜下可以看到更明显的红色淀粉样斑块物质,而在野生型小鼠海马组织则没有明显的红色物质沉积。免疫组织化学染色结果(图 1B)显示,APP/PS1双转基因小鼠海马组织中有明显棕褐色颗粒,提示有明显的Aβ沉积。构建慢病毒介导APP过表达的HT22细胞,进行预实验筛选最佳MOI值,其中病毒载体APP过表达基因片段中携带红色荧光,镜下观察到MOI=30时细胞80%~90%都有红色荧光,最终选择MOI=30进行正式构建LV-OE APP的HT22细胞(图 1C)。qPCR结果显示,LV-OE APP组细胞中APP的mRNA水平明显高于LV-NC APP组(1.076±0.190 vs 2.510±0.110,P<0.01)。刚果红染色结果(图 1D)显示,过表达APP的海马神经细胞胞质中有明显的均质红染物质。

    图  1  APP/PS1双转基因小鼠海马和APP过表达细胞模型有淀粉样物质沉积
    Fig.  1  APP/PS1 double-transgenic mouse hippocampus and APP-overexpressed cell models had amyloid deposition
    A: APP/PS1 double-transgenic mouse hippocampus (Congo red staining) showed obvious amyloid deposition (high-lighted by red circles); B: Immunohistochemical staining of hippocampus of APP/PS1 double-transgenic mice revealed significant Aβ deposition; C: The optimal MOI value screening fluorescence map of HT22 cells with LV-OE of APP was constructed; D: Compared with the LV-NC APP group, the cells in the LV-OE APP group had significantly homogeneous red stained amyloid deposition. APP: Amyloid precursor protein; PS1: Presenilin 1; WT: Wild type; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression; MOI: Multiplicity of infection; Aβ: β-amyloid protein.
    下载: 全尺寸图片

    对APP/PS1双转基因小鼠海马组织进行蛋白质印迹法检测结果表明,与野生型小鼠相比,APP/PS1双转基因小鼠海马组织的LC3-Ⅱ和P62表达水平均升高(2.42±0.09 vs 1.00±0.07、1.60±0.05 vs 1.00±0.05,均P<0.01),表明出现了自噬体与溶酶体融合障碍(图 2A)。对过表达APP的HT22细胞进行蛋白质印迹法检测,结果显示LV-OE APP组的LC3-Ⅱ和P62表达水平均高于LV-NC APP组(1.38±0.06 vs 1.00±0.06、3.28±0.18 vs 1.00±0.05,均P<0.01),同样出现自噬体与溶酶体融合障碍(图 2B)。

    图  2  APP/PS1双转基因小鼠海马和APP过表达的HT22细胞自噬流受阻
    Fig.  2  Abnormal autophagy flow in hippocampus of APP/PS1 double-transgenic mice and APP-overexpressed HT22 cells
    A: Western blotting analysis of the hippocampus of APP/PS1 double-transgenic mice showed that the protein expression levels of LC3-Ⅱ and P62 were up-regulated compared with the WT group; B: Compared with the LV-NC APP group, the protein expression levels of LC3-Ⅱ and P62 in the LV-OE APP group were significantly up-regulated. APP: Amyloid precursor protein; PS1: Presenilin 1;WT: Wild type; LC3: Microtubule-associated protein 1 light chain 3; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.
    下载: 全尺寸图片

    对APP/PS1双转基因小鼠和野生型小鼠的海马组织进行4D-label-free分析,以差异倍数(fold change,FC)<0.5或>2且P<0.05为筛选条件,共得到63个差异表达蛋白,其中25个表达上调,38个表达下调。京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析显示,甘油磷脂代谢通路呈整体下调趋势,符合AD中甘油磷脂明显下调的趋势。差异表达蛋白KEGG通路注释统计图显示甘油磷脂代谢图中符合筛选条件范围(FC<0.5或>2且P<0.05)的蛋白有3个(图 3A),其中聚焦到通路内蛋白CDS1(FC=0.36,P=0.002,图 3B)。因此,最终选择CDS1为下调差异表达蛋白。

    图  3  APP/PS1双转基因小鼠海马的4D-label-free结果
    Fig.  3  4D-label-free results of the hippocampus of APP/PS1 double-transgenic mice
    A: KEGG pathway annotation of differentially expressed proteins in the AD-hippocampus and WT-hippocampus groups (Top 20); B: Volcano plots of differentially expressed proteins in the AD-hippocampus and WT-hippocampus groups. APP: Amyloid precursor protein; PS1: Presenilin 1; 4D-label-free: Four-dimensional label-free quantitative proteomics; KEGG: Kyoto Encyclopedia of Genes and Genomes; FC: Fold change; AD: Alzheimer's disease; WT: Wild type.
    下载: 全尺寸图片

    蛋白质印迹法检测结果显示,与野生型小鼠相比,APP/PS1双转基因小鼠海马组织中CDS1蛋白表达量下降(0.46±0.07 vs 1.00±0.25,P<0.01,图 4A)。免疫组织化学染色结果(图 4B)显示,DAB显色的棕色颗粒沉积于胞质,符合CDS1在细胞中的定位,并且APP/PS1双转基因小鼠海马组织的阳性区域棕色颗粒染色较野生型小鼠更浅,提示CDS1蛋白表达下降。采用慢病毒感染HT22细胞过表达APP,蛋白质印迹法检测结果显示,与LV-NC APP组相比,LV-OE APP组HT22细胞中CDS1蛋白表达下降(0.68±0.18 vs 1.00±0.13,P<0.01,图 4C)。

    图  4  CDS1蛋白在AD中表达异常
    Fig.  4  Abnomal expression of CDS1 protein in AD
    A: The expression of CDS1 protein in hippocampus of APP/PS1 double-transgenic mice was down-regulated; B: Immunohistochemistry of hippocampus of APP/PS1 transgenic mice showed that CDS1 was localized in the cytoplasm and the expression level was decreased; C: The expression of CDS1 protein was down-regulated in HT22 cells overexpressed with APP. CDS1: CDP-diacylglycerol synthase 1; AD: Alzheimer's disease; WT: Wild type; APP: Amyloid precursor protein; PS1: Presenilin 1; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.
    下载: 全尺寸图片

    构建过表达CDS1慢病毒载体,首先利用携带Age Ⅰ和BamH Ⅰ酶切位点的质粒进行载体(GV505载体)酶切(图 5A),琼脂糖凝胶电泳显示酶切产物大小与CDS1大小一致(图 5B),提示CDS1过表达载体构建成功。对慢病毒过表达CDS1的HT22细胞进行预实验筛选最佳MOI值,由于慢病毒载体携带绿色荧光片段,荧光显微镜观察确认镜下80%~90%携带绿色荧光的细胞组为最佳MOI组,因此以MOI=30进行正式细胞模型构建(图 5C)。qPCR模型验证结果显示,LV-OE CDS1+LV-OE APP组的CDS1 mRNA水平较LV-NC CDS1+LV-OE APP组上调(383.10±9.36 vs 1.00±0.06,P<0.01),说明模型过表达成功。将LV-OE APP HT22细胞进行慢病毒感染过表达CDS1,蛋白质印迹法检测结果显示,与LV-NC CDS1+LV-OE APP组相比,LV-OE CDS1+LV-OE APP组LC3-Ⅱ和P62表达水平均下调(1.00±0.15 vs 0.21±0.05、1.00±0.16 vs 0.67±0.10,均P<0.01)(图 5D)。

    图  5  慢病毒介导CDS1过表达对APP过表达HT22细胞自噬水平的调控作用
    Fig.  5  Regulatory effect of lentivirus-mediated CDS1 overexpression on autophagy levels in APP-overexpressed HT22 cells
    A: Overexpressed CDS1 virus vector (GV505 vector) constructed by Shanghai Jikai Gene Co., LTD; B: Electrophoretic image of CDS1 overexpression vector enzyme digestion products (1: 10 kb marker; 2: Carrier enzyme digestion product; 3: No enzyme cut vector); C: Fluorescence map of the optimal MOI value screening for lentivius-mediated overexpression of CDS1 in HT22 cells overexpressing APP; D: Compared with LV-NC CDS1+LV-OE APP group, the protein expression levels of LC3-Ⅱ and P62 in the LV-OE CDS1+LV-OE APP group were significantly decreased. CDS1: CDP-diacylglycerol synthase 1; APP: Amyloid precursor protein; MOI: Multiplicity of infection; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression; LC3: Microtubule-associated protein 1 light chain 3; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
    下载: 全尺寸图片

    刚果红染色结果(图 6)显示,与LV-NC CDS1+LV-OE APP组HT22细胞相比,LV-OE CDS1+LV-OE APP组细胞爬片刚果红染色明显较浅,视野放大后可见细胞胞质红染物质明显减少,结果提示过表达CDS1组细胞内的淀粉样物质明显减少。

    图  6  CDS1过表达可减少APP过表达HT22细胞淀粉样物质沉积
    Fig.  6  Overexpression of CDS1 can reduce amyloid deposition in APP overexpressed HT22 cells
    CDS1: CDP-diacylglycerol synthase 1; APP: Amyloid precursor protein; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.
    下载: 全尺寸图片

    本研究发现,APP/PS1双转基因小鼠海马组织和过表达APP的HT22海马神经细胞会出现淀粉样蛋白沉积,并且CDS1表达下调、LC3-Ⅱ和P62表达升高,出现自噬阻滞;在过表达APP的HT22细胞进一步过表达CDS1后,自噬水平恢复,淀粉样物质减少,表明CDS1可以通过改善自噬从而减少AD过程中Aβ的聚集。

    目前AD发病机制仍不明确,Aβ级联假说是AD发病的主流学说,细胞内Aβ对神经元具有严重的毒性作用,可导致神经元缺失,引起学习和记忆功能障碍[10]。细胞内Aβ的产生先于细胞外。目前研究已经证实细胞内Aβ来源于APP在细胞器膜剪切以及细胞外Aβ经过内吞作用进入细胞内。有研究证明Aβ可经过胞吐作用分泌到细胞外,在胞外形成寡聚体,进一步聚集形成老年斑,从而加深认知功能损伤[11]。本研究也发现,APP/PS1双转基因小鼠海马组织中有明显的Aβ沉积。清除细胞内Aβ可以减少细胞外Aβ的聚集,减轻疾病造成的认知记忆功能障碍。

    细胞自噬是清除Aβ的重要途径[12],可以清除变性或错误折叠的蛋白质以及衰老损伤的细胞器,有利于细胞稳态的维持。LC3和SQSTM1/P62是评价自噬功能状态的2种常用指标。LC3存在LC3-Ⅰ和LC3-Ⅱ2种形式,LC3-Ⅰ是未修饰的形式,而LC3-Ⅱ是修饰后与自噬小体结合的形式。LC3-Ⅱ的表达水平可以反映自噬小体的数量,从而间接评估自噬活性的变化[13]。P62是自噬底物,其表达水平与自噬活性呈负相关,当自噬活性降低时P62的表达水平会升高,反之亦然[14]。已有文献报道AD疾病的发生、发展过程中伴随着自噬体与溶酶体融合障碍[15]。本研究也发现,在APP/PS1双转基因小鼠海马组织和APP过表达HT22细胞中LC3-Ⅱ和P62表达升高,自噬流受阻。

    已知参与自噬调控的多种机制中,脂质分子对自噬调控非常重要,脂质参与细胞自噬多个步骤,如LC3-Ⅰ需要和磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)结合形成LC3-Ⅱ[16],尤其是磷脂酰肌醇也是自噬过程中非常重要的一类脂质分子。当前研究中,PI4P和磷脂酰肌醇3-磷酸在自噬启动过程中起着重要作用[17],并且PI(3, 5)P2在自噬体与溶酶体融合步骤中很重要[18]。同样,PI4P、PI(4, 5)P2是自噬过程中重要的调节剂[19]。PI4P是膜内膜运输的重要调节因子,在自噬体膜运输方面也发挥了重要作用。研究发现磷脂酰肌醇4激酶2α产生的PI4P与GABARAP结合并促进自噬体与溶酶体融合[7]。本研究通过APP/PS1双转基因小鼠海马组织蛋白质组学研究发现,甘油磷脂代谢通路中磷脂酰肌醇代谢相关的蛋白表达出现异常,在蛋白质组学中筛选出这条通路中的一个差异表达蛋白CDS1,它是定位在内质网上的磷脂酰肌醇合成的限速酶,并且在蛋白质组学结果中表达是下调的。

    目前未见文献报道CDS1的表达水平变化在AD疾病过程中是否发挥作用。本研究验证了APP/PS1转基因小鼠海马组织中的CDS1表达下调,文献显示APP突变体转入HT22细胞中可以作为AD模型[20]。本实验也检测了过表达APP的HT22细胞中CDS1表达下调,与蛋白组学中的数据相符合。

    本实验通过慢病毒感染的方法使过表达APP的HT22细胞再过表达CDS1,发现在过表达APP的HT22细胞再过表达CDS1后LC3-Ⅱ、P62表达下调。有文献指出LC3-Ⅱ下调表示自噬的过度激活和自噬溶酶体对LC3-Ⅱ的清除增多[21],因此本实验结果提示自噬流部分恢复。本实验在过表达CDS1和过表达APP的HT22细胞中进行刚果红染色,结果显示Aβ沉积明显减少,进一步佐证了在AD中CDS1的表达下调导致自噬体与溶酶体融合障碍,最终导致Aβ清除受阻。目前AD中CDS1下调的原因仍需探讨,文献显示P53和沉默调节蛋白6可以结合CDS1的启动子[22],P53和沉默调节蛋白6作为CDS1的上游蛋白影响CDS1的表达仍然需要进一步验证。AD与代谢障碍密切相关,不单磷脂酰肌醇在自噬中发挥作用,并且LC3-Ⅰ合成LC3-Ⅱ过程的关键分子PE水平也明显下调[23-24],也会对自噬产生明显的影响。总之,甘油磷脂的代谢异常对AD的影响非常复杂,同样需要重点关注。

    综上所述,本研究结果表明AD过程中CDS1表达降低,调节CDS1的水平升高后可以改善自噬体与溶酶体融合障碍,继而减少Aβ聚集,对进一步揭示AD的发病机制和开拓治疗思路具有重要意义。

  • 图  1   APP/PS1双转基因小鼠海马和APP过表达细胞模型有淀粉样物质沉积

    Fig.  1   APP/PS1 double-transgenic mouse hippocampus and APP-overexpressed cell models had amyloid deposition

    A: APP/PS1 double-transgenic mouse hippocampus (Congo red staining) showed obvious amyloid deposition (high-lighted by red circles); B: Immunohistochemical staining of hippocampus of APP/PS1 double-transgenic mice revealed significant Aβ deposition; C: The optimal MOI value screening fluorescence map of HT22 cells with LV-OE of APP was constructed; D: Compared with the LV-NC APP group, the cells in the LV-OE APP group had significantly homogeneous red stained amyloid deposition. APP: Amyloid precursor protein; PS1: Presenilin 1; WT: Wild type; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression; MOI: Multiplicity of infection; Aβ: β-amyloid protein.

    下载: 全尺寸图片

    图  2   APP/PS1双转基因小鼠海马和APP过表达的HT22细胞自噬流受阻

    Fig.  2   Abnormal autophagy flow in hippocampus of APP/PS1 double-transgenic mice and APP-overexpressed HT22 cells

    A: Western blotting analysis of the hippocampus of APP/PS1 double-transgenic mice showed that the protein expression levels of LC3-Ⅱ and P62 were up-regulated compared with the WT group; B: Compared with the LV-NC APP group, the protein expression levels of LC3-Ⅱ and P62 in the LV-OE APP group were significantly up-regulated. APP: Amyloid precursor protein; PS1: Presenilin 1;WT: Wild type; LC3: Microtubule-associated protein 1 light chain 3; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.

    下载: 全尺寸图片

    图  3   APP/PS1双转基因小鼠海马的4D-label-free结果

    Fig.  3   4D-label-free results of the hippocampus of APP/PS1 double-transgenic mice

    A: KEGG pathway annotation of differentially expressed proteins in the AD-hippocampus and WT-hippocampus groups (Top 20); B: Volcano plots of differentially expressed proteins in the AD-hippocampus and WT-hippocampus groups. APP: Amyloid precursor protein; PS1: Presenilin 1; 4D-label-free: Four-dimensional label-free quantitative proteomics; KEGG: Kyoto Encyclopedia of Genes and Genomes; FC: Fold change; AD: Alzheimer's disease; WT: Wild type.

    下载: 全尺寸图片

    图  4   CDS1蛋白在AD中表达异常

    Fig.  4   Abnomal expression of CDS1 protein in AD

    A: The expression of CDS1 protein in hippocampus of APP/PS1 double-transgenic mice was down-regulated; B: Immunohistochemistry of hippocampus of APP/PS1 transgenic mice showed that CDS1 was localized in the cytoplasm and the expression level was decreased; C: The expression of CDS1 protein was down-regulated in HT22 cells overexpressed with APP. CDS1: CDP-diacylglycerol synthase 1; AD: Alzheimer's disease; WT: Wild type; APP: Amyloid precursor protein; PS1: Presenilin 1; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.

    下载: 全尺寸图片

    图  5   慢病毒介导CDS1过表达对APP过表达HT22细胞自噬水平的调控作用

    Fig.  5   Regulatory effect of lentivirus-mediated CDS1 overexpression on autophagy levels in APP-overexpressed HT22 cells

    A: Overexpressed CDS1 virus vector (GV505 vector) constructed by Shanghai Jikai Gene Co., LTD; B: Electrophoretic image of CDS1 overexpression vector enzyme digestion products (1: 10 kb marker; 2: Carrier enzyme digestion product; 3: No enzyme cut vector); C: Fluorescence map of the optimal MOI value screening for lentivius-mediated overexpression of CDS1 in HT22 cells overexpressing APP; D: Compared with LV-NC CDS1+LV-OE APP group, the protein expression levels of LC3-Ⅱ and P62 in the LV-OE CDS1+LV-OE APP group were significantly decreased. CDS1: CDP-diacylglycerol synthase 1; APP: Amyloid precursor protein; MOI: Multiplicity of infection; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression; LC3: Microtubule-associated protein 1 light chain 3; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.

    下载: 全尺寸图片

    图  6   CDS1过表达可减少APP过表达HT22细胞淀粉样物质沉积

    Fig.  6   Overexpression of CDS1 can reduce amyloid deposition in APP overexpressed HT22 cells

    CDS1: CDP-diacylglycerol synthase 1; APP: Amyloid precursor protein; LV-NC: Lentiviral-negative control; LV-OE: Lentiviral-overexpression.

    下载: 全尺寸图片
  • [1] PASSERI E, ELKHOURY K, MORSINK M, et al. Alzheimer's disease: treatment strategies and their limitations[J]. Int J Mol Sci, 2022, 23(22): 13954. DOI: 10.3390/ijms232213954.
    [2] KIM T A, SYTY M D, WU K, et al. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease[J]. Zool Res, 2022, 43(3): 481-496. DOI: 10.24272/j.issn.2095-8137.2021.479.
    [3] KIANI SHABESTARI S, MORABITO S, DANHASH E P, et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer's disease mice[J]. Cell Rep, 2022, 39(11): 110961. DOI: 10.1016/j.celrep.2022.110961.
    [4] HABIF M, DO CARMO S, BÁEZ M V, et al. Early long-term memory impairment and changes in the expression of synaptic plasticity-associated genes, in the McGill-R-Thy1-APP rat model of Alzheimer's-like brain amyloidosis[J]. Front Aging Neurosci, 2020, 12: 585873. DOI: 10.3389/fnagi.2020.585873.
    [5] LIN P W, CHU M L, LIU H S. Autophagy and metabolism[J]. Kaohsiung J Med Sci, 2021, 37(1): 12-19. DOI: 10.1002/kjm2.12299.
    [6] FESTA B P, BARBOSA A D, ROB M, et al. The pleiotropic roles of autophagy in Alzheimer's disease: from pathophysiology to therapy[J]. Curr Opin Pharmacol, 2021, 60: 149-157. DOI: 10.1016/j.coph.2021.07.011.
    [7] BABA T, BALLA T. Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate as regulators of multiple steps in autophagy[J]. J Biochem, 2020, 168(4): 329-336. DOI: 10.1093/jb/mvaa089.
    [8] LUNDQUIST M R, GONCALVES M D, LOUGHRAN R M, et al. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy[J]. Mol Cell, 2018, 70(3): 531-544. e9. DOI: 10.1016/j.molcel.2018.03.037.
    [9] LIU L W, YUE H Y, ZOU J, et al. Comprehensive metabolomics and lipidomics profiling uncovering neuroprotective effects of Ginkgo biloba L. leaf extract on Alzheimer's disease[J]. Front Pharmacol, 2022, 13: 1076960. DOI: 10.3389/fphar.2022.1076960.
    [10] DETURE M A, DICKSON D W. The neuropathological diagnosis of Alzheimer's disease[J]. Mol Neurodegener, 2019, 14(1): 32. DOI: 10.1186/s13024-019-0333-5.
    [11] PENKE B, BOGÁR F, FÜLÖP L. β-amyloid and the pathomechanisms of Alzheimer's disease: a comprehensive view[J]. Molecules, 2017, 22(10): E1692. DOI: 10.3390/molecules22101692.
    [12] MADHU L N, KODALI M, SHETTY A K. Promise of metformin for preventing age-related cognitive dysfunction[J]. Neural Regen Res, 2022, 17(3): 503-507. DOI: 10.4103/1673-5374.320971.
    [13] ORHON I, REGGIORI F. Assays to monitor autophagy progression in cell cultures[J]. Cells, 2017, 6(3): E20. DOI: 10.3390/cells6030020.
    [14] YOSHⅡ S R, MIZUSHIMA N. Monitoring and measuring autophagy[J]. Int J Mol Sci, 2017, 18(9): E1865. DOI: 10.3390/ijms18091865.
    [15] CHEN J, HE H J, YE Q, et al. Defective autophagy and mitophagy in Alzheimer's disease: mechanisms and translational implications[J]. Mol Neurobiol, 2021, 58(10): 5289-5302. DOI: 10.1007/s12035-021-02487-7.
    [16] MCLELAND C B, RODRIGUEZ J, STERN S T. Autophagy monitoring assay: qualitative analysis of MAP LC3-Ⅰ to Ⅱ conversion by immunoblot[J]. Methods Mol Biol, 2011, 697: 199-206. DOI: 10.1007/978-1-60327-198-1_21.
    [17] VICINANZA M, KOROLCHUK V I, ASHKENAZI A, et al. PI(5)P regulates autophagosome biogenesis[J]. Mol Cell, 2015, 57(2): 219-234. DOI: 10.1016/j.molcel.2014.12.007.
    [18] FERGUSON C J, LENK G M, MEISLER M H. Defective autophagy in neurons and astrocytes from mice deficient in PI(3, 5)P2[J]. Hum Mol Genet, 2009, 18(24): 4868-4878. DOI: 10.1093/hmg/ddp460.
    [19] BABA T, TOTH D J, SENGUPTA N, et al. Phosphatidylinositol 4, 5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome-lysosome fusion[J]. EMBO J, 2019, 38(8): e100312. DOI: 10.15252/embj.2018100312.
    [20] REDDY P H, YIN X, MANCZAK M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease[J]. Hum Mol Genet, 2018, 27(14): 2502-2516. DOI: 10.1093/hmg/ddy154.
    [21] ZHANG X W, LV X X, ZHOU J C, et al. Autophagic flux detection: significance and methods involved[J]. Adv Exp Med Biol, 2021, 1208: 131-173. DOI: 10.1007/978-981-16-2830-6_9.
    [22] LI M, HOU T, GAO T, et al. p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis[J]. Cell Death Dis, 2018, 9(10): 941. DOI: 10.1038/s41419-018-0984-0.
    [23] LEBOUTET R, LARGEAU C, MÜLLER L, et al. LGG-1/GABARAP lipidation is not required for autophagy and development in Caenorhabditis elegans[J]. eLife, 2023, 12: e85748. DOI: 10.7554/elife.85748.
    [24] BLUSZTAJN J K, SLACK B E. Accelerated breakdown of phosphatidylcholine and phosphatidylethanolamine is a predominant brain metabolic defect in Alzheimer's disease[J]. J Alzheimers Dis, 2023, 93(4): 1285-1289. DOI: 10.3233/jad-230061.
WeChat 点击查看大图
图(6)
出版历程
  • 收稿日期:  2023-12-04
  • 接受日期:  2024-05-07

目录

    /

    返回文章
    返回