[1] |
REITZ C. Genetic diagnosis and prognosis of Alzheimer's disease: challenges and opportunities[J]. Expert Rev Mol Diagn, 2015, 15(3): 339-348. DOI:10.1586/14737159.2015.1002469 |
[2] |
Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers Dement, 2013, 9(1): 63-75.e2. DOI:10.1016/j.jalz.2012.11.007 |
[3] | |
[4] |
FARKAS S, SZABÓ A, TÖRÖK B, et al. Ovariectomy-induced hormone deprivation aggravates Aβ1-42 deposition in the basolateral amygdala and cholinergic fiber loss in the cortex but not cognitive behavioral symptoms in a triple transgenic mouse model of Alzheimer's disease[J]. Front Endocrinol (Lausanne), 2022, 13: 985424. DOI:10.3389/fendo.2022.985424 |
[5] |
SINGER O, MARR R A, ROCKENSTEIN E, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model[J]. Nat Neurosci, 2005, 8(10): 1343-1349. DOI:10.1038/nn1531 |
[6] |
MARINO M, ZHOU L, RINCON M Y, et al. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model[J]. EMBO Mol Med, 2022, 14(4): e09824. DOI:10.15252/emmm.201809824 |
[7] |
GRICIUC A, FEDERICO A N, NATASAN J, et al. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation[J]. Hum Mol Genet, 2020, 29(17): 2920-2935. DOI:10.1093/hmg/ddaa179 |
[8] |
DODART J C, MARR R A, KOISTINAHO M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2005, 102(4): 1211-1216. DOI:10.1073/pnas.0409072102 |
[9] |
NARISAWA-SAITO M, WAKABAYASHI K, TSUJI S, et al. Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer's disease[J]. Neuroreport, 1996, 7(18): 2925-2928. DOI:10.1097/00001756-199611250-00024 |
[10] |
MUELLER-STEINER S, ZHOU Y, ARAI H, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease[J]. Neuron, 2006, 51(6): 703-714. DOI:10.1016/j.neuron.2006.07.027 |
[11] |
MALKKI H. Alzheimer disease: NGF gene therapy activates neurons in the AD patient brain[J]. Nat Rev Neurol, 2015, 11(10): 548. DOI:10.1038/nrneurol.2015.170 |
[12] |
FALCICCHIA C, PAOLONE G, EMERICH D F, et al. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy[J]. Mol Ther Meth Clin Dev, 2018, 9: 211-224. DOI:10.1016/j.omtm.2018.03.001 |
[13] |
ROSENBERG J B, KAPLITT M G, DE B P, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer's disease[J]. Hum Gene Ther Clin Dev, 2018, 29(1): 24-47. DOI:10.1089/humc.2017.231 |
[14] |
HONG C S, GOINS W F, GOSS J R, et al. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-beta peptide in vivo[J]. Gene Ther, 2006, 13(14): 1068-1079. DOI:10.1038/sj.gt.3302719 |
[15] |
HOOK V, YOON M, MOSIER C, et al. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders[J]. Biochim Biophys Acta Proteins Proteom, 2020, 1868(8): 140428. DOI:10.1016/j.bbapap.2020.140428 |
[16] |
EL-AMOURI S S, ZHU H, YU J, et al. Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease[J]. Am J Pathol, 2008, 172(5): 1342-1354. DOI:10.2353/ajpath.2008.070620 |
[17] |
MARR R A, ROCKENSTEIN E, MUKHERJEE A, et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice[J]. J Neurosci, 2003, 23(6): 1992-1996. DOI:10.1523/JNEUROSCI.23-06-01992.2003 |
[18] |
MCKHANN G M, KNOPMAN D S, CHERTKOW H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7: 263-269. DOI:10.1016/j.jalz.2011.03.005 |
[19] |
SHARMA S, VERMA S, KAPOOR M, et al. Alzheimer's disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior[J]. Neurol Res, 2016, 38(9): 838-850. DOI:10.1080/01616412.2016.1209337 |
[20] |
GOEDERT M. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein[J]. Science, 2015, 349(6248): e1255555. DOI:10.1126/science.1255555 |
[21] |
LIANG Z, LI X, LUO X, et al. The aptamer Ob2, a novel AChE inhibitor, restores cognitive deficits and alleviates amyloidogenesis in 5×FAD transgenic mice[J]. Mol Ther Nucleic Acids, 2022, 28: 114-123. DOI:10.1016/j.omtn.2022.02.018 |
[22] | |
[23] |
DAMIAN HOLSINGER R M, MCLEAN C A, BEYREUTHER K, et al. Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease[J]. Ann Neurol, 2002, 51(6): 783-786. DOI:10.1002/ana.10208 |
[24] |
HAMPEL H, MESULAM M M, CUELLO A C, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease[J]. Brain, 2018, 141(7): 1917-1933. DOI:10.1093/brain/awy132 |
[25] |
KARAMI A, ERIKSDOTTER M, KADIR A, et al. CSF cholinergic index, a new biomeasure of treatment effect in patients with Alzheimer's disease[J]. Front Mol Neurosci, 2019, 12: 239. DOI:10.3389/fnmol.2019.00239 |
[26] |
ZHOU L T, ZHANG J, TAN L, et al. Elevated levels of miR-144-3p induce cholinergic degeneration by impairing the maturation of NGF in Alzheimer's disease[J]. Front Cell Dev Biol, 2021, 9: 667412. DOI:10.3389/fcell.2021.667412 |
[27] |
SUN L, JIN Y, DONG L, et al. Coccomyxa gloeobotrydiformis improves learning and memory in intrinsic aging rats[J]. Int J Biol Sci, 2015, 11(7): 825-832. DOI:10.7150/ijbs.10861 |
[28] |
ERIKSDOTTER M, MITRA S. Gene and cell therapy for the nucleus basalis of Meynert with NGF in Alzheimer's disease[J]. Handb Clin Neurol, 2021, 179: 219-229. DOI:10.1016/B978-0-12-819975-6.00012-1 |
[29] |
UNNISA A, GREIG N H, KAMAL M A. Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer's disease[J]. Neural Regen Res, 2023, 18(10): 2127-2133. DOI:10.4103/1673-5374.369096 |
[30] |
TUSZYNSKI M H, THAL L, PAY M, et al. A phase 1clinical trial of nerve growth factor gene therapy for Alzheimer disease[J]. Nat Med, 2005, 11(5): 551-555. DOI:10.1038/nm1239 |
[31] |
STEPANICHEV M. Gene editing and Alzheimer's disease: is there light at the end of the tunnel?[J]. Front Genome Ed, 2020, 2: 4. DOI:10.3389/fgeed.2020.00004 |
[32] |
PENG L, BESTARD-LORIGADOS I, SONG W. The synapse as a treatment avenue for Alzheimer's disease[J]. Mol Psychiatry, 2022, 27(7): 2940-2949. DOI:10.1038/s41380-022-01565-z |
[33] |
BELOOR J, MAES N, ULLAH I, et al. Small interfering RNA-mediated control of virus replication in the CNS is therapeutic and enables natural immunity to West Nile virus[J]. Cell Host Microbe, 2018, 23(4): 549-556.e3. DOI:10.1016/j.chom.2018.03.001 |
[34] | |
[35] |
EDIS Z, WANG J, WAQAS M K, et al. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives[J]. Int J Nanomedicine, 2021, 16: 1313-1330. DOI:10.2147/ijn.s289443 |
[36] |
DARAEE H, ETEMADI A, KOUHI M, et al. Application of liposomes in medicine and drug delivery[J]. Artif Cells Nanomed Biotechnol, 2016, 44(1): 381-391. DOI:10.3109/21691401.2014.953633 |
[37] |
KULKARNI J A, WITZIGMANN D, CHEN S, et al. Lipid nanoparticle technology for clinical translation of siRNA therapeutics[J]. Acc Chem Res, 2019, 52(9): 2435-2444. DOI:10.1021/acs.accounts.9b00368 |
[38] |
NIU X, CHEN J, GAO J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances[J]. Asian J Pharm Sci, 2019, 14(5): 480-496. DOI:10.1016/j.ajps.2018.09.005 |
[39] |
CANOVI M, MARKOUTSA E, LAZAR A N, et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue[J]. Biomaterials, 2011, 32(23): 5489-5497. DOI:10.1016/j.biomaterials.2011.04.020 |
[40] |
TAGALAKIS A D, LEE D H D, BIENEMANN A S, et al. Multifunctional, self-assembling anionic peptide-lipid nano complexes for targeted siRNA delivery[J]. Biomaterials, 2014, 35(29): 8406-8415. DOI:10.1016/j.biomaterials.2014.06.003 |
[41] |
MOURTAS S, LAZAR A N, MARKOUTSA E, et al. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease[J]. Eur J Med Chem, 2014, 80: 175-183. DOI:10.1016/j.ejmech.2014.04.050 |
[42] |
VAN GIAU V, AN S S A, HULME J P. Mitochondrial therapeutic interventions in Alzheimer's disease[J]. J Neurol Sci, 2018, 395: 62-70. DOI:10.1016/j.jns.2018.09.033 |
[43] |
WANG X, WU M, LI H, et al. Enhancing penetration ability of semiconducting polymer nanoparticles for sonodynamic therapy of large solid tumor[J]. Adv Sci (Weinh), 2022, 9(6): e2104125. DOI:10.1002/advs.202104125 |
[44] |
MIN H S, KIM H J, NAITO M, et al. Systemic brain delivery of antisense oligonucleotides across the blood-brain barrier with a glucose-coated polymeric nanocarrier[J]. Angew Chem Int Ed, 2020, 59(21): 8173-8180. DOI:10.1002/anie.201914751 |
[45] |
YANG X, YANG W, XIA X, et al. Intranasal delivery of BACE1 siRNA and rapamycin by dual targets modified nanoparticles for Alzheimer's disease therapy[J]. Small, 2022, 18(30): e2203182. DOI:10.1002/smll.202203182 |
[46] |
GAO J, CHEN X, MA T, et al. PEG-ceramide nanomicelles induce autophagy and degrade tau proteins in N2a cells[J]. Int J Nanomedicine, 2020, 15: 6779-6789. DOI:10.2147/ijn.s258311 |
[47] |
WANG S, YAO Z, ZHANG X, et al. Energy-supporting enzyme-mimic nanoscaffold facilitates tendon regeneration based on a mitochondrial protection and microenvironment remodeling strategy[J]. Adv Sci (Weinh), 2022, 9(31): e2202542. DOI:10.1002/advs.202202542 |
[48] |
SIPOSOVA K, HUNTOSOVA V, GARCAROVA I, et al. Dual-functional antioxidant and antiamyloid cerium oxide nanoparticles fabricated by controlled synthesis in water-alcohol solutions[J]. Biomedicines, 2022, 10(5): 942. DOI:10.3390/biomedicines10050942 |
[49] |
HOU K, ZHAO J, WANG H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease[J]. Nat Commun, 2020, 11(1): 4790. DOI:10.1038/s41467-020-18525-2 |
[50] |
ZHOU Y, ZHU F, LIU Y, et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy[J]. Sci Adv, 2020, 6(41): eabc7031. DOI:10.1126/sciadv.abc7031 |
[51] |
GU X, SONG Q, ZHANG Q, et al. Clearance of two organic nanoparticles from the brain via the paravascular pathway[J]. J Control Release, 2020, 322: 31-41. DOI:10.1016/j.jconrel.2020.03.009 |
[52] |
FILSER S, OVSEPIAN S V, MASANA M, et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions[J]. Biol Psychiatry, 2015, 77(8): 729-739. DOI:10.1016/j.biopsych.2014.10.013 |
[53] |
程文彬, 陈晓晗, 孙文静, 等. 阿尔茨海默病精准诊断和药物研发的焦点与挑战[J]. 海军军医大学学报, 2023, 44(9): 1013-1025. CHENG W, CHEN X, SUN W, et al. Precision diagnosis and drug development for Alzheimer's disease: focus and challenges[J]. Acad J Naval Med Univ, 2023, 44(9): 1013-1025. DOI:10.16781/j.CN31-2187/R.20230210 |
[54] |
LALWANI A K, KRISHNAN K, BAGABIR S A, et al. Network theoretical approach to explore factors affecting signal propagation and stability in dementia's protein-protein interaction network[J]. Biomolecules, 2022, 12(3): 451. DOI:10.3390/biom12030451 |