[1] |
GRIBAR S C, RICHARDSON W M, SODHI C P, et al. No longer an innocent bystander: epithelial Toll-like receptor signaling in the development of mucosal inflammation[J]. Mol Med, 2008, 14(9/10): 645-659. DOI:10.2119/2008-00035.Gribar |
[2] |
CARIO E, PODOLSKY D K. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease[J]. Infect Immun, 2000, 68(12): 7010-7017. DOI:10.1128/IAI.68.12.7010-7017.2000 |
[3] |
BANK S, SKYTT ANDERSEN P, BURISCH J, et al. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish cohort[J]. PLoS One, 2014, 9(6): e98815. DOI:10.1371/journal.pone.0098815 |
[4] |
FROLOVA L, DRASTICH P, ROSSMANN P, et al. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis[J]. J Histochem Cytochem, 2008, 56(3): 267-274. DOI:10.1369/jhc.7a7303.2007 |
[5] |
SZEBENI B, VERES G, DEZSÕFI A, et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease[J]. Clin Exp Immunol, 2008, 151(1): 34-41. DOI:10.1111/j.1365-2249.2007.03531.x |
[6] |
LIU B, PIAO X, NIU W, et al. Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota[J]. Front Pharmacol, 2020, 11: 1036. DOI:10.3389/fphar.2020.01036 |
[7] |
LI C, AI G, WANG Y, et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway[J]. Pharmacol Res, 2020, 152: 104603. DOI:10.1016/j.phrs.2019.104603 |
[8] |
CHEN Y, LU Y, PEI C, et al. Monotropein alleviates secondary liver injury in chronic colitis by regulating TLR4/NF-κB signaling and NLRP3 inflammasome[J]. Eur J Pharmacol, 2020, 883: 173358. DOI:10.1016/j.ejphar.2020.173358 |
[9] |
LUO X, YU Z, DENG C, et al. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice[J]. Sci Rep, 2017, 7(1): 16374. DOI:10.1038/s41598-017-12562-6 |
[10] |
YOUSEFI-MANESH H, DEJBAN P, MUMTAZ F, et al. Risperidone attenuates acetic acid-induced colitis in rats through inhibition of TLR4/NF-κB signaling pathway[J]. Immunopharmacol Immunotoxicol, 2020, 42(5): 464-472. DOI:10.1080/08923973.2020.1808987 |
[11] |
DEJBAN P, SAHRAEI M, CHAMANARA M, et al. Anti-inflammatory effect of amitriptyline in a rat model of acetic acid-induced colitis: the involvement of the TLR4/NF-κB signaling pathway[J]. Fundam Clin Pharmacol, 2021, 35(5): 843-851. DOI:10.1111/fcp.12642 |
[12] |
刘凯丽, 都新新, 张文琴, 等. 过表达miR-31对结肠炎模型小鼠TLR4/NF-κB信号通路及凋亡蛋白的调控[J]. 中国应用生理学杂志, 2020, 36(3): 211-215, 239, 289-191. |
[13] |
WANG J P, DONG L N, WANG M, et al. MiR-146a regulates the development of ulcerative colitis via mediating the TLR4/MyD88/NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(5): 2151-2157. DOI:10.26355/eurrev_201903_17260 |
[14] |
RAKOFF-NAHOUM S, PAGLINO J, ESLAMI-VARZANEH F, et al. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis[J]. Cell, 2004, 118(2): 229-241. DOI:10.1016/j.cell.2004.07.002 |
[15] |
FUKATA M, MICHELSEN K S, ERI R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(5): G1055-G1065. DOI:10.1152/ajpgi.00328.2004 |
[16] |
ARAKI A, KANAI T, ISHIKURA T, et al. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis[J]. J Gastroenterol, 2005, 40(1): 16-23. DOI:10.1007/s00535-004-1492-9 |
[17] |
BROWN S L, RIEHL T E, WALKER M R, et al. MyD88-dependent positioning of PTGS2-expressing stromal cells maintains colonic epithelial proliferation during injury[J]. J Clin Invest, 2007, 117(1): 258-269. DOI:10.1172/JCI29159 |
[18] |
ABREU M T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function[J]. Nat Rev Immunol, 2010, 10(2): 131-144. DOI:10.1038/nri2707 |
[19] |
JEENGAR M K, THUMMURI D, MAGNUSSON M, et al. Uridine ameliorates dextran sulfate sodium (DSS)-induced colitis in mice[J]. Sci Rep, 2017, 7: 3924. DOI:10.1038/s41598-017-04041-9 |
[20] | |
[21] |
FU W, WANG Y, ZHANG Y, et al. Insights into HER2 signaling from step-by-step optimization of anti-HER2 antibodies[J]. mAbs, 2014, 6(4): 978-990. DOI:10.4161/mabs.28786 |
[22] |
HERNÁNDEZ-CHIRLAQUE C, ARANDA C J, OCÓN B, et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis[J]. J Crohns Colitis, 2016, 10(11): 1324-1335. DOI:10.1093/ecco-jcc/jjw096 |
[23] |
MOSLI M H, FEAGAN B G, SANDBORN W J, et al. Histologic evaluation of ulcerative colitis: a systematic review of disease activity indices[J]. Inflamm Bowel Dis, 2014, 20(3): 564-575. DOI:10.1097/01.MIB.0000437986.00190.71 |
[24] |
ABREU M T, ARNOLD E T, THOMAS L S, et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells[J]. J Biol Chem, 2002, 277(23): 20431-20437. DOI:10.1074/jbc.M110333200 |
[25] |
PEDERSEN G, ANDRESEN L, MATTHIESSEN M W, et al. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium[J]. Clin Exp Immunol, 2005, 141(2): 298-306. DOI:10.1111/j.1365-2249.2005.02848.x |
[26] |
ECKMANN L, NEBELSIEK T, FINGERLE A A, et al. Opposing functions of IKKβ during acute and chronic intestinal inflammation[J]. Proc Natl Acad Sci USA, 2008, 105(39): 15058-15063. DOI:10.1073/pnas.0808216105 |
[27] |
ABREU M T, VORA P, FAURE E, et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide[J]. J Immunol, 2001, 167(3): 1609-1616. DOI:10.4049/jimmunol.167.3.1609 |
[28] |
OTTE J M, CARIO E, PODOLSKY D K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells[J]. Gastroenterology, 2004, 126(4): 1054-1070. DOI:10.1053/j.gastro.2004.01.007 |
[29] |
FUKATA M, SHANG L, SANTAOLALLA R, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis[J]. Inflamm Bowel Dis, 2011, 17(7): 1464-1473. DOI:10.1002/ibd.21527 |
[30] |
SHANG L, FUKATA M, THIRUNARAYANAN N, et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria[J]. Gastroenterology, 2008, 135(2): 529-538. DOI:10.1053/j.gastro.2008.04.020 |
[31] |
DHEER R, SANTAOLALLA R, DAVIES J M, et al. Intestinal epithelial Toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis[J]. Infect Immun, 2016, 84(3): 798-810. DOI:10.1128/IAI.01374-15 |
[32] |
LU P, SODHI C P, YAMAGUCHI Y, et al. Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice[J]. Mucosal Immunol, 2018, 11(3): 727-740. DOI:10.1038/mi.2017.114 |
[33] |
FRANTZ A L, ROGIER E W, WEBER C R, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides[J]. Mucosal Immunol, 2012, 5(5): 501-512. DOI:10.1038/mi.2012.23 |
[34] |
BRANDL K, SUN L, NEPPL C, et al. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands[J]. Proc Natl Acad Sci USA, 2010, 107(46): 19967-19972. DOI:10.1073/pnas.1014669107 |
[35] |
VAMADEVAN A S, FUKATA M, ARNOLD E T, et al. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis[J]. Innate Immun, 2010, 16(2): 93-103. DOI:10.1177/1753425909339231 |
[36] |
STENSON W F, CIORBA M A. Nonmicrobial activation of TLRs controls intestinal growth, wound repair, and radioprotection[J]. Front Immunol, 2021, 11: 617510. DOI:10.3389/fimmu.2020.617510 |
[37] |
FUKATA M, CHEN A, KLEPPER A, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine[J]. Gastroenterology, 2006, 131(3): 862-877. DOI:10.1053/j.gastro.2006.06.017 |
[38] |
BRUNING E E, COLLER J K, WARDILL H R, et al. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease[J]. J Cell Physiol, 2021, 236(2): 877-888. DOI:10.1002/jcp.29976 |
[39] |
LU P, SODHI C P, HACKAM D J. Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis[J]. Pathophysiology, 2014, 21(1): 81-93. DOI:10.1016/j.pathophys.2013.11.007 |
[40] |
MENG D, ZHU W, SHI H N, et al. Toll-like receptor-4 in human and mouse colonic epithelium is developmentally regulated: a possible role in necrotizing enterocolitis[J]. Pediatr Res, 2015, 77(3): 416-424. DOI:10.1038/pr.2014.207 |
[41] |
MALDONADO-CONTRERAS A L, MCCORMICK B A. Intestinal epithelial cells and their role in innate mucosal immunity[J]. Cell Tissue Res, 2011, 343(1): 5-12. DOI:10.1007/s00441-010-1082-5 |
[42] |
PUFNOCK J S, CIGAL M, ROLCZYNSKI L S, et al. Priming CD8 + T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8 + T cells retaining CD28[J]. Blood, 2011, 117(24): 6542-6551. DOI:10.1182/blood-2010-11-317966 |
[43] |
MICHELSEN K S, AICHER A, MOHAUPT M, et al. The role of Toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCs)[J]. J Biol Chem, 2001, 276(28): 25680-25686. DOI:10.1074/jbc.m011615200 |
[44] |
CAPON D J, CHAMOW S M, MORDENTI J, et al. Designing CD4 immunoadhesins for AIDS therapy[J]. Nature, 1989, 337(6207): 525-531. DOI:10.1038/337525a0 |
[45] | |
[46] |
LAGASSÉ H A D, HENGEL H, GOLDING B, et al. Fc-fusion drugs have FcγR/C1q binding and signaling properties that may affect their immunogenicity[J]. AAPS J, 2019, 21(4): 62. DOI:10.1208/s12248-019-0336-8 |
[47] |
UNGARO R, FUKATA M, HSU D, et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(6): G1167-G1179. DOI:10.1152/ajpgi.90496.2008 |
[48] |
LIU Y, YANG M, TANG L, et al. TLR4 regulates RORγt + regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila[J]. Microbiome, 2022, 10(1): 98. DOI:10.1186/s40168-022-01296-x |
[49] |
MEI Q X, FU Y, HUANG Z H, et al. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency[J]. Gut Microbes, 2022, 14(1): 2112882. DOI:10.1080/19490976.2022.2112882 |