电离辐射通过精子DNA甲基化影响子代小鼠生育能力的机制研究

戴智慧 吴家玮 尹昊瓒 王月帆 谭坚 杨富

引用本文: 戴智慧,吴家玮,尹昊瓒,等. 电离辐射通过精子DNA甲基化影响子代小鼠生育能力的机制研究[J]. 海军军医大学学报,2025,46(10):1257-1266.DOI: 10.16781/j.CN31-2187/R.20240235.
Citation: DAI Z H, WU J W, YIN H Z, et al. Mechanism of ionizing radiation affecting the fertility of offspring through sperm DNA methylation in mice[J]. Acad J Naval Med Univ, 2025, 46(10): 1257-1266. DOI: 10.16781/j.CN31-2187/R.20240235.

电离辐射通过精子DNA甲基化影响子代小鼠生育能力的机制研究

doi: 10.16781/j.CN31-2187/R.20240235
详细信息

Mechanism of ionizing radiation affecting the fertility of offspring through sperm DNA methylation in mice

  • 摘要:  目的 探究电离辐射对雄性小鼠及其子代生育能力的影响,通过精子DNA甲基化测序探究电离辐射对精子代际及跨代遗传效应的机制。 方法 将8周龄C57BL/6雄性小鼠利用60Co辐射源进行3 Gy剂量的全身辐射(3 Gy-F0组,n=60),以同年龄段未接受辐射雄性小鼠为对照(0 Gy-F0组,n=60)。分别于电离辐射后5、6、7、8、9、10、11、12周将雄性小鼠与健康雌性小鼠进行合笼繁殖,获得的子一代(F1代)雄性小鼠再与健康雌性小鼠进行合笼繁殖,获得子二代(F2代)雄性小鼠。采用H-E染色检测睾丸的组织结构;ELISA检测小鼠血清促卵泡激素(FSH)、睾酮(T)、促黄体素(LH)的含量;精子检测自动分析系统检测精子浓度及活力;提取F0代小鼠精子的DNA进行全基因组DNA甲基化测序,对F1代小鼠精子DNA进行MassARRAY甲基化位点检测,并利用qPCR进行验证。 结果 与0 Gy-F0组相比,电离辐射后7周3 Gy-F0组雄性小鼠逐渐恢复生殖能力,辐射后10~11周3 Gy-F0组子代的存活数与0 Gy-F0组差异无统计学意义(P>0.05)。F1代小鼠体重、睾丸形态、精子浓度等在3 Gy-F1组与0 Gy-F1组间差异均无统计学意义(均P>0.05);但与0 Gy-F1组相比,3 Gy-F1组小鼠的LH、FSH及T含量均下降(均P<0.05),睾丸体积变小、总精子活动率及前向运动率降低,并且其生育能力也有所下降(均P<0.05)。DNA甲基化测序结果显示,较多差异甲基化基因富集在调控微管形成的通路中,MassARRAY甲基化位点分析发现Mid1基因的甲基化水平升高(P<0.05或P<0.01);qPCR结果显示,F0及F1代小鼠精子中Mid1基因均下调表达(P<0.05或P<0.01)。F2代雄性小鼠的睾丸体积、睾丸指数、精子浓度、精子活力、激素水平、Mid1基因的表达水平在0 Gy-F2与3 Gy-F2小鼠间的差异均无统计学意义(均P>0.05)。 结论 3 Gy剂量的电离辐射所造成的小鼠精子发育损伤能够自行恢复,但可通过代际传递增高F1代小鼠精子Mid1的甲基化水平并降低精子的运动能力,进而影响F1代小鼠的生育能力,但对F2代雄性小鼠的生育能力没有影响。

     

    Abstract:  Objective To explore the effect of ionizing radiation on the fertility of male mice and its offspring and the intergenerational and transgenerational genetic effect mechanism of ionizing radiation through sperm DNA methylation sequencing. Methods Eight-week-old (8 w) C57BL/6 male mice were irradiated with 60Co radiation source at a dose of 3 Gy (3 Gy-F0 group, n=60) and non-irradiated mice of the same age were used as controls (0 Gy-F0 group, n=60). Afetr 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-week radiation, the mice began to breed with healthy females, and the first generation (F1 generation) male mice then breed with healthy female mice to obtain the offspring (F2 generation) male mice. The structure of testis was detected by hematoxylin-eosin staining; serum follicle-stimulating hormone (FSH), testosterone (T) and luteinizing hormone (LH) levels were determined by enzyme-linked immunosorbent assay. Automatic sperm analysis system was used to detect sperm concentration and activity. The DNA of F0 generation sperm was extracted and analyzed by genome-wide DNA methylation sequencing. MassARRAY methylation sites were detected in sperm DNA of F1 generation mice and verified by quantitative polymerase chain reaction (qPCR). Results Compared with the 0 Gy-F0 group, male mice in the 3 Gy-F0 group gradually regained their reproductive ability 7 weeks after ionizing radiation. There was no significant difference in the number of surviving offspring between the 3 Gy-F0 group and 0 Gy-F0 group 10-11 weeks after radiation (P > 0.05). There were no significant differences in body weight, testicular morphology, or sperm concentration of F1 generation mice between the 3 Gy-F1 group and the 0 Gy-F1 group (all P > 0.05). However, compared with the 0 Gy-F1 group, the contents of LH, FSH and T in the 3 Gy-F1 group were all decreased (all P < 0.05), the testicle volume, total sperm motility rate, forward motility rate and the fertility were considerably decreased (all P < 0.05). DNA methylation sequencing showed that more differentially methylated genes were enriched in the pathway regulating microtubule formation. MassARRAY methylation sites analysis showed that the methylation level of Mid1 was significantly increased (P < 0.05 or P < 0.01). Mid1 was verified down-regulated in F1 and F0 sperm by qPCR (P < 0.05 or P < 0.01). However, there were no significant differences in volume of testes, testicular index, sperm concentration, sperm motility, hormone levels or Mid1 expression level between 0 Gy-F2 and 3 Gy-F2 mice in F2 generation male mice (all P > 0.05). Conclusion Sperm damage in mice caused by ionizing radiation at a dose of 3 Gy can recover by itself. However, it may decrease sperm activity by regulating Mid1 methylation level of sperm in F1 mice, thus affect the fertility of F1 mice, but has no effect on the fertility of male F2 mice.

     

  • 据WHO统计,全球约有5 000万~8 000万人患有不孕不育症[1],由男性因素导致的不孕不育比例为30%~50%[2]。其中精子异常是导致男性不孕不育的主要原因[3]。受不良生活习惯及环境污染的影响,1984-2019年间,中国有生育力的男性精子浓度总体上呈下降趋势[4]。研究表明,环境暴露(如内分泌干扰物、重金属、辐射等)比遗传因素对男性生殖损伤的影响更为显著,并且这些因素可能直接或通过表观遗传机制发挥作用[5-6]

    电离辐射是由引起物质电离的粒子(如α粒子、β粒子、质子和中子)或电磁(X射线和γ射线)构成的辐射[7]。随着现代科技发展,核技术在军事、航天、医疗等领域的应用越来越广泛,暴露在电离辐射环境中的危险也越来越大[8-9]。长期暴露在电离辐射环境中的男性,其精子浓度、活力及形态都会受到影响[9]。研究发现精子的发生对电离损伤极度敏感,0.11 Gy的剂量就能够降低男性的精子数量,3~5 Gy的剂量便能引起男性永久性不育[10]。这主要是由于电离辐射一方面能促进体内氧化自由基的生成,使精子凋亡及运动能力下降[11-12];另一方面可降低精子DNA的稳定性,影响DNA损伤修复机制,造成精子发生异常,进而降低精子的数量以及增加精子的畸形率[13-14]

    除此之外,电离辐射也会导致生殖细胞表观遗传修饰的改变[15]。性成熟的雄性大鼠海马区受到20 Gy X射线的局部辐射后,其睾丸组织中出现明显的DNA损伤,尤其是DNA双链的断裂;在未成熟精子中组蛋白H2AX的磷酸化水平升高;在睾丸和成熟精子细胞中总体DNA甲基化水平降低[16]。对出生1周的新生小鼠利用137Cs进行全身辐射,急性高剂量辐射导致小鼠睾丸的总DNA甲基化水平随着年龄增长而下降[17]。利用X射线对小鼠进行局部辐射后发现精子中piRNA也出现了差异表达[18]。越来越多的研究表明,父代不良环境暴露所引起的精子表观遗传修饰可传递给后代,从而导致后代一系列疾病的易感性增加[19-20]。Wang等[21]发现,暴露在辐射环境下的雄性秀丽线虫成熟精子内的DNA损伤会受到组蛋白的包裹,不能被修复蛋白所修复,导致异染色质增加,从而使F2代胚胎致死率增加。

    本实验拟探究电离辐射对雄性小鼠及其子代生育能力的影响以及是否通过DNA序列之外的表观遗传途径影响子代的生育能力,以期为电离辐射所导致的男性不育的预防和治疗提供参考。

    7周龄C57BL/6小鼠由海军军医大学实验动物中心提供,实验动物使用许可证号SYXK(沪)2022-0002。动物饲养环境:昼夜(明暗)交替时间12/12 h,温度20~24 ℃,相对湿度40%~70%,自由进食水。环境适应1周后,辐射组小鼠利用60Co辐射源进行3 Gy剂量的全身辐射(n=60),以相同饲养环境中同年龄段未辐射小鼠作为对照(n=60)。前期分别进行0、1、3、5、7 Gy的全身电离辐射试验,但5、7 Gy辐射3周后小鼠开始死亡,1 Gy辐射后小鼠的精子浓度、睾丸大小与未辐射小鼠的差异均无统计学意义,因此选择3 Gy剂量进行后续研究。

    3 Gy辐射组小鼠分别于辐射后1、2、3、4、5、6、7、8、9、10、11、12周称重后颈椎脱臼致死(每个时间点辐射小鼠和对照小鼠各5只),于腹部正中切口分离出两侧睾丸及附睾尾部。称重两侧睾丸后用游标卡尺测量左侧睾丸的长度(a)和宽度(b),按公式计算睾丸体积和睾丸指数:睾丸体积=1/2ab2,睾丸指数(%)=(双侧睾丸重量之和/小鼠体重)×100%。右侧睾丸用4%的多聚甲醛固定后,送样于武汉赛维尔生物科技有限公司进行石蜡包埋、切片、H-E染色,观察睾丸组织形态及生精细胞等。

    将一侧附睾尾部用PBS清洗后,移至装有37 ℃预热的1 mL精子细胞BWW培养基(北京雷根生物技术有限公司)的EP管中,沿附睾尾的纵轴剪成两半,并沿横轴将附睾剪成均匀的3段,置37 ℃恒温水浴锅中孵育30 min,待精子充分游离后取上清液,即得到精子悬液。用穗加SSA-Ⅱ精子自动检测分析系统检测精子浓度、总精子活动率、精子前向运动率、精子非前向运动率和不运动精子率。

    3 Gy辐射组(3 Gy-F0代)小鼠与对照(0 Gy-F0代)小鼠各5只,按照雄雌比1∶2进行合笼,每笼放2只C57BL/6正常雌性小鼠,分别于辐射后5、6、7、8、9、10、11、12周的当天下午17:30进行合笼,第2天早上8:00检查雌鼠是否见阴栓。将见栓雌鼠单独饲养至生产,统计每窝小鼠的子代(F1代)数。按上述方法再将F1代雄性小鼠(0 Gy-F1和3 Gy-F1)于出生后8周按雄雌1∶2比例进行合笼繁殖,每笼放2只C57BL/6正常雌性小鼠,得到F2代小鼠。

    0 Gy、3 Gy辐射后12周雄性小鼠与C57BL/6正常雌性小鼠生育得到的F1代小鼠(0 Gy-F1、3 Gy-F1)出生3周后断乳,判断雌雄并称重,之后每隔7 d进行称重。F1代雄性小鼠(0 Gy-F1、3 Gy-F1各10只)出生后10周,摘除眼球取血。将离心管中的血液置4 ℃冰箱内过夜,待血液凝固后,1 500 ×g离心10 min,取上清于干净的离心管中,-20 ℃保存备用。之后用ELISA(上海酶联生物科技有限公司)法检测血清中促卵泡激素(follicle-stimulating hormone,FSH)、睾酮(testosterone,T)、促黄体素(luteinizing hormone,LH)的含量。

    利用血液/细胞/组织基因组DNA提取试剂盒[DP304,天根生化科技(北京)有限公司]提取F0及F1代小鼠精子的DNA,送安诺优达基因科技(北京)有限公司对F0代小鼠精子进行全基因组DNA甲基化测序。保留P<0.000 05、组间平均甲基化水平差异≥0.1、至少包含3个CpG位点的区域作为最终的差异有统计学意义的甲基化区域(differentially methylated region,DMR)。随后,将差异倍数≥2且错误发现率<0.01作为筛选条件筛选出差异甲基化基因,对这些基因进行基因本体(Gene Ontology,GO)富集分析。以错误发现率方法校正后的P(即q)<0.05为阈值,满足此条件的GO条目定义为在差异甲基化基因中显著富集的GO条目。之后针对筛选得到的如中线1(midline 1,Mid1)、富含亮氨酸重复激酶2(leucine-rich repeat kinase 2,Lrrk2)、驱动蛋白家族成员5C(kinesin family member 5C,Kif5c)、染色质盒蛋白7(chromobox 7,Cbx7)、含转化酸性卷曲螺旋蛋白1(transforming acidic coiled-coil containing protein 1,Tacc1)、瞬时受体电位阳离子通道亚家族M成员8(transient receptor potential cation channel subfamily M member 8,Trpm8)等基因,对F1代小鼠进行MassARRAY甲基化检测(上海欧易生物医学科技有限公司)。按甲基化常规设计方法,截取基因转录起始位点的上游1 000 bp至下游5 000 bp序列,并预测CpG岛,针对CpG岛区进行方案设计。采用Agena EpiDesigner程序(http://www.epidesigner.com)对靶向序列进行引物方案设计。根据软件运行结果选择并确定合适的引物序列,3'端引物加有T7启动子标签和8个碱基的插入序列,5'端添加了10个碱基的标签。

    所用引物序列如下:Mid1 5'-aggaagagagTGA-AGATATATTTGGTGTTATTTTGT-3',Mid1 3'-cagt-aatacgactcactatagggagaaggctAATACTCTTACCCAC-TAAACCATCTCA-5';Cbx7 5'-aggaagagagGAATG-GTAGGGTGGGTATTAAGG-3',Cbx7 3'-cagtaatac-gactcactatagggagaaggctAACCCTAAAAAAACAAA-ACCCAC-5';Kif5c 5'-aggaagagagGGTGATAGGA-TTATTTATTGTTTTTTT-3',Kif5c 3'-cagtaatacgactc-actatagggagaaggctAATCAAATCCTCAACCTCTAA-CTCC-5';Lrrk2 5'-aggaagagagTAGTATTTGGGAG-GTAGAGGTAGGT-3',Lrrk2 3'-cagtaatacgactcactat-agggagaaggctATTCTCCACAAACTCAATCAACTA-TT-5';Tacc1 5'-aggaagagagTTTGTTTTGTTGTTATT-ATTGGATATG-3',Tacc1 3'-cagtaatacgactcactataggg-agaaggctACTAAAATTTTTCCTCTACTCCCATT-5';Trpm8 5'-aggaagagagGTATGGGGTATGGTTTTTAA-TAGGG-3',Trpm8 3'-cagtaatacgactcactatagggagaagg-ctCTCAAAAATAAAACTTCCTACTCATTC-5'。

    RNA的提取和检测:分离得到的小鼠精子加入1 mL TRIzol(日本TaKaRa公司),待精子完全裂解后严格按照说明书进行后续RNA的提取,利用NanoDrop2000(美国ThermoFisher Scientific公司)检测RNA的纯度及浓度。

    反转录:取1 000 ng RNA在20 μL反转录体系按照PrimeScriptTM RT Master Mix(货号RR036A,日本TaKaRa公司)说明书设置PCR反应条件:37 ℃ 15 min,85 ℃ 5 s,4 ℃。配制溶液所使用的试剂耗材均为无RNase,在冰上操作。

    qPCR反应:取2 μL合成的cDNA在冰上按照TB GreenTM Premix Ex TaqTM(货号RR420A,日本TaKaRa公司)说明书配制20 μL预混液,按下述条件进行qPCR:95 ℃ 10 min;95 ℃ 5 s、60 ℃ 15 s,72 ℃ 20 s,循环40次。以β-actin为内参,每个样本分别进行生物学重复和技术重复各3次,采用2-ΔΔCt法进行相对定量计算。所用引物(5'-3'):Mus-β-actin上游引物GTGACGTTGACATCCGTAAAGA,下游引物GCCGGACTCATCGTACTCC;Mus-mid1上游引物CAGAAGCCGTCTTGAGCCTA,下游引物ATTTTCCACCGAGGTGTCCG;Mus-kif5c上游引物TCGGAGGTCAAGTCTCTCGT,下游引物TGATCTTGGCTTCGTGCTGT;Mus-lrrk2上游引物ACTCACCTTGCTGATACTGGA,下游引物GCTGTTCCTCGGAAACTCTCT。

    使用GraphPad Prism 9软件(美国GraphPad Software公司)进行统计分析。数据以x±s表示,两组间的比较采用独立样本t检验。检验水准(α)为0.05。

    H-E染色、睾丸大小及精子计数结果见图 1A~1C。3 Gy辐射后5周3 Gy-F0组小鼠睾丸体积及附睾精子数量开始恢复,至辐射后12周时与对照组(0 Gy-F0)相比差异均无统计学意义(P>0.05)。合笼实验结果发现,辐射后4~6周与3 Gy-F0组小鼠同笼的雌性小鼠虽然能够检到阴道栓,但未见雌性小鼠妊娠,说明此时受到辐射的雄性小鼠虽然附睾中有一定数量的成熟精子,但因受损严重,不能生育。辐射后7周雄性小鼠才恢复生殖能力,但子代存活数较少;辐射后10~11周其子代的存活数与对照组(0 Gy-F0)差异无统计学意义(P>0.05,图 1D)。F1代小鼠(无论雌、雄)体重在3 Gy-F1组与0 Gy-F1组间差异均无统计学意义(均P>0.05,图 1E1F)。可见,电离辐射导致的F0代雄性小鼠精子发育损伤能够自行恢复。

    图  1  3 Gy电离辐射对雄性小鼠生精能力的损伤
    Fig.  1  Damage effect of 3 Gy ionizing radiation on spermatogenic ability of male mice
    A: H-E staining of mice testes; B: The volume of left testicle after radiation (*P < 0.05 vs 0 Gy group of same time. n=5, x±s); C: Total sperm concentration in the epididymis after radiation (*P < 0.05 vs 0 Gy group of same time. n=5, x±s); D: The number of surviving subgenerations after radiation (n=5, x±s); E: Body weight of F1 male mice (n=10, x±s); F: Body weight of F1 female mice (n=10, x±s).
    下载: 全尺寸图片

    结果显示,3 Gy-F1、0 Gy-F1雄性小鼠的睾丸形态、睾丸指数及精子浓度(图 2A~2C)均无明显差异,但3 Gy-F1雄性小鼠的睾丸体积变小(P<0.05,图 2D)。与0 Gy-F1雄性小鼠相比,3 Gy-F1雄性小鼠血清中FSH、LH、T含量均降低(均P<0.05,图 2E)。与0 Gy-F1雄性小鼠相比,3 Gy-F1雄性小鼠精子前向运动率及总精子活动率均降低、不运动精子率升高(均P<0.05),精子非前向运动率差异无统计学意义(P>0.05,图 2F)。

    图  2  3 Gy电离辐射对F1雄性小鼠生育能力的影响
    Fig.  2  Effect of 3 Gy ionizing irradiation on fertility of F1 male mice
    A: H-E staining of F1 male mice testes; B: Testis index of F1 male mice; C: Sperm concentration of F1 male mice; D: Testes volume of F1 male mice; E: The levels of FSH, LH and T in F1 male mice; F: Effects of ionizing radiation on sperm motility in F1 male mice. *P < 0.05, **P < 0.01. n=10. FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; T: Testosterone.
    下载: 全尺寸图片

    采用雌雄合笼的方式(雌雄比2∶1)对F1代雄性小鼠(9~10周龄)的生育能力进行实验,发现与0 Gy-F1、3 Gy-F1雄性小鼠同笼的正常雌性小鼠受孕率分别为90%(9/10)和50%(6/12),两组间差异有统计学意义(P=0.047 1)。0 Gy-F1雄性小鼠平均每窝存活的子代数为(7.11±0.45)只,高于3 Gy-F1雄性小鼠平均每窝存活的子代数(3.83±1.35)只,差异有统计学意义(P=0.030 2)。

    综上所述,3 Gy剂量的辐射可对F0代雄性小鼠生育力造成一定的影响,辐射10~11周后生育能力基本恢复正常;但F1代雄性小鼠的激素水平会发生紊乱、精子总活力降低,生育能力也有所下降,推测电离辐射可以通过某种方式影响F1代小鼠的精子活力进而影响其生育能力。

    分离辐射后12周及对照F0代小鼠的精子,提取DNA进行全基因组甲基化测序,并对筛选出来的两组DMR进行聚类分析。在F0代小鼠精子中确定了35个高甲基化区域和42个低甲基化区域,并且DMR大多数位于X染色体上(图 3A)。辐射组高甲基化的相关基因GO富集分析结果显示,较多差异甲基化基因富集在调控微管形成的通路中,主要功能是参与细胞骨架蛋白的结合(图 3B3C)。

    图  3  F0代小鼠精子DNA甲基化测序
    Fig.  3  DNA methylation sequencing of F0 mice sperm
    A: The number of DMRs distributed on chromosomes (chr); B, C: GO enrichment analysis of hypermethylated genes with a focus on biological processes (B) and molecular functions (C). DMR: Differentially methylated region; GO: Gene Ontology; FDR: False discovery rate.
    下载: 全尺寸图片

    检测发现只有Mid1基因的每个CpG位点差异都存在统计学意义,3 Gy-F1小鼠精子中Mid1基因甲基化水平升高;Lrrk2Kif5c基因只有个别CpG位点差异存在统计学意义(图 4A~4FP<0.05或P<0.01)。qPCR分析F1代小鼠精子RNA发现,3 Gy-F1代小鼠精子中Mid1基因下调表达(P<0.05),Lrrk2Kif5c基因差异无统计学意义(图 4G~4I);并且F0代小鼠精子Mid1基因也下调表达(P<0.01,图 4J)。推测电离辐射可通过影响子代小鼠精子Mid1的甲基化水平,从而影响精子的运动能力。

    图  4  3 Gy电离辐射对F1代雄性小鼠精子甲基化水平的影响
    Fig.  4  Effect of 3 Gy ionizing radiation on sperm methylation level of F1 male mice
    A-F: The average methylation levels of Mid1, Lrrk2, Kif5c, Cbx7, Tacc1 and Trpm8 of F1 mice by MassARRAY; G-I: The mRNA levels of Mid1, Kif5c and Lrrk2 in sperm of F1 mice by qPCR; J: The mRNA level of Mid1 in sperm of F0 mice by qPCR. *P < 0.05, **P < 0.01. n=10. Mid1: Midline 1; Lrrk2: Leucine-rich repeat kinase 2; Kif5c: Kinesin family member 5C; Cbx7: Chromobox 7; Tacc1: Transforming acidic coiled-coil containing protein 1; Trpm8: Transient receptor potential cation channel subfamily M member 8; qPCR: Quantitative polymerase chain reaction.
    下载: 全尺寸图片

    对F0代辐射后12周生育的F1代雄性小鼠与正常雌性小鼠交配得到的F2代雄性小鼠进行检测,结果显示小鼠的睾丸体积、睾丸指数、精子浓度、FSH、LH、T、精子活力及Mid1相对表达水平在0 Gy-F2与3 Gy-F2小鼠间差异均无统计学意义(均P>0.05,图 5)。

    图  5  3 Gy电离辐射对F2代雄性小鼠生育能力的影响
    Fig.  5  Effect of 3 Gy ionizing irradiation on fertility of F2 male mice
    A: Testes volume of F2 mice; B: Testis index of F2 mice; C: Sperm concentration of F2 mice; D: The level of LH in F2 mice; E: The level of FSH in F2 mice; F: The level of T in F2 mice; G: Total sperm activity rate of F2 mice; H: Forward movement sperm percentage of F2 mice; I: Non-forward movement sperm percentage of F2 mice; J: Inactive sperm percentage of F2 mice; K: The expression level of Mid1 gene in sperm of F2 mice. 0 Gy-F2 group, n=10; 3 Gy-F2 group, n=7. FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; T: Testosterone.
    下载: 全尺寸图片

    实验结果表明,3 Gy剂量的电离辐射所造成的雄性小鼠精子发育损伤能够自行恢复,并可通过调控F1代雄性小鼠精子Mid1的甲基化水平影响精子的运动能力,进而影响F1代雄性小鼠的生育能力,但对F2代雄性小鼠的生育能力没有影响。

    研究显示,电离辐射极易造成精子损伤,影响男性的生育能力[22-23]。长期暴露在电离辐射环境下的人员精子DNA损伤和甲基化水平远高于未暴露在电离辐射环境下的人员[24]。但电离辐射所造成的精子损伤是否能修复以及修复后子代的生育能力是否受影响尚未阐明。本研究发现,雄性小鼠受到3 Gy剂量的全身电离辐射后,随着时间的延长,小鼠睾丸生精细胞数量、睾丸体积及附睾精子数量能恢复,至辐射后10~11周其子代数与未辐射小鼠的子代数差异无统计学意义(P>0.05)。

    为了探究其恢复的生育能力是否影响子代的生育能力,本实验评估了F1及F2代雄性小鼠的体重、睾丸体积、精子浓度、精子活力及激素水平等指标的变化。与0 Gy-F1小鼠相比,3 Gy-F1雄性小鼠睾丸形态、睾丸指数及精子浓度均未出现明显变化,但睾丸体积变小,精子活力下降,血清FSH、LH及T浓度均降低,提示生育能力下降。性激素水平对男性生殖能力发挥着至关重要的作用:FSH主要刺激睾丸中的支持细胞产生精子发生及成熟过程中所需的调节分子和营养物质;LH直接调节睾丸中的间质细胞分泌雄激素;雄激素主要以睾酮为主,其作用主要是刺激雄性性器官的发育、成熟及精子的生成与成熟[25]。本研究中受3 Gy电离辐射的F0代雄性小鼠虽恢复了生育能力,但F1代雄性小鼠仍存在生殖损伤。F2代雄性小鼠未见明显生殖损伤,睾丸体积、睾丸指数、精子浓度、激素水平及精子活力在3 Gy-F2与0 Gy-F2小鼠间差异均无统计学意义(均P>0.05)。

    越来越多的证据表明,不良环境的暴露可以通过影响DNA甲基化等表观遗传学修饰传递给子代,进而影响子代的健康[26-28]。如在斑马鱼中F0代电离辐射所引起的基因甲基化水平的改变可以传递给从未受到辐射的F3代[29]。为了探究电离辐射是否通过精子DNA甲基化修饰的改变影响子代的生殖能力,本研究对电离辐射12周后的F0代小鼠精子进行全基因组甲基化测序,发现较多的差异甲基化基因富集在调控微管形成的通路中,主要功能是参与细胞骨架蛋白的结合。而微管异常会影响精子的成熟过程及影响精子的运动能力[30],提示电离辐射可能通过影响子代小鼠精子尾部微管的形成,从而造成精子成熟及运动能力的损伤,进而影响子代小鼠的生育能力。对F1代小鼠精子MassARRAY检测参与微管形成并在F0代中具有显著差异甲基化的基因,发现只有Mid1基因的每个CpG位点差异都有统计学意义,3 Gy-F1代小鼠精子中Mid1基因甲基化水平升高;Lrrk2Kif5c基因只有个别CpG位点差异有统计学意义。Mid1基因的在3 Gy-F0及3 Gy-F1雄性小鼠精子中均下调表达,但3 Gy-F1雄性小鼠Lrrk2Kif5c基因与0 Gy-F1雄性小鼠精子差异无统计学意义。推测电离辐射可通过影响子代小鼠精子Mid1的甲基化水平,从而影响精子的运动能力。F2代小鼠中Mid1相对表达水平差异无统计学意义,这可能与辐射剂量及精子形成过程中DNA甲基化的重编程有关[31]

    本实验评估了3 Gy剂量的电离辐射对父代及子代生育能力的影响,发现电离辐射所造成的F0代小鼠精子损伤经过一段时间后能够恢复,但参与精子微管形成的关键基因Mid1在F0代及F1代小鼠精子中甲基化水平升高、mRNA水平下调,提示电离辐射所造成的父代精子损伤可通过Mid1的DNA甲基化代际传递给F1代,继而造成F1代小鼠的生育力下降。本研究结果为电离辐射所导致的男性不育的预防和治疗提供了参考。

  • 图  1   3 Gy电离辐射对雄性小鼠生精能力的损伤

    Fig.  1   Damage effect of 3 Gy ionizing radiation on spermatogenic ability of male mice

    A: H-E staining of mice testes; B: The volume of left testicle after radiation (*P < 0.05 vs 0 Gy group of same time. n=5, x±s); C: Total sperm concentration in the epididymis after radiation (*P < 0.05 vs 0 Gy group of same time. n=5, x±s); D: The number of surviving subgenerations after radiation (n=5, x±s); E: Body weight of F1 male mice (n=10, x±s); F: Body weight of F1 female mice (n=10, x±s).

    下载: 全尺寸图片

    图  2   3 Gy电离辐射对F1雄性小鼠生育能力的影响

    Fig.  2   Effect of 3 Gy ionizing irradiation on fertility of F1 male mice

    A: H-E staining of F1 male mice testes; B: Testis index of F1 male mice; C: Sperm concentration of F1 male mice; D: Testes volume of F1 male mice; E: The levels of FSH, LH and T in F1 male mice; F: Effects of ionizing radiation on sperm motility in F1 male mice. *P < 0.05, **P < 0.01. n=10. FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; T: Testosterone.

    下载: 全尺寸图片

    图  3   F0代小鼠精子DNA甲基化测序

    Fig.  3   DNA methylation sequencing of F0 mice sperm

    A: The number of DMRs distributed on chromosomes (chr); B, C: GO enrichment analysis of hypermethylated genes with a focus on biological processes (B) and molecular functions (C). DMR: Differentially methylated region; GO: Gene Ontology; FDR: False discovery rate.

    下载: 全尺寸图片

    图  4   3 Gy电离辐射对F1代雄性小鼠精子甲基化水平的影响

    Fig.  4   Effect of 3 Gy ionizing radiation on sperm methylation level of F1 male mice

    A-F: The average methylation levels of Mid1, Lrrk2, Kif5c, Cbx7, Tacc1 and Trpm8 of F1 mice by MassARRAY; G-I: The mRNA levels of Mid1, Kif5c and Lrrk2 in sperm of F1 mice by qPCR; J: The mRNA level of Mid1 in sperm of F0 mice by qPCR. *P < 0.05, **P < 0.01. n=10. Mid1: Midline 1; Lrrk2: Leucine-rich repeat kinase 2; Kif5c: Kinesin family member 5C; Cbx7: Chromobox 7; Tacc1: Transforming acidic coiled-coil containing protein 1; Trpm8: Transient receptor potential cation channel subfamily M member 8; qPCR: Quantitative polymerase chain reaction.

    下载: 全尺寸图片

    图  5   3 Gy电离辐射对F2代雄性小鼠生育能力的影响

    Fig.  5   Effect of 3 Gy ionizing irradiation on fertility of F2 male mice

    A: Testes volume of F2 mice; B: Testis index of F2 mice; C: Sperm concentration of F2 mice; D: The level of LH in F2 mice; E: The level of FSH in F2 mice; F: The level of T in F2 mice; G: Total sperm activity rate of F2 mice; H: Forward movement sperm percentage of F2 mice; I: Non-forward movement sperm percentage of F2 mice; J: Inactive sperm percentage of F2 mice; K: The expression level of Mid1 gene in sperm of F2 mice. 0 Gy-F2 group, n=10; 3 Gy-F2 group, n=7. FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; T: Testosterone.

    下载: 全尺寸图片
  • [1] BABAKHANZADEH E, NAZARI M, GHASEMIFAR S, et al. Some of the factors involved in male infertility: a prospective review[J]. Int J Gen Med, 2020, 13: 29-41. DOI: 10.2147/IJGM.S241099.
    [2] EISENBERG M L, ESTEVES S C, LAMB D J, et al. Male infertility[J]. Nat Rev Dis Primers, 2023, 9: 49. DOI: 10.1038/s41572-023-00459-w.
    [3] KRAUSZ C, RIERA-ESCAMILLA A. Genetics of male infertility[J]. Nat Rev Urol, 2018, 15(6): 369-384. DOI: 10.1038/s41585-018-0003-3.
    [4] 李昕, 李豫, 邵骏, 等. 中国有生育力男性精子浓度35年变化趋势分析[J]. 中华男科学杂志, 2021, 27(7): 645-648. DOI: 10.13263/j.cnki.nja.2021.07.012.
    [5] SKAKKEBAEK N E, RAJPERT-DE MEYTS E, BUCK LOUIS G M, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility[J]. Physiol Rev, 2016, 96(1): 55-97. DOI: 10.1152/physrev.00017.2015.
    [6] KRZASTEK S C, FARHI J, GRAY M, et al. Impact of environmental toxin exposure on male fertility potential[J]. Transl Androl Urol, 2020, 9(6): 2797-2813. DOI: 10.21037/tau-20-685.
    [7] WDOWIAK A, SKRZYPEK M, STEC M, et al. Effect of ionizing radiation on the male reproductive system[J]. Ann Agric Environ Med, 2019, 26(2): 210-216. DOI: 10.26444/aaem/106085.
    [8] BOUVILLE A. Fallout from nuclear weapons tests: environmental, health, political, and sociological considerations[J]. Health Phys, 2020, 118(4): 360-381. DOI: 10.1097/HP.0000000000001237.
    [9] AHRARI K, OMOLAOYE T S, GOSWAMI N, et al. Effects of space flight on sperm function and integrity: a systematic review[J]. Front Physiol, 2022, 13: 904375. DOI: 10.3389/fphys.2022.904375.
    [10] KAMIYA K, OZASA K, AKIBA S, et al. Long-term effects of radiation exposure on health[J]. Lancet, 2015, 386(9992): 469-478. DOI: 10.1016/S0140-6736(15)61167-9.
    [11] AGNIHOTRI S K, AGRAWAL A K, HAKIM B A, et al. Mitochondrial membrane potential (MMP) regulates sperm motility[J]. In Vitro Cell Dev Biol Anim, 2016, 52(9): 953-960. DOI: 10.1007/s11626-016-0061-x.
    [12] AHMAD I M, TEMME J B, ABDALLA M Y, et al. Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: a pilot study[J]. Redox Rep, 2016, 21(3): 139-145. DOI: 10.1080/13510002.2015.1101891.
    [13] MARCHETTI F, ESSERS J, KANAAR R, et al. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations[J]. Proc Natl Acad Sci USA, 2007, 104(45): 17725-17729. DOI: 10.1073/pnas.0705257104.
    [14] FULLER N, SMITH J T, FORD A T. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans[J]. Ecotoxicol Environ Saf, 2019, 186: 109764. DOI: 10.1016/j.ecoenv.2019.109764.
    [15] LEUNG C T, YANG Y, YU K N, et al. Low-dose radiation can cause epigenetic alterations associated with impairments in both male and female reproductive cells[J]. Front Genet, 2021, 12: 710143. DOI: 10.3389/fgene.2021.710143.
    [16] TAMMINGA J, KOTURBASH I, BAKER M, et al. Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring[J]. Cell Cycle, 2008, 7(9): 1238-1245. DOI: 10.4161/cc.7.9.5806.
    [17] NAKATA A, SATO K, FUJISHIMA Y, et al. Evaluation of global DNA methylation and gene expression of Izumo1 and Izumo1r in gonads after high- and low-dose radiation in neonatal mice[J]. Biology (Basel), 2021, 10(12): 1270. DOI: 10.3390/biology10121270.
    [18] LIU X, CHEN Q, DING X, et al. X-ray-induced reproductive dysfunction and differentially expressed piRNAs in male mice[J]. Hum Exp Toxicol, 2019, 38(5): 533-546. DOI: 10.1177/0960327118812187.
    [19] PEREZ M F, LEHNER B. Intergenerational and transgenerational epigenetic inheritance in animals[J]. Nat Cell Biol, 2019, 21(2): 143-151. DOI: 10.1038/s41556-018-0242-9.
    [20] WEI Y, SCHATTEN H, SUN Q Y. Environmental epigenetic inheritance through gametes and implications for human reproduction[J]. Hum Reprod Update, 2015, 21(2): 194-208. DOI: 10.1093/humupd/dmu061.
    [21] WANG S, MEYER D H, SCHUMACHER B. Inheritance of paternal DNA damage by histone-mediated repair restriction[J]. Nature, 2023, 613(7943): 365-374. DOI: 10.1038/s41586-022-05544-w.
    [22] QIN F, LIU N, NIE J, et al. Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse[J]. Environ Health Prev Med, 2021, 26(1): 103. DOI: 10.1186/s12199-021-01021-4.
    [23] DE FELICE F, MARCHETTI C, MARAMPON F, et al. Radiation effects on male fertility[J]. Andrology, 2019, 7(1): 2-7. DOI: 10.1111/andr.12562.
    [24] KUMAR D, SALIAN S R, KALTHUR G, et al. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation[J]. Environ Res, 2014, 132: 297-304. DOI: 10.1016/j.envres.2014.04.023.
    [25] THARAKAN T, CORONA G, FORAN D, et al. Does hormonal therapy improve sperm retrieval rates in men with non-obstructive azoospermia: a systematic review and meta-analysis[J]. Hum Reprod Update, 2022, 28(5): 609-628. DOI: 10.1093/humupd/dmac016.
    [26] GREESON K W, CROW K M S, EDENFIELD R C, et al. Inheritance of paternal lifestyles and exposures through sperm DNA methylation[J]. Nat Rev Urol, 2023, 20(6): 356-370. DOI: 10.1038/s41585-022-00708-9.
    [27] SCHROTT R, MODLISZEWSKI J L, HAWKEY A B, et al. Sperm DNA methylation alterations from Cannabis extract exposure are evident in offspring[J]. Epigenetics Chromatin, 2022, 15(1): 33. DOI: 10.1186/s13072-022-00466-3.
    [28] LIU Y, CHEN S, PANG D, et al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring[J]. Epigenetics Chromatin, 2022, 15(1): 3. DOI: 10.1186/s13072-022-00437-8.
    [29] KAMSTRA J H, HUREM S, MARTIN L M, et al. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish[J]. Sci Rep, 2018, 8(1): 15373. DOI: 10.1038/s41598-018-33817-w.
    [30] ZHOU L, LIU H, LIU S, et al. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility[J]. Cell, 2023, 186(13): 2897-2910.e19. DOI: 10.1016/j.cell.2023.05.009.
    [31] HUANG Y, LI L, AN G, et al. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination[J]. Nat Cell Biol, 2023, 25(10): 1520-1534. DOI: 10.1038/s41556-023-01232-7.
WeChat 点击查看大图
图(5)
出版历程
  • 收稿日期:  2024-04-11
  • 接受日期:  2024-09-25

目录

    /

    返回文章
    返回