2. 中国人民解放军南部战区海军第二医院内一科, 三亚 572000;
3. 中国人民解放军海军第九七一医院内分泌科, 青岛 266000
2. Department of Internal Medicine (Ⅰ), The Second Naval Hospital of PLA Southern Theater Command, Sanya 572000, Hainan, China;
3. Department of Endocrinology, No. 971 Hospital of PLA Navy, Qingdao 266000, Shandong, China
肺冲击伤又称肺爆震伤,是军事活动、恐怖袭击、工业事故等爆炸导致的肺损伤。原发性肺冲击伤不同于爆炸产生的有毒物质、碎片物、撞击等继发因素导致的损伤,其是由冲击波超压直接作用于肺脏,通过内爆、散裂及惯性力导致的急性损伤或更为严重的急性呼吸窘迫综合征[1-2]。原发性肺冲击伤的病理生理特征相对明确,病理上主要表现为肺泡-毛细血管损伤和随之而来的肺出血、肺水肿,伴随氧化应激、细胞凋亡、炎症反应等生理过程[3]。肺冲击伤的救治主要以液体管理、氧疗和机械通气等支持治疗为主,其分子机制有待进一步研究。明确相关分子机制有助于研发特效药、解决救治难题和改善患者预后。本文主要就近年来原发性肺冲击伤中PI3K/Akt、NF-κB、MAPK等信号通路的研究进展进行综述。
1 原发性肺冲击伤相关的PI3K/Akt信号通路PI3K和Akt是PI3K/Akt信号通路网络的关键激酶,PI3K受其上游的受体酪氨酸激酶、细胞因子受体、G蛋白偶联受体、整联蛋白等激活后活化Akt,进一步调控多条下游通路;Akt可激活NF-κB抑制物激酶(inhibitor of nuclear factor κB kinase,IKK)α,与NF-κB通路发生交互作用[4-5]。有研究表明,内毒素脂多糖(lipopolysaccharide,LPS)能够激活PI3K-Akt-mTOR/PFKFB3通路,诱导肺成纤维细胞有氧酵解和Ⅰ型胶原形成,从而促进肺纤维化的发生[6]。程序性死亡受体配体1(programmed death-ligand 1,PD-L1)能够通过与PI3K的p85亚基结合激活PI3K/Akt信号通路,从而延迟中性粒细胞凋亡,促进LPS诱导的肺损伤[7]。此外,已有部分靶向PI3K/Akt信号通路的药物测试在临床评估中展现出改善病毒性肺炎(如新型冠状病毒肺炎)相关肺损伤的疗效[8]。
Liu等[9]将小鼠麻醉后置于保护罩内,暴露胸部,利用空气压缩装置将空气压缩到一定压力,使铝膜爆破产生爆炸冲击波。该研究表明,在(321±24)psi(1 psi=6 894.8 Pa)瞬时冲击波超压条件下,CD28敲除小鼠可通过调控PI3K/Akt/叉头框蛋白O1(forkhead box O1,FoxO1)信号通路,改善冲击波造成的肺损伤。具体表现为:在CD28敲除的小鼠中,肺冲击伤引起的促炎细胞因子IL-1β、IL-6和TNF-α的表达受到抑制,而抑炎细胞因子IL-10表达升高;CD28敲除也抑制了CD3+ T细胞的浸润,改善了细胞凋亡和氧化应激,凋亡相关因子Bax、caspase 3、caspase 8和氧化应激相关因子肌醇需求酶α(inositol-requiring enzyme α,IREα)、丙二醛5、活性氧(reactive oxygen species,ROS)表达减少,而抗凋亡蛋白Bcl-2和抗氧化的超氧化物歧化酶1(superoxide dismutase 1,SOD 1)表达增加。他们的另一项研究结果表明,中药丹参酮ⅡA对肺冲击伤的保护作用也与该通路密切相关,丹参酮ⅡA抑制了暴露于爆炸冲击波小鼠的PI3K和Akt的磷酸化、增加了FoxO1磷酸化水平[10]。此外,利用高效液相色谱-串联质谱法对冲击伤模型小鼠伤后12 h的肺组织蛋白质进行定量分析和生物信息学分析的研究,也支持PI3K/Akt通路在肺冲击伤中发挥重要作用的结论[11]。
2 原发性肺冲击伤相关的NF-κB信号通路NF-κB是一类可诱导的核转录因子,其激活后进入细胞核与特定靶基因位点结合促进其转录,该通路在癌症的发生、免疫和炎症应答中发挥重要作用[12]。在固有免疫应答中,巨噬细胞、单核细胞、中性粒细胞和树突状细胞等表达的模式识别受体能够识别病原体相关分子模式分子和损伤组织释放的损伤相关模式分子,激活NF-κB通路诱导促炎细胞因子如Ⅰ型干扰素(type Ⅰ interferon,IFN-Ⅰ)、TNF-α、IL-6等的表达[12]。多项研究表明,通过调控NF-κB通路可以减少炎症因子和氧化应激的产生,抑制LPS诱导的急性肺损伤[13]。
Zhang等[14]通过冲击波干预肺腺癌A549细胞,发现全氟化碳能够抑制A549细胞的凋亡,并且抑制NF-κB蛋白表达。他们进一步构建了爆炸冲击伤的杂种犬模型,发现全氟化碳能够通过抑制NF-κB通路发挥保护作用,进而降低冲击伤后杂种犬体内炎症细胞因子的水平[15]。Tong等[16]也发现肺冲击伤小鼠肺组织中NF-κB表达升高。另一项肺冲击伤大鼠模型研究发现,IL-6、IL-8表达上调与NF-κB和转录因子FosB激活具有一致性,使用NF-κB和FosB抑制剂能够在一定程度上减轻IL-6、IL-8的表达,但NF-κB抑制剂的效果更明显[17]。Li等[18]发现抑制补体的促衰变因子(decay-accelerating factor,DAF)能够缓解肺冲击伤的炎症反应,且与损伤相关模式分子高迁移率族蛋白B1(high mobility group box 1 protein,HMGB1)和NF-κB表达降低有关,但免疫荧光并未观察到两者共定位,说明两者不存在直接相互作用。此前有研究表明,HMGB1主要通过NF-κB激活触发炎症反应[19],遗憾的是该研究未进一步探索两者之间的潜在机制。上述研究表明,肺冲击伤后NF-κB的激活促进了相关炎症因子的释放,但对于NF-κB激活可能涉及到的上下游靶点及与其他分子的相互作用均未深入探讨。此外,就损伤相关模式分子角度来看,热休克蛋白、组蛋白、透明质酸等均可调控NF-κB通路[20],都值得深入探索。
3 原发性肺冲击伤相关的MAPK信号通路MAPK信号通路为MAPK激酶激酶(MAPK kinase kinase,MKKK)-MAPK激酶(MAPK kinase,MKK)-MAPK三级激酶模式,参与级联反应的MAPK有ERK1/2、p38、JNK和ERK5。ERK1/2主要接受生长因子、丝裂原等信号,在细胞增殖、分化中发挥重要作用;p38和JNK主要由基因毒性应激和环境因素激活,调控细胞存活、增殖、分化、特定细胞迁移等过程,在炎症反应、组织稳态中发挥重要作用;ERK5的研究相对较少,其能响应应激和丝裂原信号[21]。此外,p38和JNK通路还能够调控凋亡相关蛋白和凋亡过程,以及通过磷酸化IKKβ激活NF-κB[22]。研究表明,抑制MAPK信号通路可以调控IL-1β、IL-6、TNF-α等细胞因子表达而在肺疾病中发挥抗炎作用[23]。LPS诱导的急性肺损伤可以激活MAPK信号通路也已得到证实,如穿心莲内酯磺酸盐可以通过抑制MAPK和NF-κB信号通路改善LPS诱导的急性肺损伤[24]。
丛培芳等[25]发现,肺冲击伤模型大鼠肺组织中JNK、p38和下游促凋亡蛋白Bad表达升高,抗凋亡蛋白Bcl-xl表达降低。在Zhang等[14-15]关于全氟化碳改善肺冲击伤的研究中,杂种犬的冲击伤肺组织中MAPK信号通路激活也得到证实,而且应用全氟化碳能够抑制ERK、p38、JNK蛋白的磷酸化。激活蛋白1(activator protein 1,AP-1)是一种由FOS(c-Fos、FosB、Fra-1、Fra-2)和JUN(c-Jun、Jun B、Jun D)家族成员构成的可以调节TNF-α、IL-1β、IL-8等多种细胞因子表达的转录因子[23],Wang等[17]研究发现,冲击伤大鼠肺组织中NF-κB、FosB表达均升高,而既往研究表明MAPK信号通路中的JNK和p38可以激活AP-1[26]。
4 原发性肺冲击伤相关的其他信号通路肺冲击伤的发生、发展涉及复杂的信号通路,除上述3种信号通路,还有其他信号通路的参与。研究表明,肺冲击伤后二甲基精氨酸二甲胺水解酶1(dimethylarginine dimethylaminohydrolase 1,DDAH1)表达降低,非对称性二甲基精氨酸(asymmetric dimethylarginine,ADMA)表达升高;而壳寡糖可逆转上述趋势,通过DDAH1/ADMA通路改善肺冲击伤的炎症反应,保护肺功能,减轻肺损伤[27]。在利用山羊构建的肺冲击伤模型中,通过转录组测序和生物信息学分析发现差异表达基因在JAK-STAT、IL-17等信号通路富集[28]。在一项纳入33例肺冲击伤患者的临床研究中,中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)与肺冲击伤严重程度呈负相关,该蛋白质在肺冲击伤中的作用尚需进一步研究[29]。此外,Hippo通路是器官再生和组织修复中的研究热点[30],在细菌感染、LPS诱导等肺损伤模型中已证实其对肺组织损伤修复具有重要作用[31-33]。鉴于冲击波造成的急性肺损伤与其他原因造成的急性肺损伤在病理生理上存在相似之处,如肺泡损伤、炎症细胞浸润、细胞凋亡增加及后期肺纤维化的形成等[3, 34],也有学者提出Hippo通路可能会成为肺冲击伤的基础研究热点[35]。
5 小结与展望肺冲击伤的救治在军事医学和民用医学方面都有重要地位,国内外学者均开展了相当多的研究,但相关分子机制研究并不够深入,未来研究可以围绕PI3K/Akt、NF-κB、MAPK等信号通路,利用RNA结合蛋白免疫沉淀(RNA binding protein immunoprecipitation,RIP)、染色质免疫沉淀(chromatin immunoprecipitation,CHIP)、免疫共沉淀(co-immunoprecipitation,CoIP)、免疫荧光等技术,进一步探讨肺冲击伤背景下哪些分子在调控这些通路中发挥关键作用,为特效药的研发提供精准靶点。同样,利用化合物库进行高通量筛选也是寻找特效药的思路之一,但是并未见到相关研究报道。传统中医药是中华几千年智慧的结晶,目前许多文献已初步展现出中医药对急性肺损伤的保护作用[36-39],因此可进一步拓展中药或中西医结合疗法在肺冲击伤中的研究与应用,并就相关机制进行深入探索。从基础研究到临床的转化离不开精确模型的构建与临床实践应用的反馈,同样是小鼠,BALB/C和C57BL/6小鼠肺冲击伤的病理生理改变也存在差异[40]。如何更好模拟真实爆炸冲击伤至关重要,单纯的肺组织充血、水肿、炎症反应未必能较好模拟,可以从真实患者的血清、肺组织样本中筛选出潜在标志物,并在构建的模型上验证,或对这些样本进行高通量测序,以获得差异表达数据用于基础研究。
[1] |
WOLF S J, BEBARTA V S, BONNETT C J, et al. Blast injuries[J]. Lancet, 2009, 374(9687): 405-415. DOI:10.1016/s0140-6736(09)60257-9 |
[2] |
王正国. 原发肺冲击伤[J]. 中华肺部疾病杂志(电子版), 2010, 3(4): 231-233. DOI:10.3877/cma.j.issn.1674-6902.2010.04.001 |
[3] |
SMITH J E, GARNER J. Pathophysiology of primary blast injury[J]. J R Army Med Corps, 2019, 165(1): 57-62. DOI:10.1136/jramc-2018-001058 |
[4] |
FRUMAN D A, CHIU H, HOPKINS B D, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. DOI:10.1016/j.cell.2017.07.029 |
[5] |
THORPE L M, YUZUGULLU H, ZHAO J J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting[J]. Nat Rev Cancer, 2015, 15(1): 7-24. DOI:10.1038/nrc3860 |
[6] |
HU X, XU Q, WAN H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811. DOI:10.1038/s41374-020-0404-9 |
[7] |
WANG J F, WANG Y P, XIE J, et al. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis[J]. Blood, 2021, 138(9): 806-810. DOI:10.1182/blood.2020009417 |
[8] |
MARGARIA J P, MORETTA L, ALVES-FILHO J C, et al. PI3K signaling in mechanisms and treatments of pulmonary fibrosis following sepsis and acute lung injury[J]. Biomedicines, 2022, 10(4): 756. DOI:10.3390/biomedicines10040756 |
[9] |
LIU Y, TONG C, XU Y, et al. CD28 deficiency ameliorates blast exposure-induced lung inflammation, oxidative stress, apoptosis, and T cell accumulation in the lungs via the PI3K/akt/FoxO1 signaling pathway[J]. Oxid Med Cell Longev, 2019, 2019: 4848560. DOI:10.1155/2019/4848560 |
[10] |
LIU Y, TONG C, TANG Y, et al. Tanshinone ⅡA alleviates blast-induced inflammation, oxidative stress and apoptosis in mice partly by inhibiting the PI3K/Akt/FoxO1 signaling pathway[J]. Free Radic Biol Med, 2020, 152: 52-60. DOI:10.1016/j.freeradbiomed.2020.02.032 |
[11] |
LIU Y, LIU Y, TONG C, et al. Quantitative analysis of the global proteome in lung from mice with blast injury[J]. Exp Lung Res, 2020, 46(8): 308-319. DOI:10.1080/01902148.2020.1801896 |
[12] |
YU H, LIN L, ZHANG Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI:10.1038/s41392-020-00312-6 |
[13] |
WANG J, WU Q, DING L, et al. Therapeutic effects and molecular mechanisms of bioactive compounds against respiratory diseases: traditional Chinese medicine theory and high-frequency use[J]. Front Pharmacol, 2021, 12: 734450. DOI:10.3389/fphar.2021.734450 |
[14] |
ZHANG Z, LIANG Z, LI H, et al. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells[J]. PLoS One, 2017, 12(3): e0173884. DOI:10.1371/journal.pone.0173884 |
[15] |
ZHANG Z, LI H, LIANG Z, et al. Vaporized perfluorocarbon inhalation attenuates primary blast lung injury in canines by inhibiting mitogen-activated protein kinase/nuclear factor-κB activation and inducing nuclear factor, erythroid 2 like 2 pathway[J]. Toxicol Lett, 2020, 319: 49-57. DOI:10.1016/j.toxlet.2019.10.019 |
[16] |
TONG C, LIU Y, ZHANG Y, et al. Shock waves increase pulmonary vascular leakage, inflammation, oxidative stress, and apoptosis in a mouse model[J]. Exp Biol Med, 2018, 243(11): 934-944. DOI:10.1177/1535370218784539 |
[17] |
WANG H, ZHANG W, LIU J, et al. NF-κB and FosB mediate inflammation and oxidative stress in the blast lung injury of rats exposed to shock waves[J]. Acta Biochim Biophys Sin, 2021, 53(3): 283-293. DOI:10.1093/abbs/gmaa179 |
[18] |
LI Y, YANG Z, CHAVKO M, et al. Complement inhibition ameliorates blast-induced acute lung injury in rats: potential role of complement in intracellular HMGB1-mediated inflammation[J]. PLoS One, 2018, 13(8): e0202594. DOI:10.1371/journal.pone.0202594 |
[19] |
KANG R, CHEN R, ZHANG Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med, 2014, 40: 1-116. DOI:10.1016/j.mam.2014.05.001 |
[20] |
LI N, GENG C, HOU S, et al. Damage-associated molecular patterns and their signaling pathways in primary blast lung injury: new research progress and future directions[J]. Int J Mol Sci, 2020, 21(17): 6303. DOI:10.3390/ijms21176303 |
[21] |
SEGER R, WEXLER S. The MAPK signaling cascades[M]. Amsterdam: Elsevier, 2016: 122-127. DOI:10.1016/b978-0-12-394447-4.30014-1
|
[22] |
YUE J, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7): 2346. DOI:10.3390/ijms21072346 |
[23] |
LEE I T, YANG C M. Inflammatory signalings involved in airway and pulmonary diseases[J]. Mediators Inflamm, 2013, 2013: 791231. DOI:10.1155/2013/791231 |
[24] |
PENG S, HANG N, LIU W, et al. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways[J]. Acta Pharm Sin B, 2016, 6(3): 205-211. DOI:10.1016/j.apsb.2016.02.002 |
[25] |
丛培芳, 柳云恩, 张玉彪, 等. 爆震伤对大鼠肺组织凋亡影响研究[J]. 创伤与急危重病医学, 2017, 5(4): 205-209, 214. DOI:10.16048/j.issn.2095-5561.2017.04.03 |
[26] |
FANG J Y, RICHARDSON B C. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327. DOI:10.1016/S1470-2045(05)70168-6 |
[27] |
LIU Y E, TONG C C, ZHANG Y B, et al. Chitosan oligosaccharide ameliorates acute lung injury induced by blast injury through the DDAH1/ADMA pathway[J]. PLoS One, 2018, 13(2): e0192135. DOI:10.1371/journal.pone.0192135 |
[28] |
WANG H, ZHANG W J, GAO J H, et al. Global gene expression profiling of blast lung injury of goats exposed to shock wave[J]. Chin J Traumatol, 2020, 23(5): 249-257. DOI:10.1016/j.cjtee.2020.08.005 |
[29] |
LUMLEY A, OSBORN E, MELLOR A, et al. The role of neutrophil gelatinase-associated lipocalin (NGAL) in the detection of blast lung injury in a military population[J]. J Crit Care, 2018, 43: 312-315. DOI:10.1016/j.jcrc.2017.08.047 |
[30] |
MOYA I M, HALDER G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 211-226. DOI:10.1038/s41580-018-0086-y |
[31] |
LACANNA R, LICCARDO D, ZHANG P, et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation[J]. J Clin Invest, 2019, 129(5): 2107-2122. DOI:10.1172/JCI125014 |
[32] |
CHEN Q, REHMAN J, CHAN M, et al. Angiocrine sphingosine-1-phosphate activation of S1PR2-YAP signaling axis in alveolar type II cells is essential for lung repair[J]. Cell Rep, 2020, 31(13): 107828. DOI:10.1016/j.celrep.2020.107828 |
[33] |
HU C, SUN J, DU J, et al. The Hippo-YAP pathway regulates the proliferation of alveolar epithelial progenitors after acute lung injury[J]. Cell Biol Int, 2019, 43(10): 1174-1183. DOI:10.1002/cbin.11098 |
[34] |
LIU Y, TONG C, CONG P, et al. Proteomic analysis revealed the characteristics of key proteins involved in the regulation of inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process during early lung blast injury[J]. Oxid Med Cell Longev, 2021, 2021: 8899274. DOI:10.1155/2021/8899274 |
[35] |
蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展[J]. 陆军军医大学学报, 2022, 44(5): 395-398. DOI:10.16016/j.2097-0927.202111179 |
[36] |
WANG Y, WANG Y, MA J, et al. YuPingFengSan ameliorates LPS-induced acute lung injury and gut barrier dysfunction in mice[J]. J Ethnopharmacol, 2023, 312: 116452. DOI:10.1016/j.jep.2023.116452 |
[37] |
LI Z, PAN H, YANG J, et al. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models[J]. Phytomedicine, 2023, 108: 154545. DOI:10.1016/j.phymed.2022.154545 |
[38] |
LU Y, WU Y, HUANG M, et al. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis[J]. Phytomedicine, 2024, 123: 155190. DOI:10.1016/j.phymed.2023.155190 |
[39] |
PU Z, SUI B, WANG X, et al. The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, dehydroandrographolide from Andrographis paniculata (Burm.f.) wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis[J]. Phytomedicine, 2023, 114: 154753. DOI:10.1016/j.phymed.2023.154753 |
[40] |
CHEN X, CHENG C, CHENG W, et al. Different responses to identical trauma between BALB/C and C57BL/6 mice[J]. Med Sci Monit, 2021, 27: e928676. DOI:10.12659/MSM.928676 |