[1] | |
[2] |
JIANG X, SAVCHENKO O, LI Y, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718. DOI:10.1109/TBME.2018.2889669 |
[3] |
XIN Z, LIN G, LEI H, et al. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology[J]. Transl Androl Urol, 2016, 5(2): 255-266. DOI:10.21037/tau.2016.02.04 |
[4] | |
[5] |
AZAGURY A, KHOURY L, ENDEN G, et al. Ultrasound mediated transdermal drug delivery[J]. Adv Drug Deliv Rev, 2014, 72: 127-143. DOI:10.1016/j.addr.2014.01.007 |
[6] | |
[7] |
AZUMA Y, ITO M, HARADA Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J]. J Bone Miner Res, 2001, 16(4): 671-680. DOI:10.1359/jbmr.2001.16.4.671 |
[8] |
张子程, 胡建辉, 杨依林, 等. 低强度脉冲超声在肌肉骨骼疾病中的研究进展[J]. 第二军医大学学报, 2020, 41(2): 194-199. ZHANG Z C, HU J H, YANG Y L, et al. Research progress of low-intensity pulsed ultrasound in the treatment of musculoskeletal diseases[J]. Acad J Sec Mil Med Univ, 2020, 41(2): 194-199. DOI:10.16781/j.0258-879x.2020.02.0194 |
[9] |
YING S, TAN M, FENG G, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress[J]. Theranostics, 2020, 10(21): 9789-9807. DOI:10.7150/thno.42508 |
[10] |
段煜东, 张子程, 李博, 等. 低强度脉冲超声在脊髓损伤神经修复中的研究进展[J]. 第二军医大学学报, 2021, 42(9): 1037-1043. DUAN Y D, ZHANG Z C, LI B, et al. Low-intensity pulsed ultrasound in nerve repair of spinal cord injury: research progress[J]. Acad J Sec Mil Med Univ, 2021, 42(9): 1037-1043. DOI:10.16781/j.0258-879x.2021.09.1037 |
[11] |
WU Y, GAO Q, ZHU S, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through notch signaling pathway[J]. Biochem Biophys Res Commun, 2020, 526(3): 793-798. DOI:10.1016/j.bbrc.2020.03.142 |
[12] |
ZURA R, XIONG Z, EINHORN T, et al. Epidemiology of fracture nonunion in 18 human bones[J]. JAMA Surg, 2016, 151(11): e162775. DOI:10.1001/jamasurg.2016.2775 |
[13] | |
[14] |
WEI F Y, LEUNG K S, LI G, et al. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing[J]. PLoS One, 2014, 9(9): e106722. DOI:10.1371/journal.pone.0106722 |
[15] |
WEI F Y, CHOW S K, LEUNG K S, et al. Low-magnitude high-frequency vibration enhanced mesenchymal stem cell recruitment in osteoporotic fracture healing through the SDF-1/CXCR4 pathway[J]. Eur Cell Mater, 2016, 31: 341-354. DOI:10.22203/ecm.v031a22 |
[16] |
MATSUMOTO K, SHIMO T, KURIO N, et al. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling[J]. J Cell Biochem, 2018, 119(6): 4352-4360. DOI:10.1002/jcb.26418 |
[17] |
HARRISON A, LIN S, POUNDER N, et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair[J]. Ultrasonics, 2016, 70: 45-52. DOI:10.1016/j.ultras.2016.03.016 |
[18] |
LI L, YANG Z, ZHANG H, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes[J]. Biochem Biophys Res Commun, 2012, 418(2): 296-300. DOI:10.1016/j.bbrc.2012.01.014 |
[19] |
FREEMAN T A, PATEL P, PARVIZI J, et al. Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing[J]. J Orthop Res, 2009, 27(5): 673-679. DOI:10.1002/jor.20771 |
[20] |
COORDS M, BREITBART E, PAGLIA D, et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing[J]. J Orthop Res, 2011, 29(2): 181-188. DOI:10.1002/jor.21223 |
[21] |
BAWALE R, SEGMEISTER M, SINHA S, et al. Experience of an isolated use of low-intensity pulsed ultrasound therapy on fracture healing in established non-unions: a prospective case series[J]. J Ultrasound, 2021, 24(3): 249-252. DOI:10.1007/s40477-020-00464-9 |
[22] |
JINGUSHI S, MIZUNO K, MATSUSHITA T, et al. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures[J]. J Orthop Sci, 2007, 12(1): 35-41. DOI:10.1007/s00776-006-1080-3 |
[23] |
SCHOFER M D, BLOCK J E, AIGNER J, et al. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial[J]. BMC Musculoskelet Disord, 2010, 11: 229. DOI:10.1186/1471-2474-11-229 |
[24] |
LEIGHTON R, WATSON J T, GIANNOUDIS P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis[J]. Injury, 2017, 48(7): 1339-1347. DOI:10.1016/j.injury.2017.05.016 |
[25] |
PUTS R, VICO R, BEILFUß N, et al. Pulsed ultrasound for bone regeneration—outcomes and hurdles in the clinical application: a systematic review[J]. Eur Cell Mater, 2021, 42: 281-311. DOI:10.22203/eCM.v042a20 |
[26] |
ZHANG G, LI X, WU L, et al. Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells[J]. Bone Res, 2021, 9(1): 16. DOI:10.1038/s41413-020-00124-y |
[27] |
TANG C H, YANG R S, HUANG T H, et al. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts[J]. Mol Pharmacol, 2006, 69(6): 2047-2057. DOI:10.1124/mol.105.022160 |
[28] |
ZHOU S, BACHEM M G, SEUFFERLEIN T, et al. Low intensity pulsed ultrasound accelerates macrophage phagocytosis by a pathway that requires actin polymerization, Rho, and Src/MAPKs activity[J]. CellSignal, 2008, 20(4): 695-704. DOI:10.1016/j.cellsig.2007.12.005 |
[29] |
ZHOU S, SCHMELZ A, SEUFFERLEIN T, et al. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts[J]. J Biol Chem, 2004, 279(52): 54463-54469. DOI:10.1074/jbc.M404786200 |
[30] |
OTSURU S, TAMAI K, YAMAZAKI T, et al. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway[J]. Stem Cells, 2008, 26(1): 223-234. DOI:10.1634/stemcells.2007-0515 |
[31] |
KUSUYAMA J, BANDOW K, SHAMOTO M, et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway[J]. J Biol Chem, 2014, 289(15): 10330-10344. DOI:10.1074/jbc.M113.546382 |
[32] | |
[33] |
TANG L, KANG Y, SUN S, et al. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats[J]. J Bone Miner Metab, 2020, 38(1): 14-26. DOI:10.1007/s00774-019-01029-5 |
[34] |
CHEUNG W H, CHIN W C, QIN L, et al. Low intensity pulsed ultrasound enhances fracture healing in both ovariectomy-induced osteoporotic and age-matched normal bones[J]. J Orthop Res, 2012, 30(1): 129-136. DOI:10.1002/jor.21487 |
[35] |
SUN S, TANG L, ZHAO T, et al. Longitudinal effects of low-intensity pulsed ultrasound on osteoporosis and osteoporotic bone defect in ovariectomized rats[J]. Ultrasonics, 2021, 113: 106360. DOI:10.1016/j.ultras.2021.106360 |
[36] |
KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328. DOI:10.1038/nature13145 |
[37] |
DING W, XU C, ZHANG Y, et al. Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis[J]. Arch Osteoporos, 2020, 15(1): 5. DOI:10.1007/s11657-019-0677-z |
[38] |
XU X, WANG F, YANG Y, et al. LIPUS promotes spinal fusion coupling proliferation of type H microvessels in bone[J]. Sci Rep, 2016, 6: 20116. DOI:10.1038/srep20116 |
[39] |
MANSJUR K Q, KURODA S, IZAWA T, et al. The effectiveness of human parathyroid hormone and low-intensity pulsed ultrasound on the fracture healing in osteoporotic bones[J]. Ann Biomed Eng, 2016, 44(8): 2480-2488. DOI:10.1007/s10439-015-1533-y |
[40] |
CHAN Y S, HSU K Y, KUO C H, et al. Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study[J]. Ultrasound Med Biol, 2010, 36(5): 743-751. DOI:10.1016/j.ultrasmedbio.2010.02.010 |
[41] |
CHONGSATIENTAM A, YIMLAMAI T. Therapeutic pulsed ultrasound promotes revascularization and functional recovery of rat skeletal muscle after contusion injury[J]. Ultrasound Med Biol, 2016, 42(12): 2938-2949. DOI:10.1016/j.ultrasmedbio.2016.08.004 |
[42] |
SUN L, AN S, ZHANG Z, et al. Molecular and metabolic mechanism of low-intensity pulsed ultrasound improving muscle atrophy in hindlimb unloading rats[J]. Int J Mol Sci, 2021, 22(22): 12112. DOI:10.3390/ijms222212112 |
[43] |
XU P, GUL-ULUDAG H, ANG W T, et al. Low-intensity pulsed ultrasound-mediated stimulation of hematopoietic stem/progenitor cell viability, proliferation and differentiation in vitro[J]. Biotechnol Lett, 2012, 34(10): 1965-1973. DOI:10.1007/s10529-012-0984-6 |
[44] |
NING G Z, SONG W Y, XU H, et al. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: better choice of transplantation treatment for spinal cord injury: treatment for SCI by LIPUS-BMSCs transplantation[J]. CNS Neurosci Ther, 2019, 25(4): 496-508. DOI:10.1111/cns.13071 |
[45] |
TRAMONTIN N D S, SILVEIRA P C L, TIETBOHL L T W, et al. Effects of low-intensity transcranial pulsed ultrasound treatment in a model of Alzheimer's disease[J]. Ultrasound Med Biol, 2021, 47(9): 2646-2656. DOI:10.1016/j.ultrasmedbio.2021.05.007 |
[46] |
LIN W T, CHEN R C, LU W W, et al. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer's disease rat model[J]. Sci Rep, 2015, 5: 9671. DOI:10.1038/srep09671 |
[47] |
EGUCHI K, SHINDO T, ITO K, et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia—crucial roles of endothelial nitric oxide synthase[J]. Brain Stimul, 2018, 11(5): 959-973. DOI:10.1016/j.brs.2018.05.012 |
[48] |
SUNG C Y, CHIANG P K, TSAI C W, et al. Low-intensity pulsed ultrasound enhances neurotrophic factors and alleviates neuroinflammation in a rat model of Parkinson's disease[J]. Cereb Cortex, 2021, 32(1): 176-185. DOI:10.1093/cercor/bhab201 |