2. 海军军医大学(第二军医大学)第三附属医院肝外六科,上海 200438
2. Department of Hepatic Surgery (Ⅵ), The Third Affiliated of Naval Medical University (Second Military Medical University), Shanghai 200438, China
原发性肝癌是临床常见的恶性肿瘤,其中肝细胞癌(以下简称肝癌)占85%~90%。2020年全球肝癌新发病例和死亡病例均有所上升,我国肝癌发病率和致死率分别居第3位和第2位[1-2]。目前肝癌仍以肝切除术为主要治疗方法,其他常见治疗方法有肝移植术、消融治疗、肝动脉化疗栓塞术、放疗、化疗、靶向治疗、免疫治疗及系统抗肿瘤治疗等。放化疗、靶向治疗和免疫治疗虽然一定程度上抑制了肝癌患者肿瘤的进展,但在治疗的同时也容易产生耐药性,导致治疗效果不明显。因此,耐药问题的解决对提高治疗效果极为重要。
lncRNA是长度大于200个核苷酸的非编码RNA,不具备蛋白质编码功能,但在多种生物学过程中发挥重要作用。研究证实lncRNA在多种肿瘤中存在显著差异表达,可通过多种途径影响肝癌及其他肿瘤的发生、发展和耐药,有望成为癌症早期筛查的分子标志物和耐药治疗靶点[3-4]。肝癌耐药机制复杂,很多耐药机制与lncRNA密切相关[5]。本文主要就lncRNA在肝癌耐药中的作用机制及其研究进展进行综述,以期为肝癌耐药的相关研究提供参考。
1 lncRNA简介lncRNA作为表观遗传学的主要机制之一,大多数lncRNA并不参与蛋白质的编码,而是作为RNA基因来协调遗传调控输出。根据lncRNA与邻近编码基因的位置关系分为基因间lncRNA、内含子lncRNA、正义lncRNA、反义lncRNA,其中以反义lncRNA最为多见;根据lncRNA对DNA序列的影响分为顺式lncRNA和反式lncRNA;因lncRNA功能的多样性又可分为指导分子、诱饵分子、骨架分子和信号分子[6-7]。
初期lncRNA被认为是RNA聚合酶转录的副产物,不具有生物学功能。深入研究发现lncRNA参与多种重要的生物学现象,如印记基因组位点、形成染色体构象和变构调节酶活性,其特定模式下的表达可协调细胞状态、分化、发育,而过度表达、缺乏或突变则与众多疾病相关[8]。调控DNA的基因突变可以通过改变增强子和启动子的活性或染色质状态来广泛地影响转录,导致癌症中不同lncRNA的差异性表达,如结直肠癌中的结肠癌相关转录因子2(colon cancer-associated transcript 2,CCAT2)、前列腺癌中的前列腺癌相关性转录因子1(prostate cancer-associated transcript 1,PCAT-1)[9]、乳腺癌中lncRNA HOX转录反义RNA(HOX transcript antisense RNA,HOTAIR)等[10]。这表明进一步开发用于特定癌症组织学的lncRNA生物标志物具有巨大潜力。
lncRNA还可以与miRNA、mRNA相互作用,形成lncRNA-miRNA-mRNA的相互调控网络,参与到生命体的多项活动中。lncRNA在转录和转录后水平调节各基因表达或蛋白质活性影响机体,miRNA可以通过抑制靶mRNA翻译或促进mRNA降解调节生理和病理过程;多数lncRNA的结构与mRNA具有一定相似性,而lncRNA又可与miRNA结合,成为miRNA的“分子海绵”,减弱miRNA对mRNA的沉默效应。Li等[11]通过分析口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)中lncRNA-miRNA-mRNA的网络调控揭示了OSCC的发病机制,并发现潜在的预测靶点。该调控网络已经应用到具体研究中,如lncRNA心肌肥大相关分子(myocardial hypertrophy related factor,CHRF)可直接结合miRNA-489靶向调控转录因子TWIST1(一种基本的螺旋- 环- 螺旋结构域),促进结直肠癌细胞的转移和上皮- 间质转化(epithelial-mesenchymal transition,EMT);lncRNA生长停滞特异性转录因子5(growth arrest-specific transcript 5,GAS5)结合miRNA-21后通过影响磷酸酯酶与张力蛋白同源物(phosphatase and tensin homolog,PTEN)抑制乳腺癌细胞增殖,并使乳腺癌对曲妥珠单抗产生耐药性[12-13]。因此,整合分析lncRNA-miRNA-mRNA之间的调控关系并将其运用到具体的调控机制研究中或许能够更全面地阐述疾病的发生和发展过程。
2 lncRNA与肿瘤耐药lncRNA可通过修饰染色质、沉默X染色体、调节基因转录激活或干扰核内运输等方式在剂量补偿效应、表观遗传、细胞周期和细胞分化等生命活动中发挥重要调控作用。在肿瘤发生过程中,lncRNA的突变和错误调节是主要原因,其表达或功能异常具体可表现为lncRNA在序列和空间结构上的异常、表达水平的异常、与结合蛋白相互作用的异常等。通常,具有致癌作用的lncRNA在肿瘤中倾向于上调,失活后会减少肿瘤的发生或增加细胞凋亡;具有肿瘤抑制作用的lncRNA往往在肿瘤中下调,一旦缺失会增加肿瘤的发生。
越来越多的研究表明,lncRNA的失调与肿瘤诊断、治疗、预后和耐药密切相关。尤其是肿瘤耐药性方面,一些lncRNA可导致某些基因甲基化或乙酰化,从而激活或抑制相关信号通路,如过表达lncRNA脑细胞质RNA1(brain cytoplasmic RNA 1,BCYRN1)可通过泛素化诱导p53的降解,影响PI3K/Akt/mTOR和p53/mTOR通路,增强细胞自噬和天冬酰胺酶耐药性,从而促进结外自然杀伤/T细胞淋巴瘤对天冬酰胺酶耐药[14];lncRNA也影响细胞凋亡,如lncRNA抗分化非编码RNA(anti-differetiation noncoding RNA,DANCR)在胃癌患者中高表达,且上调顺铂(cisplatin,DDP)诱导的胃癌细胞系SGC7901和BGC823中多药耐药相关蛋白1(multidrug resistance-associated protein 1,MRP1/ABCC1)的表达,促进胃癌对DDP的耐药性[15];一些lncRNA还可以通过影响肿瘤免疫细胞微环境影响耐药性,如lncRNA特异AT序列结合蛋白2反义RNA1(special AT-rich sequence-binding protein 2 antisense RNA 1,SATB2-AS1)可通过调控SATB2影响肿瘤免疫微环境,从而抑制结肠癌细胞的转移[16]。这表明lncRNA的异常表达很大程度上是肿瘤耐药的原因,而靶向lncRNA可能是解决肿瘤耐药问题的一种有前途的方法。
3 lncRNA与肝癌lncRNA可能参与了HBV相关肝癌的病毒复制,某些lncRNA或许与HBV相关肝癌有特异性关联,可作为治疗靶点和诊断标志物,如LINC01152可升高HBV阳性肝癌组织和细胞中HBx相关蛋白的表达,促进肝癌细胞生长、增殖[17]。lncRNA肺腺癌转移相关转录本1(metastasis-associated lung adenocarcinoma transcript 1,MALAT1)和在肝癌中呈异常上调表达的lncRNA HULC(highly up-regulated in liver cancer)与非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)所致的肝癌有关,lncRNA HOTAIR和lncRNA H19在肥胖诱导的肝癌中上调[18]。由V-raf鼠类肉瘤病毒癌基因同源物B(V-raf murine sarcoma viral oncogene homolog B,BRAF)激活的长链非编码RNA(BRAF-activated non-protein coding RNA,BANCR)可促进肝癌细胞凋亡,而伴有BRAF基因突变的晚期肝癌患者酪氨酸激酶抑制剂的耐药更显著,且BANCR可能参与了肝癌细胞的增殖和酪氨酸激酶抑制剂逃逸[19]。
4 lncRNA在肝癌耐药中的作用机制及进展lncRNA在肝癌耐药中的作用及机制见表 1。
4.1 lncRNA在肝癌化学治疗耐药中的作用机制及进展
对于不能手术的中晚期肝癌患者来讲,化疗也许是减缓病程进展的一个希望。常用的化疗药物有蒽环类(以多柔比星为主)、铂类[如DDP、奥沙利铂(oxaliplatin,OXA)]、雷替曲塞、5-氟尿嘧啶(5-fluorouracil,5-FU)等,其中以OXA为主的系统化疗作为最有效的化疗药物在临床广泛推广。但长期化疗极易出现耐药性,患者生存率未获得明显提高。多项研究表明,lncRNA在肝癌化疗耐药中起着重要作用。
4.1.1 OXAlncRNA可调节肝癌细胞的化学抗性。lncRNA核受体亚家族2F组成员1-反义RNA 1(nuclear receptor subfamily 2 group F member 1 antisense RNA 1,NR2F1-AS1)受miRNA-363靶向调控产生肝癌OXA抗性,敲低NR2F1-AS1则降低了耐药基因MRP1等的表达,揭示NR2F1-AS1/miRNA-363/ABCC1通路对肝癌OXA耐药的关键作用[20]。LINC01134被证明与OXA耐药及抗氧化通路有关。Kang等[21]发现可以通过沉默LINC01134作用于抗氧化应激反应提高OXA敏感性,并能促进谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)启动子区域更多地募集到氧化还原敏感的转录因子核因子红细胞系2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2),发挥转录调节作用。在肝癌OXA耐药细胞和组织中上调的lncRNA尿路上皮癌相关1(urothelial carcinoma-associated 1,UCA1)也被证实与耐药性相关,UCA1高表达患者的生存期明显下降,低表达UCA1可降低OXA耐药细胞的IC50,UCA1可能通过miRNA-138-5p介导的Akt/mTOR通路促进OXA耐药性[22]。lncRNA前列腺癌基因表达标记1(prostate cancer gene expression marker 1,PCGEM1)在肝癌OXA耐药细胞中表达增强,敲低PCGEM1降低了耐药基因如肺耐药相关蛋白A(lung resistance-related protein A,LRPA)、多药耐药蛋白(multidrug resistance,MDR)1和MDR3的表达及肝癌OXA耐药细胞的活力、迁移和侵袭能力,证明PCGEM1/miRNA-129-5p/E-二十六变异基因1(E-twenty-six variant gene 1,ETV1)信号通路对肝癌OXA耐药机制的影响[23]。
4.1.2 DDPDDP耐药性会导致肝癌复发、降低总生存率,因此无论是解决内在的还是获得性的DDP耐药性都是成功治疗肝癌的关键。Wu等[24]发现,Nrf2调节相关lncRNA(Nrf2 regulation-associated lncRNA,NRAL)可以作为竞争性内源RNA(competing endogenous RNA,ceRNA)通过miRNA-340-5p途径调节Nrf2表达,从而影响肝癌DDP耐药细胞的凋亡率。在肝癌DDP耐药组织和细胞系中增加的LINC00173与患者预后不良有关,敲低LINC00173则提高了肝癌DDP耐药细胞对DDP的敏感性,而miRNA-641/RAB14轴可能是LINC00173促进耐药性的关键靶点[25]。Wang等[26]发现,lncRNA胎盘特异性蛋白2(placenta-specific protein 2,PLAC2)表达与肝癌细胞对DDP的敏感性呈负相关,敲低PLAC2会降低经DDP处理的肝癌细胞活力并增加细胞凋亡;同时,PLAC2可直接升高肝癌细胞中X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis protein,XiaP)表达影响耐药性,但是否通过海绵miRNA-96影响耐药性仍有待研究。lncRNA GAS5在DDP耐药的肝癌细胞中表达明显降低,GAS5过表达可抑制miRNA-222/血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路的激活,增强肝癌耐药细胞对DDP的敏感性[27],而受DNA甲基化调控的lncRNA TPTEP1经DDP处理后可增强DDP诱导的细胞凋亡,并抑制IL-6诱导的信号转导及转录激活蛋白3(signal transducer and activator of transcription 3,STAT3)磷酸化以抑制STAT3的转录活性,增加肝癌细胞对DDP的敏感性[28]。
4.1.3 多柔比星研究发现,在肝癌中表达上调的与舒尼替尼抵抗相关的lncRNA ARSR(在肾癌细胞中被舒尼替尼耐药性激活的lncRNA,lncRNA activated in RCC with sunitinib resistance)与多柔比星耐药性相关,且可通过PTEN-PI3K/Akt信号通路促进体内外肝癌细胞的多柔比星耐药性[29]。Cao等[30]发现lncRNA MALAT1和神经肿瘤腹侧抗原1(neuro-oncological ventral antigen 1,Nova1)在肝癌耐药细胞和组织中表达上调,而miRNA-3129-5p的表达则降低。敲低MALAT1可调控肝癌对多柔比星的耐药性,而调节miRNA-3129-5p表达可使MALAT1的敲低作用减弱;此外,miRNA-3129-5p可靶向调控Nova1增强肝癌对多柔比星耐药性。由p53诱导产生的lncRNA PURPL(p53 upregulated regulator of p53 levels)在肝癌组织中失调且具有p53依赖性。PURPL低表达可抑制肝癌细胞增殖、诱导凋亡,并使HepG2细胞对多柔比星化疗敏感[31],可以考虑作为逆转肝癌多柔比星耐药性的新治疗靶点。
4.1.4 5-FU5-FU是一种杂环芳香族胸苷合成酶抑制剂,作为化疗药物已被应用于多种癌症治疗中,原发或获得性耐药性部分限制了5-FU在临床上的应用。与Kelch样ECH关联蛋白1(Kelch-like ECH-associated protein 1,Keap1)表达相关的lncRNA(Keap1 regulation-associated long noncoding RNA,lncRNA KRAL)高表达可有效结合miRNA-141增加Keap1的表达,起到ceRNA的作用,进而逆转肝癌细胞对5-FU的耐药性,这也表明KRAL/miRNA-141/Keap1轴介导肝癌细胞对5-FU的耐药性[32]。有研究表明,LINC01189可能与丙型肝炎病毒感染相关的肝癌有关。LINC01189过表达抑制了肝癌细胞增殖和5-FU耐药性,has-miRNA-155-5p可能是其作用的ceRNA靶标[33]。lncRNA MALAT1初期是非小细胞肺癌患者临床结局不佳的指标,研究发现MALAT1和缺氧诱导因子2α水平在5-FU耐药细胞中显著升高,这也表明MALTA1可以在缺氧条件下诱导肿瘤细胞的耐药性,同时MALAT1可通过抑制miRNA-216b的表达促进自噬,增强肝癌细胞中5-FU的代谢[34-35]。
4.2 lncRNA在肝癌放射治疗耐药中的作用机制及进展放疗在肝癌临床治疗中已广泛应用,剂量、时间、频率等是放疗对肿瘤细胞杀伤作用关键影响因素,但放疗所产生的耐药性使很多患者不能从中受益也是亟须解决的问题。研究表明,lncRNA核旁斑组装转录本(nuclear paraspeckle assembly transcript,NEAT)1_2和致癌蛋白激酶WEE1相关,而WEE1受miRNA-101-3p的调控抑制肝癌生长,同时miRNA-101-3p/WEE1轴诱导肝癌细胞凋亡并增强放疗敏感性[36]。lncRNA小泛素样修饰蛋白1假基因3(small ubiquitin-like modifier 1 pseudogene 3,SUMO1P3)是多种癌症的预后和治疗靶点,SUMO1P3低表达可明显抑制肝癌细胞的生长增殖、促进凋亡,增加放疗敏感性[37]。lncRNA H19在肝癌放疗抗性细胞中的表达水平明显高于放疗敏感性细胞,抑制H19的表达可直接靶向miRNA-193a-3p促进肝癌细胞凋亡,而miRNA-193a-3p又可靶向调控与肝癌放疗敏感性相关的靶基因早老素1(presenilin 1,PSEN1),这也说明miRNA-193a-3p/PSEN1轴可能是H19影响肝癌放疗敏感性的潜在途径[38-39]。linc-ROR(large intergenic ncRNA-regulator of reprogramming)通过影响EMT促进肝癌转移,放疗后的肝癌细胞中linc-ROR表达增加,DNA损伤标志物γ-组蛋白H2A家族成员X(γ-H2A histone family member X,γ-H2AX)降低,并通过抑制miRNA-145调节DNA损伤修复E3泛素蛋白连接酶RAD18的表达,增加肝癌细胞的放疗抗性[40]。LINC00473在肝癌细胞中高表达,且表达水平与放疗时间成正比,敲低LINC00473可抑制miRNA-345-5p的表达、增强放疗敏感性,而叉头框蛋白P1(forkhead box P1,FOXP1)与miRNA-345-5p负相关,沉默FOXP1可减少放疗抵抗,表明靶向LINC00473/miRNA-345-5p/FOXP1信号通路可作为改善放疗敏感性的潜在途径[41]。
4.3 lncRNA在肝癌靶向治疗耐药中的作用机制及进展目前中晚期肝癌靶向治疗的一线药物主要有索拉非尼、仑伐替尼和多纳非尼,二线药物主要包括瑞戈非尼、阿帕替尼。不管是一线还是二线靶向药物都表现出良好的效果,但靶向治疗同样出现了耐药问题,且耐药机制并不明确。
4.3.1 索拉非尼索拉非尼可阻断RAF/MEK/ERK介导的细胞信号通路,直接抑制肿瘤细胞的增殖,或间接抑制血管内皮生长因子受体(vascular endothelial growth factor receptor,VEGFR)和血小板源性生长因子受体抑制肿瘤新生血管的生成,阻断肿瘤细胞生长。lncRNA LIMT(LINC01089)可调节EMT促进细胞侵袭和索拉非尼耐药。肿瘤促进因子miRNA-665也可通过调节肝癌EMT相关蛋白水平参与到该机制中,而沉默LIMT可消除miRNA-665抑制剂对肝癌细胞索拉非尼耐药性的影响。这表明miRNA-665/EMT轴有可能是肝癌索拉非尼耐药性检测治疗和预后的分子靶标[42-43]。lncRNA NEAT1与肝癌患者存活率呈负相关,且可能通过抑制miRNA-204调节自噬相关蛋白3(autophagy-related protein 3,ATG3)增强自噬,进而促进肝癌索拉非尼耐药[44]。lncRNA叉头框蛋白D2反义RNA1(forkhead box D2 antisense RNA 1,FOXD2-AS1)高表达可促进肝癌细胞的增殖和迁移,同时可作为miRNA-150-5p的海绵增加跨膜蛋白9的表达,克服肝癌细胞对索拉非尼的耐药性[45]。lncRNA小核仁RNA宿主基因(small nucleolar RNA host gene,SNHG)家族也被证实参与预测肝癌患者预后不良和调节肿瘤耐药性,如SNHG1、SNHG3、SNHG16等。有研究表明索拉非尼可通过诱导miRNA-21的核易位增加lncRNA SNHG1的表达,上调溶质载体家族3成员2(solute carrier family 3 member 2,SLC3A2),进而激活Akt通路,促进索拉非尼耐药。lncRNA SNHG3在索拉非尼肝癌耐药细胞中上调,高表达的患者生存期短,并通过靶向miRNA-128诱导CD151激活PI3K/Akt信号通路,促进EMT和索拉非尼抗性;而低表达的SNHG16可通过抑制miRNA-140-5p增强肝癌细胞对索拉非尼的敏感性[46-48],以上研究结果证明了lncRNA SNHG在索拉非尼耐药中的重要性。
4.3.2 仑伐替尼仑伐替尼是一种多靶点激酶抑制剂,用于晚期肝癌患者的一线靶向治疗,主要靶点包括成纤维细胞生长因子受体1、VEGFR1、VEGFR2、VEGFR3、血小板源性生长因子受体、酪氨酸激酶受体等,但效果仅局限于部分患者。Yu等[49]发现lncRNA金属硫蛋白1J假基因(metallothionein 1J pseudogene,MT1JP)在仑伐替尼耐药肝癌细胞中上调,并通过调节miRNA-24-3p释放抗凋亡蛋白B细胞淋巴瘤因子2样蛋白2(B-cell lymphoma 2 like 2,BCL2L2)抑制细胞凋亡,说明MT1JP促进仑伐替尼肝癌耐药与miRNA-24-3p/BCL2L2轴和细胞凋亡相关。lncRNA HOXA转录反义RNA骨髓特异性1(HOXA transcript antisense RNA myeloid-specific 1,HOTAIRM1)可预测患者的总生存期和无进展生存期,过表达HOTAIRM1可显著降低Wnt通路中相关蛋白的表达、促进肝癌细胞凋亡,进而抑制肝癌细胞进展。进一步研究表明,HOTAIRM1过表达与仑伐替尼耐药性相关。抑制HOTAIRM1会增加miRNA-34a的水平,降低肝癌细胞的自噬,并抑制beclin-1的表达,增加仑伐替尼敏感性,这也说明作为独立耐药因子的HOTAIRM1对仑伐替尼耐药性的影响可能受HOTAIRM1/miRNA-34a/beclin-1信号通路的调控[50-51]。lncRNA AC026401.3过表达与八聚体结合转录因子1(octamer binding transcription factor 1,OCT1)相互作用,并通过募集OCT1到细胞周期相关的E2F转录因子2(E2F transcription factor 2,E2F2)的启动子区域激活E2F2,增强仑伐替尼的抗性。AC026401.3是肝癌仑伐替尼耐药性的独立危险因素,靶向AC026401.3/OCT1/E2F2信号轴将是肝癌治疗的一个有前途的策略[52]。lncRNA X染色体失活特异性转录本(X-inactive specific transcript,XIST)通过海绵miRNA-200b-3p或抑制miRNA-488促进肝癌的进展,并结合组蛋白修饰酶Zeste同源物增强子2(enhancer of Zeste homolog 2,EZH2)抑制核苷酸结合寡聚化域蛋白2(nucleotide-binding oligomerization domain 2,NOD2)的表达。EZH2过表达与肝癌患者预后不良有关,敲低EZH2可以部分逆转仑伐替尼耐药、促进肝癌细胞死亡。NOD2是先天免疫传感器之一,通过靶向腺苷酸活化蛋白激酶通路抑制肿瘤发生、增加肝癌细胞的化疗敏感性,上调NOD2能促进仑伐替尼在肝癌细胞中的诱导作用。与此同时,抑制NOD2可活化肝癌细胞中的ERK,而ERK的激活与仑伐替尼耐药性相关。这提示lncRNA XIST影响肝癌细胞仑伐替尼敏感性可能受XIST/EZH2/NOD2/ERK轴调节[53-56]。
4.4 lncRNA在肝癌免疫治疗耐药中的作用机制及进展肿瘤细胞的表型和行为如增殖、侵袭、EMT、血管生成和耐药会受到附近免疫细胞和不同类型细胞之间相互作用的影响,后者统称为肿瘤免疫微环境。lncRNA可能是免疫系统中各种生物过程的关键介质。到目前为止,已经观察到lncRNA在多种免疫细胞系与癌症相关功能中的作用,如lnc-DC调节Toll样受体9(Toll-like receptor 9,TLR9)/STAT3信号转导途径,对树突状细胞的生长、凋亡和免疫反应具有重要影响[60]。
近年来,实体瘤免疫治疗发展迅速,以免疫检查点抑制剂为代表的免疫疗法打破了分子靶向药物的单一治疗格局,给癌症患者带来了希望。免疫检查点抑制剂主要包括程序性死亡受体1(programmed death-1,PD-1)抑制剂、程序性死亡受体配体1(programmed death-ligand 1,PD-L1)抑制剂和细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen 4,CTLA-4)抑制剂,PD-1/PD-L1抑制剂和CTLA-4抑制剂是目前肝癌免疫治疗较为有前景的靶向药物。但抗PD-1/PD-L1单抗治疗在大多数肿瘤中很少能达到40%以上的有效率,同时原发性和获得性免疫耐药使抗PD-1/PD-L1单抗的临床疗效和应用受到很大的限制。虽然有关肝癌免疫相关耐药机制的研究有所进展,但很多只是部分的浅层认知,如何打破耐药机制研究瓶颈、使免疫检查点抑制剂更好地为临床所用显得极其重要。
lncRNA已被证明可用于调节肝癌免疫关键机制、预测肝癌预后。由8个B细胞特异性lncRNA构成的肿瘤浸润性B淋巴细胞lncRNA指标(long noncoding RNA signature of tumor-infiltrating B lymphocyte,TILBlncSig)与自然杀伤细胞、未成熟树突状细胞和肥大细胞、活化B细胞的浸润及免疫检查点分子PD-1和PD-L1的表达有关。此外,在TILBlncSig高危人群中PD-1或PD-L1表达水平低的个体预后效果差,表明该指标可用于评估免疫抑制微环境[61]。LINC00244可参与表观遗传调控,通过下调PD-L1抑制肝癌细胞的增殖、侵袭和转移,下调LINC00244可激活EMT途径,产生免疫相关耐药性[57]。lncRNA心肌梗死相关转录本(myocardial infarction-associated transcript,MIAT)与肝癌免疫细胞数量及PD-1、PD-L1、CTLA4等免疫检查点分子的表达成正相关,表明MIAT可能参与肝癌的免疫逃逸过程,有可能作为靶向免疫治疗耐药的分子[58]。Zhang等[59]发现,LINC01132在肝癌免疫治疗耐药中发挥作用,且与患者总生存期差相关,敲低LINC01132可触发CD8+ T细胞浸润,与PD-L1抑制剂联合应用可通过核呼吸因子1(nuclear respiratory factor 1,NRF1)/二肽基肽酶4(dipeptidyl peptidase 4,DPP4)轴提高肝癌免疫治疗的疗效。
5 lncRNA相关药物开发进展和前景lncRNA作为生物标志物和治疗疾病靶点的相关研究不断深入,而如何更好地利用lncRNA为后续药物设计提供丰富的潜在候选药物和服务于临床也是研究重点。
药物递送系统可通过药物控释和药物靶向作用促进药物吸收、增强药物稳定性、调节药物在机体内的代谢,也因此逐渐运用到疾病治疗的技术中。纳米脂质体载体是靶向递送lncRNA的理想材料。脂质体包封除自身免疫原性低和降低药物毒性外,还具有药物稳定性和对肝组织的靶向性,且纳米材料的不断进步使该药物递送系统在体外和体内的临床前试验中进展迅速。
反义寡核苷酸是人工合成的一段单链DNA,其序列可以与靶标RNA互补并募集RNase H,经过修饰后可增强稳定性,目前第3代反义寡核苷酸通常用于靶向lncRNA。
肽核酸是人工合成的第3代DNA类似物,可免于核酸酶与蛋白酶的水解。研究表明,肽核酸可以靶向抑制lncRNA HOTAIR活性抵抗酸性肿瘤微环境,抑制实体瘤进展[62]。
siRNA与靶标RNA互补,可募集含有精氨酸的RNA诱导lncRNA降解,如siRNA介导的LINC01296敲低抑制了非小细胞肺癌细胞的增殖,促进细胞凋亡,且缩小了肿瘤体积[63]。
线粒体lncRNA被证明可介导炎症的发生、诱导细胞凋亡和转移,也因此在疾病调控和临床应用中具有一定的价值。其中反义非编码线粒体RNA在各种肿瘤组织中下调,靶向反义非编码线粒体RNA的反义寡核苷酸可诱导细胞凋亡,抑制肿瘤生长[64]。
脂质代谢失调可促进肿瘤细胞增殖,诱导肿瘤形成,可通过抑制肿瘤中脂肪酸的增加来控制肿瘤发展。增强子lncRNA可通过驱动肿瘤中的异常基因表达促进恶性肿瘤的发生、发展,但是否与代谢异常有关目前尚不清楚。研究发现增强子lncRNA也是脂肪酸合成相关lncRNA,可以与脂肪酸合成限速酶乙酰辅酶A羧化酶1结合,通过代谢途径增加脂质积累,进而促进肝癌进展[65-66]。
关于lncRNA所涉及的临床新药开发和应用仍然处于较为初始的阶段。虽然药物递送、反义寡核苷酸、siRNA、线粒体lncRNA、增强子lncRNA等不管是在靶向RNA治疗癌症或是参与某种途径治疗癌症都有一定的优越性和先进性,但尚缺少临床数据和试验的支持,同时也出现一些问题,如脱靶效应带来的不良反应、高度特异性难以识别等,都需要进一步的技术支持和更深入的机制研究。
6 小结和展望肝癌是全球负担较重的癌症之一,如何降低肝癌的发病率和死亡率、延长患者的生存时间一直是学者们研究的重点。目前,早期肝癌仍然以外科手治疗术为主,然而大多数中晚期肝癌患者已经失去了最好的手术时机,不得不采取综合治疗。综合治疗的效果并不能让所有患者受益,开发新的治疗方法势在必行。lncRNA作为近年来的研究热点,已被证明可通过多种途径作用于肝癌并参与肝癌耐药。众多研究都证实了lncRNA与肝癌之间的密切关系,且有可能是诊断肝癌的候选生物标志物及靶向药物。因临床试验数据的缺乏,如何更好地利用lncRNA仍有待探索。选择什么样的lncRNA作为药物开发靶点,仍取决于对lncRNA功能和机制的深入研究。还有一些问题,如lncRNA的特异性和灵敏度如何判断、如何通过生物膜、如何阻止其在体内被快速降解、怎样使其更容易被免疫系统识别进而发挥作用,仍然需要基础和临床医学的研究人员密切合作,推动科研成果不断转化,以为精准医学带来新的选择。
[1] |
NAHON P, VIBERT E, NAULT J C, et al. Optimizing curative management of hepatocellular carcinoma[J]. Liver Int, 2020, 40(Suppl 1): 109-110. DOI:10.1111/liv.14345 |
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
[3] |
DU Z, FEI T, VERHAAK R G, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer[J]. Nat Struct Mol Biol, 2013, 20(7): 908-913. DOI:10.1038/nsmb.2591 |
[4] |
SALIDO-GUADARRAMA I, ROMERO-CORDOBA S L, RUEDA-ZARAZUA B. Multi-omics mining of lncRNAs with biological and clinical relevance in cancer[J]. Int J Mol Sci, 2023, 24(23): 16600. DOI:10.3390/ijms242316600 |
[5] |
GE W J, HUANG H, WANG T, et al. Long non-coding RNAs in hepatocellular carcinoma[J]. Pathol Res Pract, 2023, 248: 154604. DOI:10.1016/j.prp.2023.154604 |
[6] |
RANSOHOFF J D, WEI Y, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19(3): 143-157. DOI:10.1038/nrm.2017.104 |
[7] |
YARMISHYN A A, KUROCHKIN I V. Long noncoding RNAs: a potential novel class of cancer biomarkers[J]. Front Genet, 2015, 6: 145. DOI:10.3389/fgene.2015.00145 |
[8] |
FLYNN R A, CHANG H Y. Long noncoding RNAs in cell-fate programming and reprogramming[J]. Cell Stem Cell, 2014, 14(6): 752-761. DOI:10.1016/j.stem.2014.05.014 |
[9] |
MELTON C, REUTER J A, SPACEK D V, et al. Recurrent somatic mutations in regulatory regions of human cancer genomes[J]. Nat Genet, 2015, 47(7): 710-716. DOI:10.1038/ng.3332 |
[10] |
BEROUKHIM R, MERMEL C H, PORTER D, et al. The landscape of somatic copy-number alteration across human cancers[J]. Nature, 2010, 463(7283): 899-905. DOI:10.1038/nature08822 |
[11] |
LI S, CHEN X, LIU X, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma[J]. Oral Oncol, 2017, 73: 1-9. DOI:10.1016/j.oraloncology.2017.07.026 |
[12] |
TAO Y, HAN T, ZHANG T, et al. LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway[J]. Oncotarget, 2017, 8(22): 36410-36422. DOI:10.18632/oncotarget.16850 |
[13] |
LI W, ZHAI L, WANG H, et al. Downregulation of lncRNA GAS5 causes trastuzumab resistance in breast cancer[J]. Oncotarget, 2016, 7(19): 27778-27786. DOI:10.18632/oncotarget.8413 |
[14] |
WANG L, YANG J, WANG H N, et al. LncRNA BCYRN1-induced autophagy enhances asparaginase resistance in extranodal NK/T-cell lymphoma[J]. Theranostics, 2021, 11(2): 925-940. DOI:10.7150/thno.46655 |
[15] |
XU Y D, SHANG J, LI M, et al. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer[J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 2794-2802. DOI:10.26355/eurrev_201904_17554 |
[16] |
XU M, XU X, PAN B, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2[J]. Mol Cancer, 2019, 18(1): 135. DOI:10.1186/s12943-019-1063-6 |
[17] |
CHEN T, PEI J, WANG J, et al. HBx-related long non-coding RNA 01152 promotes cell proliferation and survival by IL-23 in hepatocellular carcinoma[J]. Biomed Pharmacother, 2019, 115: 108877. DOI:10.1016/j.biopha.2019.108877 |
[18] |
SHABGAH A G, NOROUZI F, HEDAYATI-MOGHADAM M, et al. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease[J]. Nutr Metab, 2021, 18(1): 22. DOI:10.1186/s12986-021-00552-5 |
[19] |
GNONI A, LICCHETTA A, MEMEO R, et al. Role of BRAF in hepatocellular carcinoma: a rationale for future targeted cancer therapies[J]. Medicina (Kaunas), 2019, 55(12): 754. DOI:10.3390/medicina55120754 |
[20] |
HUANG H, CHEN J, DING C M, et al. LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363[J]. J Cell Mol Med, 2018, 22(6): 3238-3245. DOI:10.1111/jcmm.13605 |
[21] |
KANG X, HUO Y, JIA S, et al. Silenced LINC01134 enhances oxaliplatin sensitivity by facilitating ferroptosis through GPX4 in hepatocarcinoma[J]. Front Oncol, 2022, 12: 939605. DOI:10.3389/fonc.2022.939605 |
[22] |
HUANG G, LI L, LIANG C, et al. Upregulated UCA1 contributes to oxaliplatin resistance of hepatocellular carcinoma through inhibition of miR-138-5p and activation of AKT/mTOR signaling pathway[J]. Pharmacol Res Perspect, 2021, 9(1): e00720. DOI:10.1002/prp2.720 |
[23] |
CHEN J, YUAN D, HAO Q, et al. LncRNA PCGEM1 mediates oxaliplatin resistance in hepatocellular carcinoma via miR-129-5p/ETV1 axis in vitro[J]. Adv Clin Exp Med, 2021, 30(8): 831-838. DOI:10.17219/acem/135533 |
[24] |
WU L L, CAI W P, LEI X, et al. NRAL mediates cisplatin resistance in hepatocellular carcinoma via miR-340-5p/Nrf2 axis[J]. J Cell Commun Signal, 2019, 13(1): 99-112. DOI:10.1007/s12079-018-0479-x |
[25] |
ZHAO G, ZHANG A, SUN S, et al. Long non-coding RNA LINC00173 enhances cisplatin resistance in hepatocellular carcinoma via the microRNA-641/RAB14 axis[J]. Oncol Lett, 2021, 21(5): 371. DOI:10.3892/ol.2021.12632 |
[26] |
WANG H, ZHANG X, CHEN X, et al. Long non-coding RNA placenta-specific protein 2 regulates the chemosensitivity of cancer cells to cisplatin in hepatocellular carcinoma (HCC) by sponging microRNA-96 to upregulate X-linked inhibitor of apoptosis protein[J]. Bioengineered, 2022, 13(4): 10765-10773. DOI:10.1080/21655979.2022.2056815 |
[27] |
ZHAO P, CUI X, ZHAO L, et al. Overexpression of growth-arrest-specific transcript 5 improved cisplatin sensitivity in hepatocellular carcinoma through sponging miR-222[J]. DNA Cell Biol, 2020, 39(4): 724-732. DOI:10.1089/dna.2019.5282 |
[28] |
DING H, LIU J, ZOU R, et al. Long non-coding RNA TPTEP1 inhibits hepatocellular carcinoma progression by suppressing STAT3 phosphorylation[J]. J Exp Clin Cancer Res, 2019, 38(1): 189. DOI:10.1186/s13046-019-1193-0 |
[29] |
LI Y, YE Y, FENG B, et al. Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-PI3K/Akt pathway[J]. J Cell Biochem, 2017, 118(12): 4498-4507. DOI:10.1002/jcb.26107 |
[30] |
CAO Y, ZHANG F, WANG H, et al. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis[J]. Mol Cell Biochem, 2021, 476(1): 279-292. DOI:10.1007/s11010-020-03904-6 |
[31] |
BERHANE T, HOLM A, KARSTENSEN K T, et al. Knockdown of the long noncoding RNA PURPL induces apoptosis and sensitizes liver cancer cells to doxorubicin[J]. Sci Rep, 2022, 12(1): 19502. DOI:10.1038/s41598-022-23802-9 |
[32] |
WU L, PAN C, WEI X, et al. lncRNA KRAL reverses 5-fluorouracil resistance in hepatocellular carcinoma cells by acting as a ceRNA against miR-141[J]. Cell Commun Signal, 2018, 16(1): 47. DOI:10.1186/s12964-018-0260-z |
[33] |
YAO Y, SHU F, WANG F, et al. Long noncoding RNA LINC01189 is associated with HCV-hepatocellular carcinoma and regulates cancer cell proliferation and chemoresistance through hsa-miR-155-5p[J]. Ann Hepatol, 2021, 22: 100269. DOI:10.1016/j.aohep.2020.09.013 |
[34] |
TEE A E, LIU B, SONG R, et al. The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression[J]. Oncotarget, 2016, 7(8): 8663-8675. DOI:10.18632/oncotarget.6675 |
[35] |
YUAN P, CAO W, ZANG Q, et al. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy[J]. Biochem Biophys Res Commun, 2016, 478(3): 1067-1073. DOI:10.1016/j.bbrc.2016.08.065 |
[36] |
CHEN X, ZHANG N. Downregulation of lncRNA NEAT1_2 radiosensitizes hepatocellular carcinoma cells through regulation of miR-101-3p/WEE1 axis[J]. Cell Biol Int, 2019, 43(1): 44-55. DOI:10.1002/cbin.11077 |
[37] |
ZHOU Y, HE P, XIE X, et al. Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma[J]. Mol Cell Biochem, 2019, 450(1/2): 125-134. DOI:10.1007/s11010-018-3379-8 |
[38] |
GARCIA-PADILLA C, LOZANO-VELASCO E, MUÑOZ-GALLARDO M D M, et al. LncRNA H19 impairs chemo and radiotherapy in tumorigenesis[J]. Int J Mol Sci, 2022, 23(15): 8309. DOI:10.3390/ijms23158309 |
[39] |
YANG J, QI M, FEI X, et al. LncRNA H19: a novel oncogene in multiple cancers[J]. Int J Biol Sci, 2021, 17(12): 3188-3208. DOI:10.7150/ijbs.62573 |
[40] |
CHEN Y, SHEN Z, ZHI Y, et al. Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression[J]. Arch Biochem Biophys, 2018, 645: 117-125. DOI:10.1016/j.abb.2018.03.018 |
[41] |
ZHANG Y, HUANG B, CHEN Z, et al. Knockdown of LINC00473 enhances radiosensitivity in hepatocellular carcinoma via regulating the miR-345-5p/FOXP1 axis[J]. Onco Targets Ther, 2020, 13: 173-183. DOI:10.2147/OTT.S240113 |
[42] |
HU Y, LI H, ZHANG H, et al. The long non-coding RNA LIMT inhibits metastasis of hepatocellular carcinoma and is suppressed by EGF signaling[J]. Mol Biol Rep, 2022, 49(6): 4749-4757. DOI:10.1007/s11033-022-07325-0 |
[43] |
SUN J, ZHENG X, WANG B, et al. LncRNA LIMT (LINC01089) contributes to sorafenib chemoresistance via regulation of miR-665 and epithelial to mesenchymal transition in hepatocellular carcinoma cells[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(2): 261-270. DOI:10.3724/abbs.2021019 |
[44] |
LI X, ZHOU Y, YANG L, et al. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma[J]. J Cell Physiol, 2020, 235(4): 3402-3413. DOI:10.1002/jcp.29230 |
[45] |
CHEN G, ZHANG W L, ZHANG S M, et al. LncRNA FOXD2-AS1 facilitates the progression of hepatocellular carcinoma by regulating TWIST1[J]. Eur Rev Med Pharmacol Sci, 2023, 27(10): 4536-4543. DOI:10.26355/eurrev_202305_32460 |
[46] |
LI W, DONG X, HE C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells[J]. J Exp Clin Cancer Res, 2019, 38(1): 183. DOI:10.1186/s13046-019-1177-0 |
[47] |
YE J, ZHANG R, DU X, et al. Long noncoding RNA SNHG16 induces sorafenib resistance in hepatocellular carcinoma cells through sponging miR-140-5p[J]. Onco Targets Ther, 2019, 12: 415-422. DOI:10.2147/OTT.S175176 |
[48] |
ZHANG P F, WANG F, WU J, et al. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(3): 2788-2794. DOI:10.1002/jcp.27095 |
[49] |
YU T, YU J, LU L, et al. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis[J]. Cell Oncol (Dordr), 2021, 44(4): 821-834. DOI:10.1007/s13402-021-00605-0 |
[50] |
GU D, TONG M, WANG J, et al. Overexpression of the lncRNA HOTAIRM1 promotes lenvatinib resistance by downregulating miR-34a and activating autophagy in hepatocellular carcinoma[J]. Discov Oncol, 2023, 14(1): 66. DOI:10.1007/s12672-023-00673-8 |
[51] |
ZHANG Y, MI L, XUAN Y, et al. LncRNA HOTAIRM1 inhibits the progression of hepatocellular carcinoma by inhibiting the Wnt signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4861-4868. DOI:10.26355/eurrev_201808_15622 |
[52] |
WANG Y, TAN K, HU W, et al. LncRNA AC026401.3 interacts with OCT1 to intensify sorafenib and lenvatinib resistance by activating E2F2 signaling in hepatocellular carcinoma[J]. Exp Cell Res, 2022, 420(1): 113335. DOI:10.1016/j.yexcr.2022.113335 |
[53] |
BAE A N, JUNG S J, LEE J H, et al. Clinical value of EZH2 in hepatocellular carcinoma and its potential for target therapy[J]. Medicina (Kaunas), 2022, 58(2): 155. DOI:10.3390/medicina58020155 |
[54] |
LIU W G, XU Q. Long non-coding RNA XIST promotes hepatocellular carcinoma progression by sponging miR-200b-3p[J]. Eur Rev Med Pharmacol Sci, 2019, 23(22): 9857-9862. DOI:10.26355/eurrev_201911_19549 |
[55] |
DUAN A, LI H, YU W, et al. Long noncoding RNA XIST promotes resistance to lenvatinib in hepatocellular carcinoma cells via epigenetic inhibition of NOD2[J]. J Oncol, 2022, 2022: 4537343. DOI:10.1155/2022/4537343 |
[56] |
ZHAO Z, ZHANG D, WU F, et al. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression[J]. J Cell Mol Med, 2021, 25(1): 549-560. DOI:10.1111/jcmm.16108 |
[57] |
SUN Z, XUE C, LI J, et al. LINC00244 suppresses cell growth and metastasis in hepatocellular carcinoma by downregulating programmed cell death ligand 1[J]. Bioengineered, 2022, 13(3): 7635-7647. DOI:10.1080/21655979.2022.2050073 |
[58] |
PENG L, CHEN Y, OU Q, et al. LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma[J]. Int Immunopharmacol, 2020, 89(Pt A): 107071. DOI:10.1016/j.intimp.2020.107071 |
[59] |
ZHANG J, PAN T, ZHOU W, et al. Long noncoding RNA LINC01132 enhances immunosuppression and therapy resistance via NRF1/DPP4 axis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1): 270. DOI:10.1186/s13046-022-02478-z |
[60] |
ZHUANG L, TIAN J, ZHANG X, et al. Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells[J]. Cell Mol Biol Lett, 2018, 23: 43. DOI:10.1186/s11658-018-0108-y |
[61] |
ZHOU M, ZHANG Z, BAO S, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer[J]. Brief Bioinform, 2021, 22(3): bbaa047. DOI:10.1093/bib/bbaa047 |
[62] |
ÖZEŞ A R, WANG Y, ZONG X, et al. Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer[J]. Sci Rep, 2017, 7(1): 894. DOI:10.1038/s41598-017-00966-3 |
[63] |
XU L, WEI B, HUI H, et al. Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis[J]. J Cell Physiol, 2019, 234(4): 4563-4571. DOI:10.1002/jcp.27235 |
[64] |
LOBOS-GONZÁLEZ L, SILVA V, ARAYA M, et al. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors[J]. Oncotarget, 2016, 7(36): 58331-58350. DOI:10.18632/oncotarget.11110 |
[65] |
LIU G, WANG N, ZHANG C, et al. Fructose-1, 6-bisphosphate aldolase B depletion promotes hepatocellular carcinogenesis through activating insulin receptor signaling and lipogenesis[J]. Hepatology, 2021, 74(6): 3037-3055. DOI:10.1002/hep.32064 |
[66] |
PENG J Y, CAI D K, ZENG R L, et al. Upregulation of superenhancer-driven LncRNA FASRL by USF1 promotes de novo fatty acid biosynthesis to exacerbate hepatocellular carcinoma[J]. Adv Sci, 2022, 10(1): e2204711. DOI:10.1002/advs.202204711 |