[1] |
NEGRINI S, DONZELLI S, AULISA A G, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth[J]. Scoliosis Spinal Disord, 2018, 13: 3. DOI:10.1186/s13013-017-0145-8 |
[2] |
PERFETTI D, ATLAS A M, GALINA J, et al. Surgeon volume affects short-and long-term surgical outcomes in idiopathic scoliosis[J]. Spine Deform, 2020, 8(3): 455-461. DOI:10.1007/s43390-020-00058-9 |
[3] |
LLOYD A, HARDING I, COLE A, et al. Patient-reported outcomes following surgery for adolescent idiopathic scoliosis performed in adolescence versus adulthood[J]. Ann R Coll Surg Engl, 2024. DOI:10.1308/rcsann.2024.0067 |
[4] |
PAGE K, GMELICH C, THAKUR A, et al. 3D surface topographic optical scans yield highly reliable global spine range of motion measurements in scoliotic and non-scoliotic adolescents[J]. Children, 2022, 9(11): 1756. DOI:10.3390/children9111756 |
[5] |
CHEN K, ZHAI X, WANG S, et al. Emerging trends and research foci of deep learning in spine: bibliometric and visualization study[J]. Neurosurg Rev, 2023, 46(1): 81. DOI:10.1007/s10143-023-01987-5 |
[6] |
CHEN K, ZHAI X, SUN K, et al. A narrative review of machine learning as promising revolution in clinical practice of scoliosis[J]. Ann Transl Med, 2021, 9(1): 67. DOI:10.21037/atm-20-5495 |
[7] |
DUNN J, HENRIKSON N B, MORRISON C C, et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force[J]. JAMA, 2018, 319(2): 173-187. DOI:10.1001/jama.2017.11669 |
[8] |
XU S, LI K, JIN L, et al. Distribution of scoliosis in 2.22 million adolescents in mainland China: a population-wide analysis[J]. J Glob Health, 2024, 14: 04117. DOI:10.7189/jogh.14.04117 |
[9] |
KONIECZNY M R, SENYURT H, KRAUSPE R. Epidemiology of adolescent idiopathic scoliosis[J]. J Child Orthop, 2013, 7(1): 3-9. DOI:10.1007/s11832-012-0457-4 |
[10] |
AULIA T N, DJUFRI D, GATAM L, et al. Etiopathogenesis of adolescent idiopathic scoliosis (AIS): role of genetic and environmental factors[J]. Narra J, 2023, 3(3): e217. DOI:10.52225/narra.v3i3.217 |
[11] |
ANDERSEN M O, THOMSEN K, KYVIK K O. Adolescent idiopathic scoliosis in twins: a population-based survey[J]. Spine (Phila Pa 1976), 2007, 32(8): 927-930. DOI:10.1097/01.brs.0000259865.08984.00 |
[12] |
MENG Y, LIN T, LIANG S, et al. Value of DNA methylation in predicting curve progression in patients with adolescent idiopathic scoliosis[J]. EBioMedicine, 2018, 36: 489-496. DOI:10.1016/j.ebiom.2018.09.014 |
[13] | |
[14] |
USHIKI A, SHENG R R, ZHANG Y, et al. Deletion of Pax1 scoliosis-associated regulatory elements leads to a female-biased tail abnormality[J]. Cell Rep, 2024, 43(3): 113907. DOI:10.1016/j.celrep.2024.113907 |
[15] |
MARYA S, TAMBE A D, MILLNER P A, et al. Adolescent idiopathic scoliosis: a review of aetiological theories of a multifactorial disease[J]. Bone Joint J, 2022, 104-B(8): 915-921. DOI:10.1302/0301-620X.104B8.BJJ-2021-1638.R1 |
[16] |
MARIE-HARDY L, COURTIN T, PASCAL-MOUSSELLARD H, et al. The whole-exome sequencing of a cohort of 19 families with adolescent idiopathic scoliosis (AIS): candidate pathways[J]. Genes (Basel), 2023, 14(11): 2094. DOI:10.3390/genes14112094 |
[17] |
YU H, KHANSHOUR A M, USHIKI A, et al. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis[J]. eLife, 2024, 12: RP89762. DOI:10.7554/eLife.89762 |
[18] |
SOH R C, CHEN B Z, HARTONO S, et al. The hindbrain and cortico-reticular pathway in adolescent idiopathic scoliosis[J]. Clin Radiol, 2024, 79(5): e759-e766. DOI:10.1016/j.crad.2024.01.027 |
[19] |
FONG D Y T, CHEUNG K M C, WONG Y W, et al. A population-based cohort study of 394, 401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening[J]. Spine J, 2015, 15(5): 825-833. DOI:10.1016/j.spinee.2015.01.019 |
[20] |
KADHIM M, LUCAK T, SCHEXNAYDER S, et al. Current status of scoliosis school screening: targeted screening of underserved populations may be the solution[J]. Public Health, 2020, 178: 72-77. DOI:10.1016/j.puhe.2019.08.020 |
[21] |
CHUI C E, HE Z, LAM T P, et al. Deep learning-based prediction model for the Cobb angle in adolescent idiopathic scoliosis patients[J]. Diagnostics, 2024, 14(12): 1263. DOI:10.3390/diagnostics14121263 |
[22] |
HURTADO-AVILÉS J, LEÓN-MUÑOZ V J, SANTONJA-MEDINA F, et al. Evaluation of mis-selection of end vertebrae and its effect on measuring Cobb angle and curve length in adolescent idiopathic scoliosis[J]. J Clin Med, 2024, 13(15): 4562. DOI:10.3390/jcm13154562 |
[23] |
WONG J, REFORMAT M, PARENT E, et al. Validity and accuracy of automatic Cobb angle measurement on 3D spinal ultrasonographs for children with adolescent idiopathic scoliosis: SOSORT 2024 award winner[J]. Eur Spine J, 2024. DOI:10.1007/s00586-024-08376-6 |
[24] |
OHYAMA S, MAKI S, KOTANI T, et al. Machine learning algorithms for predicting Cobb angle beyond 25 degrees in female adolescent idiopathic scoliosis patients[J]. Spine (Phila Pa 1976), 2024. DOI:10.1097/BRS.0000000000004986 |
[25] |
KING H A, MOE J H, BRADFORD D S, et al. The selection of fusion levels in thoracic idiopathic scoliosis[J]. J Bone Joint Surg Am, 1983, 65(9): 1302-1313. |
[26] |
LENKE L G, BETZ R R, HARMS J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis[J]. J Bone Joint Surg Am, 2001, 83(8): 1169-1181. |
[27] | |
[28] |
SUK S I. Pedicle screw instrumentation for adolescent idiopathic scoliosis: the insertion technique, the fusion levels and direct vertebral rotation[J]. Clin Orthop Surg, 2011, 3(2): 89-100. DOI:10.4055/cios.2011.3.2.89 |
[29] |
ZHUANG Q, QIU G, LI Q, et al. Modified PUMC classification for adolescent idiopathic scoliosis[J]. Spine J, 2019, 19(9): 1518-1528. DOI:10.1016/j.spinee.2019.03.008 |
[30] |
POST M, VERDUN S, ROUSSOULY P, et al. New sagittal classification of AIS: validation by 3D characterization[J]. Eur Spine J, 2019, 28(3): 551-558. DOI:10.1007/s00586-018-5819-2 |
[31] | |
[32] |
NAULT M L, PARENT S, PHAN P, et al. A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis[J]. J Bone Joint Surg Am, 2010, 92(5): 1073-1081. DOI:10.2106/JBJS.H.01759 |
[33] |
WONG H K, TAN K J. The natural history of adolescent idiopathic scoliosis[J]. Indian J Orthop, 2010, 44(1): 9-13. DOI:10.4103/0019-5413.58601 |
[34] |
SANDERS J O, BROWNE R H, MCCONNELL S J, et al. Maturity assessment and curve progression in girls with idiopathic scoliosis[J]. J Bone Joint Surg Am, 2007, 89(1): 64-73. DOI:10.2106/JBJS.F.00067 |
[35] |
SANDERS J O, BROWNE R H, COONEY T E, et al. Correlates of the peak height velocity in girls with idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2006, 31(20): 2289-2295. DOI:10.1097/01.brs.0000236844.41595.26 |
[36] |
TANNER J M, WHITEHOUSE R H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty[J]. Arch Dis Child, 1976, 51(3): 170-179. DOI:10.1136/adc.51.3.170 |
[37] |
SANDERS J O, KHOURY J G, KISHAN S, et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence[J]. J Bone Joint Surg Am, 2008, 90(3): 540-553. DOI:10.2106/JBJS.G.00004 |
[38] | |
[39] |
CHEUNG K M, LUK K D. Prediction of correction of scoliosis with use of the fulcrum bending radiograph[J]. J Bone Joint Surg Am, 1997, 79(8): 1144-1150. DOI:10.2106/00004623-199708000-00005 |
[40] |
TAKAHASHI S, PASSUTI N, DELÉCRIN J. Interpretation and utility of traction radiography in scoliosis surgery. Analysis of patients treated with Cotrel-Dubousset instrumentation[J]. Spine (Phila Pa 1976), 1997, 22(21): 2542-2546. DOI:10.1097/00007632-199711010-00015 |
[41] |
CHEN Z Q, WANG C F, BAI Y S, et al. Using precisely controlled bidirectional orthopedic forces to assess flexibility in adolescent idiopathic scoliosis: comparisons between push-traction film, supine side bending, suspension, and fulcrum bending film[J]. Spine (Phila Pa 1976), 2011, 36(20): 1679-1684. DOI:10.1097/BRS.0b013e31820e6265 |
[42] | |
[43] |
WEISS H R, WEISS G, PETERMANN F. Incidence of curvature progression in idiopathic scoliosis patients treated with scoliosis in-patient rehabilitation (SIR): an age-and sex-matched controlled study[J]. Pediatr Rehabil, 2003, 6(1): 23-30. DOI:10.1080/1363849031000095288 |
[44] |
ANDRADE R M, CALLEGARI FERREIRA M E, PIRAS L, et al. Effect of therapeutic exercises on the progression of adolescent idiopathic scoliosis: a protocol of a systematic review[J]. BMJ Open, 2024, 14(12): e083282. DOI:10.1136/bmjopen-2023-083282 |
[45] |
WANG Z, ZHU W, LI G, et al. Comparative efficacy of six types of scoliosis-specific exercises on adolescent idiopathic scoliosis: a systematic review and network meta-analysis[J]. BMC Musculoskelet Disord, 2024, 25(1): 1070. DOI:10.1186/s12891-024-08223-1 |
[46] |
WONG C, SHAYESTEHPOUR H, KOUTRAS C, et al. Using electric stimulation of the spinal muscles and electromyography during motor tasks for evaluation of the role in development and progression of adolescent idiopathic scoliosis[J]. J Clin Med, 2024, 13(6): 1758. DOI:10.3390/jcm13061758 |
[47] |
GOMEZ J A, TIMOTHY HRESKO M, GLOTZBECKER M P. Nonsurgical management of adolescent idiopathic scoliosis[J]. J Am Acad Orthop Surg, 2016, 24(8): 555-564. DOI:10.5435/JAAOS-D-14-00416 |
[48] |
ROWE D E, BERNSTEIN S M, RIDDICK M F, et al. A meta-analysis of the efficacy of non-operative treatments for idiopathic scoliosis[J]. J Bone Joint Surg Am, 1997, 79(5): 664-674. DOI:10.2106/00004623-199705000-00005 |
[49] |
LONSTEIN J E, WINTER R B. The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients[J]. J Bone Joint Surg Am, 1994, 76(8): 1207-1221. DOI:10.2106/00004623-199408000-00011 |
[50] | |
[51] |
NEGRINI S, MINOZZI S, BETTANY-SALTIKOV J, et al. Braces for idiopathic scoliosis in adolescents[J]. Cochrane Database Syst Rev, 2015, 2015(6): CD006850. DOI:10.1002/14651858.CD006850.pub3 |
[52] | |
[53] |
PEIRO-GARCIA A, GARCIA R G, MARTIN-GORGOJO V, et al. Impact on quality of life of full-time and night-time braces in adolescent idiopathic scoliosis: a randomized clinical trial[J]. Spine, 2024. DOI:10.1097/BRS.0000000000005228 |
[54] |
ANGELLIAUME A, PFIRRMANN C, ALHADA T, et al. Non-operative treatment of adolescent idiopathic scoliosis[J]. Orthop Traumatol Surg Res, 2024, 104078. DOI:10.1016/j.otsr.2024.104078 |
[55] |
ROYE B D, SIMHON M E, MATSUMOTO H, et al. Establishing consensus on the best practice guidelines for the use of bracing in adolescent idiopathic scoliosis[J]. Spine Deform, 2020, 8(4): 597-604. DOI:10.1007/s43390-020-00060-1 |
[56] |
JANICKI J A, POE-KOCHERT C, ARMSTRONG D G, et al. A comparison of the thoracolumbosacral orthoses and providence orthosis in the treatment of adolescent idiopathic scoliosis: results using the new SRS inclusion and assessment criteria for bracing studies[J]. J Pediatr Orthop, 2007, 27(4): 369-374. DOI:10.1097/01.bpb.0000271331.71857.9a |
[57] |
DOLAN L A, WEINSTEIN S L. Surgical rates after observation and bracing for adolescent idiopathic scoliosis: an evidence-based review[J]. Spine (Phila Pa 1976), 2007, 32(19 Suppl): S91-S100. DOI:10.1097/BRS.0b013e318134ead9 |
[58] |
GAMMON S R, MEHLMAN C T, CHAN W, et al. A comparison of thoracolumbosacral orthoses and SpineCor treatment of adolescent idiopathic scoliosis patients using the Scoliosis Research Society standardized criteria[J]. J Pediatr Orthop, 2010, 30(6): 531-538. DOI:10.1097/BPO.0b013e3181e4f761 |
[59] |
HOERNSCHEMEYER D G, HAWKINS S D, TWEEDY N M, et al. Anterior vertebral body tethering: a single-center cohort with 4.3 to 7.4 years of follow-up[J]. J Bone Joint Surg Am, 2024, 106(20): 1857-1865. DOI:10.2106/JBJS.23.01229 |
[60] |
LOUER C Jr, YASZAY B, CROSS M, et al. Ten-year outcomes of selective fusions for adolescent idiopathic scoliosis[J]. J Bone Joint Surg Am, 2019, 101(9): 761-770. DOI:10.2106/JBJS.18.01013 |
[61] |
CREVECOEUR T S, IYER R R, GOLDSTEIN H E, et al. Timing of intraoperative neurophysiological monitoring (IONM) recovery and clinical recovery after termination of pediatric spinal deformity surgery due to loss of IONM signals[J]. Spine J, 2024, 24(9): 1740-1749. DOI:10.1016/j.spinee.2024.04.008 |
[62] |
QIAO H, YAN K, LIAO B. Risk of coronal imbalance after posterior surgery for adolescent idiopathic scoliosis of type Lenke 5C[J]. Curr Med Res Opin, 2024, 40(10): 1785-1791. DOI:10.1080/03007995.2024.2391556 |
[63] |
OHASHI M, WATANABE K, HIRANO T, et al. Neck and shoulder pain in thoracic adolescent idiopathic scoliosis 10 years after posterior spinal fusion[J]. Eur Spine J, 2024, 33(6): 2522-2529. DOI:10.1007/s00586-024-08233-6 |
[64] |
SEO S H, HYUN S J, LEE J K, et al. Selection of optimal lower instrumented vertebra for adolescent idiopathic scoliosis surgery[J]. Neurospine, 2023, 20(3): 799-807. DOI:10.14245/ns.2346452.226 |
[65] |
ZHAO J, HUANG C, LIU Y, et al. Systematic review and meta-analysis for the proximal junctional kyphosis in adolescent idiopathic scoliosis[J]. Front Pediatr, 2024, 12: 1387841. DOI:10.3389/fped.2024.1387841 |
[66] |
OBA H, BANNO T, OHBA T, et al. Excessive posterior placement of upper instrumented vertebra relative to lower instrumented vertebra as a predictor of proximal junction kyphosis after selective spinal fusion for adolescent idiopathic scoliosis Lenke type 5C curves[J]. Eur Spine J, 2024, 33(10): 3814-3822. DOI:10.1007/s00586-024-08427-y |
[67] |
YANG S, YASZAY B, BAUER J. The clinical significance of the lowest instrumented vertebra in adolescent idiopathic scoliosis[J]. J Am Acad Orthop Surg, 2024, 32(18): e889-e898. DOI:10.5435/JAAOS-D-24-00152 |
[68] |
YAMAUCHI I, NAKASHIMA H, MACHINO M, et al. Relationship between lumbosacral transitional vertebra and postoperative outcomes of patients with Lenke 5C adolescent idiopathic scoliosis: a minimum 5-year follow-up study[J]. Eur Spine J, 2023, 32(6): 2221-2227. DOI:10.1007/s00586-023-07752-y |
[69] |
IRIONDO C, PEDOIA V, MAJUMDAR S. Lumbar intervertebral disc characterization through quantitative MRI analysis: an automatic voxel-based relaxometry approach[J]. Magn Reson Med, 2020, 84(3): 1376-1390. DOI:10.1002/mrm.28210 |
[70] |
LEE C S, HA J K, HWANG C J, et al. Is it enough to stop distal fusion at L 3 in adolescent idiopathic scoliosis with major thoracolumbar/lumbar curves?[J]. Eur Spine J, 2016, 25(10): 3256-3264. DOI:10.1007/s00586-015-4373-4 |
[71] |
ANDO K, IMAGAMA S, ITO Z, et al. Predictive factors for a distal adjacent disorder with L 3 as the lowest instrumented vertebra in Lenke 5C patients[J]. Eur J Orthop Surg Traumatol, 2016, 26(1): 59-66. DOI:10.1007/s00590-015-1712-4 |
[72] |
PERNA F, BORGHI R, PILLA F, et al. Pedicle screw insertion techniques: an update and review of the literature[J]. Musculoskelet Surg, 2016, 100(3): 165-169. DOI:10.1007/s12306-016-0438-8 |
[73] |
STRIANO B M, CRAWFORD A M, VERHOFSTE B P, et al. Intraoperative navigation increases the projected lifetime cancer risk in patients undergoing surgery for adolescent idiopathic scoliosis[J]. Spine J, 2024, 24(6): 1087-1094. DOI:10.1016/j.spinee.2024.01.007 |
[74] |
OBA H, IKEGAMI S, UEHARA M, et al. Reduction in CT scan number with the reference frame middle attachment method in intraoperative CT navigation for adolescent idiopathic scoliosis[J]. Eur Spine J, 2023, 32(9): 3133-3139. DOI:10.1007/s00586-023-07842-x |
[75] |
TANAKA M, SCHOL J, SAKAI D, et al. Low radiation protocol for intraoperative robotic C-arm can enhance adolescent idiopathic scoliosis deformity correction accuracy and safety[J]. Global Spine J, 2024, 14(5): 1504-1514. DOI:10.1177/21925682221147867 |
[76] |
LI M, WANG C F, GU S X, et al. Adapted simplified Chinese (mainland) version of Scoliosis Research Society-22 questionnaire[J]. Spine (Phila Pa 1976), 2009, 34(12): 1321-1324. DOI:10.1097/BRS.0b013e31819812b7 |
[77] |
WEI X, ZHU X, BAI Y, et al. Development of the simplified Chinese version of the spinal appearance questionnaire: cross-cultural adaptation and psychometric properties evaluation[J]. Spine (Phila Pa 1976), 2012, 37(17): 1497-1504. DOI:10.1097/BRS.0b013e3182407e25 |
[78] |
KASTRINIS A, KOUMANTAKIS G, TSEKOURA M, et al. Greek adaptation and validation of the Bad Sobernheim stress questionnaire-brace and the Bad Sobernheim stress questionnaire-deformity[J]. Adv Exp Med Biol, 2023, 1425: 141-149. DOI:10.1007/978-3-031-31986-0_13 |