[1] |
RAJENDRAN K, KRISHNAN U M. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease[J]. Ageing Res Rev, 2024, 97: 102309. DOI:10.1016/j.arr.2024.102309 |
[2] |
KIM A Y, AL JERDI S, MACDONALD R, et al. Alzheimer's disease and its treatment-yesterday, today, and tomorrow[J]. Front Pharmacol, 2024, 15: 1399121. DOI:10.3389/fphar.2024.1399121 |
[3] |
BOURDENX M, DANIEL J, GENIN E, et al. Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases[J]. Autophagy, 2016, 12(3): 472-483. DOI:10.1080/15548627.2015.1136769 |
[4] |
LAWRENCE R E, ZONCU R. The lysosome as a cellular centre for signalling, metabolism and quality control[J]. Nat Cell Biol, 2019, 21(2): 133-142. DOI:10.1038/s41556-018-0244-7 |
[5] |
LAI S S M, NG K Y, KOH R Y, et al. Endosomal-lysosomal dysfunctions in Alzheimer's disease: pathogenesis and therapeutic interventions[J]. Metab Brain Dis, 2021, 36(6): 1087-1100. DOI:10.1007/s11011-021-00737-0 |
[6] |
LO C H, ZENG J. Defective lysosomal acidification: a new prognostic marker and therapeutic target for neurodegenerative diseases[J]. Transl Neurodegener, 2023, 12(1): 29. DOI:10.1186/s40035-023-00362-0 |
[7] |
LEE J H, MCBRAYER M K, WOLFE D M, et al. Presenilin 1 maintains lysosomal Ca2+homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification[J]. Cell Rep, 2015, 12(9): 1430-1444. DOI:10.1016/j.celrep.2015.07.050 |
[8] |
FINE M, SCHMIEGE P, LI X. Structural basis for PtdInsP2-mediated human TRPML1 regulation[J]. Nat Commun, 2018, 9(1): 4192. DOI:10.1038/s41467-018-06493-7 |
[9] |
TEDESCHI V, PETROZZIELLO T, SISALLI M J, et al. The activation of mucolipin TRP channel 1(TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance[J]. Sci Rep, 2019, 9(1): 10743. DOI:10.1038/s41598-019-46708-5 |
[10] |
ZHANG L, FANG Y, CHENG X, et al. Interaction between TRPML1 and p62 in regulating autophagosome-lysosome fusion and impeding neuroaxonal dystrophy in Alzheimer's disease[J]. Oxid Med Cell Longev, 2022, 2022: 8096009. DOI:10.1155/2022/8096009 |
[11] |
FENG X, ZHAO Z, LI Q, et al. Lysosomal potassium channels: potential roles in lysosomal function and neurodegenerative diseases[J]. CNS Neurol Disord Drug Targets, 2018, 17(4): 261-266. DOI:10.2174/1871527317666180202110717 |
[12] |
CANG C, ARANDA K, SEO Y J, et al. TMEM175 is an organelle K+channel regulating lysosomal function[J]. Cell, 2015, 162(5): 1101-1112. DOI:10.1016/j.cell.2015.08.002 |
[13] |
SIRISI S, SÁNCHEZ-ACED É, BELBIN O, et al. APP dyshomeostasis in the pathogenesis of Alzheimer's disease: implications for current drug targets[J]. Alzheimers Res Ther, 2024, 16(1): 144. DOI:10.1186/s13195-024-01504-w |
[14] |
XU W, FANG F, DING J, et al. Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease[J]. Traffic, 2018, 19(4): 253-262. DOI:10.1111/tra.12547 |
[15] |
HUNG C, TUCK E, STUBBS V, et al. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network[J]. Cell Rep, 2021, 35(11): 109259. DOI:10.1016/j.celrep.2021.109259 |
[16] |
XU Y, PROPSON N E, DU S, et al. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading[J]. Proc Natl Acad Sci USA, 2021, 118(27): e2023418118. DOI:10.1073/pnas.2023418118 |
[17] |
MUSTALY-KALIMI S, GALLEGOS W, MARR R A, et al. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2022, 119(49): e2211999119. DOI:10.1073/pnas.2211999119 |
[18] |
XUE W, ZHANG J, LI Y. Enhancement of lysosome biogenesis as a potential therapeutic approach for neurodegenerative diseases[J]. Neural Regen Res, 2023, 18(11): 2370-2376. DOI:10.4103/1673-5374.371346 |
[19] |
CUI Y, CAROSI J M, YANG Z, et al. Retromer has a selective function in cargo sorting via endosome transport carriers[J]. J Cell Biol, 2019, 218(2): 615-631. DOI:10.1083/jcb.201806153 |
[20] |
CAROSI J M, HEIN L K, VAN DEN HURK M, et al. Retromer regulates the lysosomal clearance of MAPT/tau[J]. Autophagy, 2021, 17(9): 2217-2237. DOI:10.1080/15548627.2020.1821545 |
[21] |
ROOT J, MERINO P, NUCKOLS A, et al. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis[J]. Neurobiol Dis, 2021, 154: 105360. DOI:10.1016/j.nbd.2021.105360 |
[22] |
KAMETANI F, HASEGAWA M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease[J]. Front Neurosci, 2018, 12: 25. DOI:10.3389/fnins.2018.00025 |
[23] |
YAO X C, XUE X, ZHANG H T, et al. Pseudoginsenoside-F11 alleviates oligomeric β-amyloid-induced endosome-lysosome defects in microglia[J]. Traffic, 2019, 20(1): 61-70. DOI:10.1111/tra.12620 |
[24] |
CHUNG C Y S, SHIN H R, BERDAN C A, et al. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition[J]. Nat Chem Biol, 2019, 15(8): 776-785. DOI:10.1038/s41589-019-0308-4 |
[25] |
VEST R T, CHOU C C, ZHANG H, et al. Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration[J]. Proc Natl Acad Sci USA, 2022, 119(11): e2121609119. DOI:10.1073/pnas.2121609119 |
[26] |
BROUILLARD M, BARTHÉLÉMY P, DEHAY B, et al. Nucleolipid acid-based nanocarriers restore neuronal lysosomal acidification defects[J]. Front Chem, 2021, 9: 736554. DOI:10.3389/fchem.2021.736554 |
[27] |
BROUILLARD M, KINET R, JOYEUX M, et al. Modulating lysosomal pH through innovative multimerized succinic acid-based nucleolipid derivatives[J]. Bioconjug Chem, 2023, 34(3): 572-580. DOI:10.1021/acs.bioconjchem.3c00041 |
[28] |
XUE X, WANG L R, SATO Y, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease[J]. Nano Lett, 2014, 14(9): 5110-5117. DOI:10.1021/nl501839q |
[29] |
RAHMAN N, RAMOS-ESPIRITU L, MILNER T A, et al. Soluble adenylyl cyclase is essential for proper lysosomal acidification[J]. J Gen Physiol, 2016, 148(4): 325-339. DOI:10.1085/jgp.201611606 |
[30] |
CHEN C C, KELLER M, HESS M, et al. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type Ⅳ[J]. Nat Commun, 2014, 5: 4681. DOI:10.1038/ncomms5681 |