海军军医大学学报  2024, Vol. 45 Issue (4): 383-390   PDF    
卵巢功能异常与妊娠结局相关性及其机制概述
肖茜, 纪亚忠     
同济大学附属同济医院生殖医学科,上海 200065
摘要: 卵巢功能异常主要包括卵巢功能低下和高反应,是女性不孕不育的重要原因之一。卵巢功能异常女性妊娠结局不良可表现为流产率升高、活产率下降,以及妊娠并发症和新生儿风险增加,其原因与卵子质量下降和母体内环境紊乱等因素有关。本文对卵巢功能异常对妊娠结局的影响及其机制进行综述,以期为临床综合诊疗和相关研究提供参考。
关键词: 卵巢功能低下    卵巢高反应    妊娠结局    
Correlation between abnormal ovarian function and pregnancy outcomes and its mechanism
XIAO Xi, JI Yazhong     
Department of Reproductive Medicine, Tongji Hospital, Tongji University, Shanghai 200065, China
Abstract: Abnormal ovarian function, including ovarian dysfunction and high ovarian response, is one of the important causes of female infertility. Women with abnormal ovarian function have undesirable pregnancy outcomes, manifested as high miscarriage rate, low live birth rate, increased pregnancy complications, and neonatal risk. The unsatisfactory pregnancy outcomes caused by abnormal ovarian function are attributed to the decline of oocyte quality and the disruption of the maternal environment. This article reviews the impact of abnormal ovarian function on pregnancy outcomes and its mechanism, so as to provide reference for the clinical comprehensive diagnosis and treatment and relative research.
Key words: ovarian dysfunction    high ovarian response    pregnancy outcomes    

卵巢功能是成功妊娠的关键因素之一,卵巢和下丘脑-垂体协作周期性产生成熟的卵母细胞,同时调控子宫内膜生长以利于胚胎着床。下丘脑-垂体功能异常可导致卵泡生长发育不良,故临床上观察到卵巢功能异常时应首先排除下丘脑-垂体疾患。常见的下丘脑-垂体疾病包括低促性腺激素性性腺功能减退症、垂体急性缺血或垂体卒中、自身免疫性或感染性垂体炎、垂体瘤等,约占排卵障碍疾病的10%[1]

卵巢功能异常包括卵巢功能低下和卵巢高反应。在辅助生殖技术(artificial reproduction technology,ART)助孕的女性中,约有28%卵巢功能低下,并且呈逐年上升趋势[2]。卵巢功能低下是指女性卵巢内分泌功能和卵母细胞储备下降,表现为基础卵泡刺激素(follicle-stimulating hormone,FSH)上升、窦卵泡计数(antral follicle count,AFC)减少、抗米勒管激素(anti-Müllerian hormone,AMH)下降,以及对卵巢储备试验反应低下等[3]。由于卵母细胞质量和数量下降,卵巢功能低下患者自然妊娠率和活产率显著降低[4]。卵巢高反应是指女性卵巢对外源性促性腺激素刺激异常敏感,表现为大量卵泡募集、发育和雌激素水平迅速上升[5]。卵巢高反应女性着床率和妊娠率下降,可能与高类固醇激素导致的子宫内膜容受性受损有关[6-7]。按照是否患有多囊卵巢综合征(polycystic ovary syndrome,PCOS)可以将卵巢高反应人群分为2类,其中临床上以患有PCOS者更为常见。PCOS以卵巢多囊改变、排卵障碍和高雄激素的临床或生物化学表现为特征,根据鹿特丹标准,全球有6%~21%的女性患有PCOS[8]。PCOS患者常合并代谢紊乱、月经不调、不孕和多毛等困扰,妊娠后PCOS患者的流产率和妊娠并发症风险增加[9-10]

为响应我国人口战略计划,本文对以卵巢功能低下和患有PCOS的卵巢高反应为代表的卵巢功能异常对妊娠结局的影响及其机制进行探讨,为卵巢功能异常的临床诊疗和基础研究提供依据。

1 卵巢功能异常对妊娠结局的影响 1.1 卵巢功能低下对妊娠结局的影响

多个学术组织先后对卵巢功能低下进行了定义,包括卵巢早衰(premature ovarian failure)、卵巢储备功能降低(diminished ovarian reserve)、早发性卵巢功能不全(premature ovarian insufficiency)和卵巢低反应(poor ovarian response)等[11]。卵巢早衰是指女性40岁以前继发性闭经4个月以上且绝经后FSH>40 IU/L[12]。卵巢储备功能降低是指女性卵巢可募集的卵子数量和质量下降[13]。根据我国国情,早发性卵巢功能不全定义为女性40岁之前出现的卵巢功能衰退临床综合征,其临床诊断标准为:(1)停经或月经稀发至少4个月;(2)连续2次检查(间隔时间>4周)FSH>25 U/L[14]。卵巢低反应是指ART助孕女性在控制性卵巢刺激后获卵数少,卵巢反应低下[15]。根据博洛尼亚标准,卵巢低反应需至少满足以下任意2个特征:(1)年龄≥40岁或伴其他卵巢反应不良的危险因素;(2)前次体外受精(in vitro fertilization,IVF)周期卵巢反应低下,即应用常规促排卵方案获得卵母细胞数≤3个;(3)卵巢储备功能下降,AFC<5~7个或AMH<0.5~1.1 ng/mL[15]。卵巢早衰、早发性卵巢功能不全、卵巢储备功能降低和卵巢低反应可总体概括为女性由各种原因所致的卵巢功能低下,卵子数量和质量下降,妊娠结局不良(包括妊娠成功率和活产率下降),以及流产率、妊娠并发症和新生儿风险增高。

1.1.1 卵巢功能低下对妊娠和活产率的影响

卵巢功能低下如早发性卵巢功能不全的患者会间歇性排卵,约25%的早发性卵巢功能不全女性可能会自发排卵,但在诊断早发性卵巢功能不全后,仅有5%~10%的女性可以自发怀孕并分娩[16]。与卵巢功能正常女性相比,需要ART助孕的卵巢功能低下患者在促性腺激素刺激下获卵数减少,胚胎非整倍体率升高[17],提示IVF周期中卵巢功能低下患者可移植胚胎数目减少。卵巢功能低下患者活产率下降,并与卵巢功能低下病因、患者年龄、IVF胚胎移植阶段等因素相关[18]。Yun等[19]对55名女性的99个IVF周期进行分析发现,相较于年龄相关卵巢功能低下患者,由卵巢手术导致的卵巢功能低下患者的临床妊娠结局较好,表明卵巢功能低下患者的妊娠结局与病因密切相关。Huang等[18]发现年龄是卵巢功能低下患者活产率的独立影响因子(OR=0.6,95% CI 0.46~0.78,P<0.001),但调整混杂因素后,仅在年龄>40岁的卵巢功能低下患者中观察到年龄是活产率的独立影响因子。Hanoch等[20]对143例卵巢功能低下的IVF助孕女性进行回顾性研究发现,年轻的卵巢功能低下患者临床妊娠率约是高育龄卵巢功能低下患者的3倍(19.3% vs 6.0%,P=0.004)。但多项研究发现,年龄并不是卵巢功能低下患者活产率的保护因素,与卵巢功能正常的年轻女性相比,卵巢功能低下的年轻女性临床妊娠率和活产率下降,并且与高育龄女性相比活产率差异无统计学意义[4, 21]。对于IVF助孕的卵巢功能低下患者,活产率还受到移植胚胎阶段的影响。一项单中心回顾性研究发现,卵巢功能低下患者移植第3天胚胎具有更高的活产率(调整OR=1.53,95% CI 1.13~2.08,P=0.006)[22]

高流产率是卵巢功能低下患者活产率低下的另一个重要原因,在卵巢功能低下患者中流产率高达50%[21]。Lyttle Schumacher等[23]对533名女性进行前瞻性研究发现,女性流产风险随着AMH降低而增加,AMH≤0.4 ng/mL女性的流产风险是AMH≥1 ng/mL女性的2.3倍(RR=2.3,95% CI 1.3~4.3)。Bunnewell等[24]对既往15项研究进行分析发现,低AMH水平(OR=3.23,95% CI 1.81~5.76)和AFC下降(OR=2.45,95% CI 1.16~5.19)与反复流产显著相关。卵巢功能低下患者流产率激增,可能由胚胎染色体异常和母体内环境紊乱导致。

1.1.2 卵巢功能低下对产科和新生儿风险的影响

卵巢功能低下患者的产科和新生儿风险可能取决于其病因。特发性卵巢功能低下或部分由于肿瘤化学治疗引起的卵巢功能低下患者,自然妊娠后的产科或新生儿风险并未进一步增加[25]。颅脑、子宫和卵巢放射治疗引起卵巢功能低下的患者,妊娠后产科和新生儿风险包括高流产率、侵入性胎盘、胎儿生长受限、早产、胎儿畸形、孕产妇心力衰竭及死产或新生儿死亡等风险显著升高[26-27]。辐照所致的卵巢功能低下患者产科风险与辐照剂量呈剂量依赖关系,当辐照剂量超过10 Gy时,新生儿死亡率高达18%[28]。对于特纳综合征(Turner syndrome)导致的卵巢功能低下患者,其妊娠高血压发病率升高,流产、胎儿生长受限和早产等风险也显著升高[29],特纳综合征孕产妇死亡率高达1%~2%,是普通人群的100~200倍[27]

1.2 PCOS对妊娠结局的影响

女性年龄<35岁、体型瘦小、患有PCOS或卵巢多囊样改变是卵巢高反应的危险因素。卵巢高反应的常见诊断标准为人绒毛膜促性腺激素注射日雌二醇>11 010 pmol/L或获卵数>15枚[5]。卵巢高反应女性由于多卵泡发育,类固醇激素分泌显著增加,导致卵巢过度刺激综合征的发生风险明显上升。此外,在新鲜胚胎移植周期中,卵巢高反应女性着床率和妊娠率较低,可能与卵巢高反应女性子宫血流和内膜转化异常导致内膜容受性受损有关[6-7]。与卵巢反应正常女性相比,卵巢高反应女性卵子受精率、卵裂率和优胚率无明显变化[6],但卵子或胚胎发育潜能是否受损仍有争议。运用拮抗剂方案、调整拮抗剂剂量、使用促性腺激素释放激素激动剂进行扳机、适当辅以二甲双胍和/或阿司匹林等药物可有效降低卵巢过度刺激综合征风险,采用全胚冷冻技术可以提高卵巢高反应女性的累积妊娠率[15, 30]。ART助孕的卵巢高反应女性常患有PCOS,在卵巢高反应女性中,非PCOS女性与PCOS女性卵泡液脂质代谢环境类似[31],且卵子受精率、囊胚率、妊娠率无差异[32]。在临床上,卵巢高反应女性合并PCOS更为常见,且PCOS研究更为透彻,下文将以PCOS为代表论述卵巢高反应对妊娠结局的影响。

PCOS是女性最常见的内分泌疾病之一,好发于40岁以下者,我国女性患病率约为10.01%[33]。PCOS具有多个诊断标准,包括鹿特丹、美国雄激素学会和中国诊断标准等。PCOS患者主要由于稀发排卵、黄体生成素峰前移导致卵母细胞和子宫内膜容受性下降而妊娠困难。大部分PCOS患者在调整生活方式、减重和药物治疗后可以自然受孕,约有13.7%的PCOS患者需要IVF助孕[34]。PCOS患者妊娠后并发症和产科风险较高,子代代谢疾患风险增加[35]

1.2.1 PCOS对妊娠和活产率的影响

Liu等[9]对IVF助孕的666例PCOS患者和7 012例非PCOS患者的妊娠结局进行回顾性分析发现,PCOS患者在促性腺激素刺激下获卵数高于非PCOS患者(15.0 vs 13.0,P<0.001),但是PCOS患者卵子受精数量(10 vs 12,P<0.001)和优胚率(95.0% vs 97.6%,P=0.002)低于非PCOS患者,提示PCOS患者卵子质量低下。与非PCOS患者相比,PCOS患者早期(18.67% vs 12.00%,P=0.023)[36]和晚期(7.4% vs 3.4%,P<0.001)[9]流产率增加。早期流产与胚胎染色体异常、子宫内膜受损等相关,晚期流产常与胎盘、子宫异常等有关。部分PCOS患者合并的高雄激素血症和胰岛素抵抗可能会损害胎盘、子宫功能,这可能是其流产率升高的重要原因[37-38]。虽然PCOS患者卵子质量可能存在异常,但其卵子数目多,可用胚胎相对增加,因而PCOS患者临床妊娠率和活产率与非PCOS患者相比差异没有统计学意义[39],甚至累积临床妊娠率(70.9% vs 59.8%,P<0.001)和活产率(58.3% vs 52.1%,P=0.002)更高[9]

1.2.2 PCOS对产科和新生儿风险的影响

PCOS患者妊娠期并发症与PCOS患者表型、地区和年龄等密切相关。PCOS患者妊娠期并发症主要包含妊娠高血压、妊娠糖尿病、前置胎盘等。Bahri Khomami等[10]对涵盖欧洲、美洲、非洲、亚洲、澳大利亚和新西兰等地区的63项PCOS相关研究进行meta分析发现,PCOS患者与妊娠糖尿病(OR=2.89,95% CI 2.37~3.54)、妊娠高血压(OR=2.58,95% CI 1.95~3.41)相关,且在BMI<30 kg/m2和BMI>30 kg/m2的患者之间没有明显差异。有50%~70%的PCOS患者合并胰岛素抵抗[40],可能是此类患者妊娠糖尿病风险升高的重要原因。PCOS患者妊娠高血压的发病风险目前仍有较大争议。Nielsen等[41]对200例PCOS患者进行前瞻性研究发现,与非PCOS患者相比,PCOS患者妊娠高血压风险无明显变化(8.5% vs 8.9%,P=0.84)。一项包含27 687例PCOS患者的研究发现,当对年龄、社会经济地位、胎次、附件手术等混杂因素进行调整后,PCOS患者与妊娠高血压无相关性(调整OR=1.243,95% CI 0.940~1.644),提示PCOS不是妊娠高血压的独立危险因素[42]

在PCOS患者子代安全方面,一项瑞典的大型队列研究显示PCOS患者早产风险增加(OR=2.02,95% CI 1.13~3.61)[34],尤其在32周前早产的风险更为显著(OR=2.448,95% CI 1.375~4.358,P=0.002)[9]。PCOS患者合并高雄激素血症、糖代谢紊乱和机体较高水平的炎症反应,这些可能是其早产的主要原因[43]

2 卵巢功能异常患者妊娠结局不良的机制 2.1 卵巢功能低下影响妊娠结局的机制 2.1.1 卵子数量减少

卵巢功能低下患者原始卵泡数量减少可能是其卵巢储备功能下降的重要因素[44]。女性完整的2条X染色体对调节生殖细胞发育和活力具有关键作用。由于X染色体缺失导致的染色体异常遗传病特纳综合征女性的重要特征就是性腺发育不良,仅有5%~7%的特纳综合征女性成年时仍然具有卵巢功能,能够自然受孕妊娠[45]。对流产的特纳综合征(核型45,X)胎儿研究发现,特纳综合征胎儿在妊娠6周时原始生殖细胞(primordial germ cell)数量正常,但在妊娠后期特纳综合征胎儿生殖细胞凋亡水平明显上升,生殖细胞数量显著减少[46],提示X染色体可能通过维持原始生殖细胞发育来促进性腺发育。卵巢功能低下患者可能由于X染色体部分或单基因异常,如X染色体长臂近端缺失(46,X,del(Xq)(q13))[47]、脆性X智力低下基因1(fragile X mental retardation 1,FMR1)前突变[48]等都会导致卵泡发育受损,影响卵巢储备功能。卵巢功能低下患者卵巢储备功能下降的另一重要原因是卵泡生长和成熟障碍,导致AFC减少并影响卵子质量。

2.1.2 卵子质量下降

卵母细胞质量是胚胎发育的关键,卵母细胞由颗粒细胞(granulosa cell)包裹生长于卵泡液中,颗粒细胞与卵泡微环境共同协作调控卵母细胞的生长发育和成熟。颗粒细胞功能受损和周围卵泡液微环境紊乱既是卵子质量低下的表现,又是其重要原因之一。

(1)卵泡液微环境紊乱:人类卵泡液在卵泡直径约为250 μm时形成[49]。卵泡液中富含卵泡生长发育所必需的糖类、脂质、激素、蛋白质、酶、细胞因子等成分。类固醇激素直接调控卵子生长和成熟,与卵巢功能正常女性相比,卵巢功能低下患者卵泡液中雄烯二酮(androstenedione)和糖皮质激素氢化可的松、可的松酮等显著减少,雄烯二酮和糖皮质激素减少可能导致颗粒细胞凋亡增加[50]。Liang等[51]发现卵巢功能低下患者卵泡液中多种花生四烯酸代谢物显著减少,可能损害卵母细胞成熟、排卵和后续卵子受精及植入。

(2)颗粒细胞功能障碍:颗粒细胞通过跨透明带投射(transzonal projection)与卵母细胞构成物理和化学耦合,为卵母细胞的生长发育提供能量物质和分子信号。Jiang等[52]观察到卵巢功能低下患者颗粒细胞线粒体形态异常,表现为肿胀、空泡状线粒体,提示卵丘细胞处于高氧化应激状态。Boucret等[53]发现线粒体DNA拷贝数明显下降,调控线粒体生物发生的基因表达降低。对卵巢功能低下患者颗粒细胞中非编码RNA进行检测发现颗粒细胞中miRNA-127-5p等显著升高,并通过促进颗粒细胞凋亡、抑制增殖损害卵巢功能[54]

2.1.3 母体内环境紊乱

女性月经周期的建立、卵泡发育、排卵、胚胎植入等都依赖于免疫系统的调控。约有40%的早发性卵巢功能不全患者合并自身免疫病[55],卵巢功能低下患者可以合并1种或多种自身免疫病,如桥本甲状腺炎、Graves病、Addison病、1型糖尿病、系统性红斑狼疮、克罗恩病等[56]。卵巢功能低下患者外周血中调节性T细胞减少,活化的CD4+细胞增加,表明卵巢功低下患者促炎和抑炎不平衡[57]。在体液免疫方面,研究发现卵巢功能低下患者TNF-α等水平升高,可损害类固醇激素合成并促进颗粒细胞凋亡,从而影响卵泡发育[57]

化工产业的发展衍生了许多广泛运用于常见生活用品的环境毒物,如邻苯二甲酸酯(phthalic acid ester,PAE)、多环芳烃等。Werner等[58]测定了369名妇女妊娠期间尿液样本中的PAE浓度,发现妊娠早期至中期尿液中PAE浓度与舒张压升高和妊娠高血压风险增加有关,可能由于PAE干扰螺旋动脉浸润,增加了胎盘发育异常的风险。

2.2 PCOS患者妊娠结局不佳的机制 2.2.1 卵子质量下降

活性氧是机体氧化还原反应的附属物,生理浓度的活性氧对卵母细胞生长、成熟和卵巢性激素合成必不可少。当活性氧浓度超过生理水平会导致线粒体和细胞核DNA损伤,损害卵子质量并影响胚胎发育[59]。PCOS患者卵巢表现出高氧化应激状态[60],可能是线粒体功能紊乱导致的。Qi等[61]发现,与非PCOS女性MⅡ期卵子相比,PCOS患者部分线粒体亚基活性在生发泡(germinal vesicle)期提前激活,提前激活的线粒体功能可能会损伤卵母细胞质量。

2.2.2 高胰岛素血症

50%~70%的PCOS患者合并高胰岛素血症[40],适宜浓度的胰岛素是卵子发育所必需的。研究发现,链脲佐菌素诱导的大鼠1型糖尿病与排卵率降低或排卵周期停止有关,使用胰岛素治疗后排卵周期恢复,表明胰岛素浓度不足会损害卵巢功能[62]。但是,当卵母细胞长期处于高胰岛素环境时会出现明显的细胞毒性,从而阻碍卵母细胞发育并影响卵子减数分裂、染色质重塑[63]

2.2.3 高雄激素血症

22%~84%的PCOS患者雄激素水平升高[40],高雄激素血症与PCOS患者月经稀发、少排卵和卵巢多囊表现息息相关。PCOS患者血清中脱氢表雄酮、硫酸脱氢表雄酮、睾酮、二氢睾酮和雄烯二酮水平升高[64],雄激素分泌过多会导致卵巢卵泡过早发育,在卵巢中形成多个小窦卵泡,并导致排卵障碍。高雄激素血症还会抑制与子宫内膜容受性和蜕膜化相关基因的表达[38],从而损害子宫内膜功能,这也可能是PCOS患者流产率高的主要原因之一。

2.2.4 PCOS患者免疫系统紊乱

PCOS患者免疫系统平衡被打乱,与正常女性相比,PCOS患者辅助性T细胞1和2的比例增加,调节性T细胞显著下降[65],调节性T细胞对维持母胎耐受十分重要。在细胞因子方面,PCOS患者体内TNF-α、IL-6等炎症因子水平升高,炎症因子可能与胰岛素抵抗共同影响PCOS患者的受孕成功率和妊娠结局[66]

3 临床策略和展望

卵巢功能异常患者卵泡微环境和颗粒细胞异常阻碍了卵泡发育和成熟,影响卵母细胞质量和胚胎发育潜能,而母体免疫功能紊乱干扰胚胎正常着床,导致卵巢功能异常患者妊娠结局不佳。卵巢功能异常所致的妊娠困难正影响着越来越多的育龄夫妇,令人遗憾的是,目前尚无提高卵巢功能异常患者妊娠结局的特效药物。尽早妊娠是卵巢功能异常患者重要的临床对策。已婚女性明确诊断卵巢功能异常后,应调整生活方式,监测排卵,或适当促排卵试孕3~6个月。对于卵巢功能异常无自发排卵且药物促排卵无效的患者,应尽早使用ART助孕。ART是改善卵巢功能异常患者活产率的重要手段之一,需要依据患者病因、既往诊疗经过、经济情况等选择合适的助孕方案,并关注男方精子质量。反复种植失败或反复流产的卵巢功能异常患者,需警惕免疫系统和凝血功能异常,适时进行免疫治疗保胎,必要时可以考虑赠卵。间充质干细胞或分离其外泌体进行卵巢原位或静脉注射也有望改善卵巢功能低下患者的生育能力。对于需要放疗或化疗但有生育需求的女性,可尝试卵母细胞或卵巢冷冻保存。利用卵母细胞发育规律,开发卵母细胞不敏感的化疗药物将有利于年轻化疗患者保存生育能力。

卵巢功能异常患者需要全生命周期的管理,包括育龄期助孕、妊娠并发症干预和远期并发症的预防。例如,卵巢功能低下患者由于雌激素减少,骨质疏松和心血管疾病风险增加;PCOS患者由于机体内分泌和代谢紊乱,心血管疾病和肿瘤风险升高。因此,卵巢功能异常患者的管理应是全方位、多维度的,需要多学科协同制定策略。卵巢功能低下和PCOS的发生机制是生殖医学的研究热点之一,揭示卵巢功能异常的发生机制,探索早期诊断、治疗的新方法,将有望改善患者的妊娠结局。

参考文献
[1]
National Collaborating Centre for Women's and Children's Health (UK). Fertility: assessment and treatment for people with fertility problems[M/OL]. London: Royal College of Obstetricians & Gynaecologists, 2013: 102 (2013-02) [2023-10-19]. https://www.ncbi.nlm.nih.gov/books/NBK247932/.
[2]
Centers for Disease Control and Prevention. 2020 assisted reproductive technology fertility clinic and national summary report [R/OL]. US Dept of Health and Human Services, 2022 [2023-10-19]. https://www.cdc.gov/art/reports/2020/pdf/Report-ART-Fertility-Clinic-National-Summary-H.pdf.
[3]
Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: a committee opinion[J]. Fertil Steril, 2020, 114(6): 1151-1157. DOI:10.1016/j.fertnstert.2020.09.134
[4]
HU S, XU B, JIN L. Perinatal outcome in young patients with diminished ovarian reserve undergoing assisted reproductive technology[J]. Fertil Steril, 2020, 114(1): 118-124.e1. DOI:10.1016/j.fertnstert.2020.02.112
[5]
孙赟, 朱琴玲. 高反应人群应用拮抗剂方案就可避免OHSS发生吗?[J]. 生殖医学杂志, 2015, 24(10): 789-792. DOI:10.3969/j.issn.1004-3845.2015.10.004
[6]
CHEN Q J, SUN X X, LI L, et al. Effects of ovarian high response on implantation and pregnancy outcome during controlled ovarian hyperstimulation (with GnRH agonist and rFSH)[J]. Acta Obstet Gynecol Scand, 2007, 86(7): 849-854. DOI:10.1080/00016340701415152
[7]
BOSDOU J K, VENETIS C A, TARLATZIS B C, et al. Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh-embryo transfer: a meta-analysis[J]. Hum Reprod, 2019, 34(3): 491-505. DOI:10.1093/humrep/dey388
[8]
LIZNEVA D, SUTURINA L, WALKER W, et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome[J]. Fertil Steril, 2016, 106(1): 6-15. DOI:10.1016/j.fertnstert.2016.05.003
[9]
LIU S, MO M, XIAO S, et al. Pregnancy outcomes of women with polycystic ovary syndrome for the first in vitro fertilization treatment: a retrospective cohort study with 7 678 patients[J]. Front Endocrinol (Lausanne), 2020, 11: 575337. DOI:10.3389/fendo.2020.575337
[10]
BAHRI KHOMAMI M, JOHAM A E, BOYLE J A, et al. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity: a systematic review, meta-analysis, and meta-regression[J]. Obes Rev, 2019, 20(5): 659-674. DOI:10.1111/obr.12829
[11]
PASTORE L M, CHRISTIANSON M S, STELLING J, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR[J]. J Assist Reprod Genet, 2018, 35(1): 17-23. DOI:10.1007/s10815-017-1058-4
[12]
SILLS E S, ALPER M M, WALSH A P H. Ovarian reserve screening in infertility: practical applications and theoretical directions for research[J]. Eur J Obstet Gynecol Reprod Biol, 2009, 146(1): 30-36. DOI:10.1016/j.ejogrb.2009.05.008
[13]
SHARARA F I, SCOTT R T Jr, SEIFER D B. The detection of diminished ovarian reserve in infertile women[J]. Am J Obstet Gynecol, 1998, 179(3 Pt 1): 804-812. DOI:10.1016/s0002-9378(98)70087-0
[14]
中华医学会妇产科学分会绝经学组. 早发性卵巢功能不全的激素补充治疗专家共识[J]. 中华妇产科杂志, 2016, 51(12): 881-886. DOI:10.3760/cma.j.issn.0529-567X.2016.12.001
[15]
FERRARETTI A P, LA MARCA A, FAUSER B C J M, et al. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria[J]. Hum Reprod, 2011, 26(7): 1616-1624. DOI:10.1093/humrep/der092
[16]
BIDET M, BACHELOT A, BISSAUGE E, et al. Resumption of ovarian function and pregnancies in 358 patients with premature ovarian failure[J]. J Clin Endocrinol Metab, 2011, 96(12): 3864-3872. DOI:10.1210/jc.2011-1038
[17]
SHAHINE L K, MARSHALL L, LAMB J D, et al. Higher rates of aneuploidy in blastocysts and higher risk of no embryo transfer in recurrent pregnancy loss patients with diminished ovarian reserve undergoing in vitro fertilization[J]. Fertil Steril, 2016, 106(5): 1124-1128. DOI:10.1016/j.fertnstert.2016.06.016
[18]
HUANG Y, LI J, ZHANG F, et al. Factors affecting the live-birth rate in women with diminished ovarian reserve undergoing IVF-ET[J]. Arch Gynecol Obstet, 2018, 298(5): 1017-1027. DOI:10.1007/s00404-018-4884-4
[19]
YUN B H, KIM G, PARK S H, et al. In vitro fertilization outcome in women with diminished ovarian reserve[J]. Obstet Gynecol Sci, 2017, 60(1): 46-52. DOI:10.5468/ogs.2017.60.1.46
[20]
HANOCH J, LAVY Y, HOLZER H, et al. Young low responders protected from untoward effects of reduced ovarian response[J]. Fertil Steril, 1998, 69(6): 1001-1004. DOI:10.1016/s0015-0282(98)00079-x
[21]
EL-TOUKHY T, KHALAF Y, HART R, et al. Young age does not protect against the adverse effects of reduced ovarian reserve: an eight year study[J]. Hum Reprod, 2002, 17(6): 1519-1524. DOI:10.1093/humrep/17.6.1519
[22]
DE VOS A, VAN LANDUYT L, SANTOS-RIBEIRO S, et al. Cumulative live birth rates after fresh and vitrified cleavage-stage versus blastocyst-stage embryo transfer in the first treatment cycle[J]. Hum Reprod, 2016, 31(11): 2442-2449. DOI:10.1093/humrep/dew219
[23]
LYTTLE SCHUMACHER B M, JUKIC A M Z, STEINER A Z. Antimüllerian hormone as a risk factor for miscarriage in naturally conceived pregnancies[J]. Fertil Steril, 2018, 109(6): 1065-1071. DOI:10.1016/j.fertnstert.2018.01.039
[24]
BUNNEWELL S J, HONESS E R, KARIA A M, et al. Diminished ovarian reserve inrecurrent pregnancy loss: a systematic review and meta-analysis[J]. Fertil Steril, 2020, 113(4): 818-827.e3. DOI:10.1016/j.fertnstert.2019.11.014
[25]
SIGNORELLO L B, MULVIHILL J J, GREEN D M, et al. Congenital anomalies in the children of cancer survivors: a report from the childhood cancer survivor study[J]. J Clin Oncol, 2012, 30(3): 239-245. DOI:10.1200/JCO.2011.37.2938
[26]
WO J Y, VISWANATHAN A N. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1304-1312. DOI:10.1016/j.ijrobp.2008.12.016
[27]
KARNIS M F, ZIMON A E, LALWANI S I, et al. Risk of death in pregnancy achieved through oocyte donation in patients with Turner syndrome: a national survey[J]. Fertil Steril, 2003, 80(3): 498-501. DOI:10.1016/s0015-0282(03)00974-9
[28]
SIGNORELLO L B, MULVIHILL J J, GREEN D M, et al. Stillbirth and neonatal death in relation to radiation exposure before conception: a retrospective cohort study[J]. Lancet, 2010, 376(9741): 624-630. DOI:10.1016/S0140-6736(10)60752-0
[29]
DOTTERS-KATZ S K, HUMPHREY W M, SENZ K L, et al. The effects of Turner syndrome, 45, X on obstetric and neonatal outcomes: a retrospective cohort evaluation[J]. Am J Perinatol, 2016, 33(12): 1152-1158. DOI:10.1055/s-0036-1585083
[30]
Practice Committee of the American Society for Reproductive Medicine. Prevention of moderate and severe ovarian hyperstimulation syndrome: a guideline[J]. Fertil Steril, 2024, 121(2): 230-245. DOI:10.1016/j.fertnstert.2023.11.013
[31]
CORDEIRO F B, CATALDI T R, DE SOUZA B Z, et al. Hyper response to ovarian stimulation affects the follicular fluid metabolomic profile of women undergoing IVF similarly to polycystic ovary syndrome[J]. Metabolomics, 2018, 14(4): 51. DOI:10.1007/s11306-018-1350-z
[32]
BELLEMARE V, ROTSHENKER-OLSHINKA K, NICHOLLS L, et al. Among high responders, is oocyte development potential different in Rotterdam consensus PCOS vs non-PCOS patients undergoing IVF?[J]. J Assist Reprod Genet, 2022, 39(10): 2311-2316. DOI:10.1007/s10815-022-02598-7
[33]
WU Q, GAO J, BAI D, et al. The prevalence of polycystic ovarian syndrome in Chinese women: a meta-analysis[J]. Ann Palliat Med, 2021, 10(1): 74-87. DOI:10.21037/apm-20-1893
[34]
ROOS N, KIELER H, SAHLIN L, et al. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study[J]. BMJ, 2011, 343: d6309. DOI:10.1136/bmj.d6309
[35]
CRISOSTO N, LADRÓN DE GUEVARA A, ECHIBURÚ B, et al. Higher luteinizing hormone levels associated with antimüllerian hormone in postmenarchal daughters of women with polycystic ovary syndrome[J]. Fertil Steril, 2019, 111(2): 381-388. DOI:10.1016/j.fertnstert.2018.10.011
[36]
GE X, ZHANG J, SHI H, et al. Polycystic ovary syndrome increases the rate of early spontaneous miscarriage in women who have undergone single vitrified euploid blastocyst transfer[J]. Reprod Biomed Online, 2023, 47(2): 103223. DOI:10.1016/j.rbmo.2023.04.014
[37]
CAI W Y, LUO X, LV H Y, et al. Insulin resistance in women with recurrent miscarriage: a systematic review and meta-analysis[J]. BMC Pregnancy Childbirth, 2022, 22(1): 916. DOI:10.1186/s12884-022-05256-z
[38]
GONZALEZ D, THACKERAY H, LEWIS P D, et al. Loss of WT1 expression in the endometrium of infertile PCOS patients: a hyperandrogenic effect?[J]. J Clin Endocrinol Metab, 2012, 97(3): 957-966. DOI:10.1210/jc.2011-2366
[39]
JIANG Y, YUAN J C, SONG G, et al. Pregnancy outcome and follow-up of offspring of donor oocytes recipient from PCOS patients[J]. BMC Pregnancy Childbirth, 2022, 22(1): 779. DOI:10.1186/s12884-022-05114-y
[40]
AZZIZ R, CARMINA E, DEWAILLY D, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report[J]. Fertil Steril, 2009, 91(2): 456-488. DOI:10.1016/j.fertnstert.2008.06.035
[41]
NIELSEN J H, BIRUKOV A, JENSEN R C, et al. Blood pressure and hypertension during pregnancy in women with polycystic ovary syndrome: Odense Child Cohort[J]. Acta Obstet Gynecol Scand, 2020, 99(10): 1354-1363. DOI:10.1111/aogs.13914
[42]
YANG S W, YOON S H, KIM M, et al. Risk of gestational diabetes and pregnancy-induced hypertension with a history of polycystic ovary syndrome: a nationwide population-based cohort study[J]. J Clin Med, 2023, 12(5): 1738. DOI:10.3390/jcm12051738
[43]
THOMANN R, ROSSINELLI N, KELLER U, et al. Differences in low-grade chronic inflammation and insulin resistance in women with previous gestational diabetes mellitus and women with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2008, 24(4): 199-206. DOI:10.1080/09513590801893398
[44]
KAWASHIMA I, KAWAMURA K. Disorganization of the germ cell pool leads to primary ovarian insufficiency[J]. Reproduction, 2017, 153(6): R205-R213. DOI:10.1530/REP-17-0015
[45]
BERNARD V, DONADILLE B, ZENATY D, et al. Spontaneous fertility and pregnancy outcomes amongst 480 women with Turner syndrome[J]. Hum Reprod, 2016, 31(4): 782-788. DOI:10.1093/humrep/dew012
[46]
MODI D N, SANE S, BHARTIYA D. Accelerated germ cell apoptosis in sex chromosome aneuploid fetal human gonads[J]. Mol Hum Reprod, 2003, 9(4): 219-225. DOI:10.1093/molehr/gag031
[47]
SIMPSON J L, RAJKOVIC A. Ovarian differentiation and gonadal failure[J]. Am J Med Genet, 1999, 89(4): 186-200. DOI:10.1002/(sici)1096-8628(19991229)89:4<186::aid-ajmg3>3.0.co;2-5
[48]
SULLIVAN A K, MARCUS M, EPSTEIN M P, et al. Association of FMR1 repeat size with ovarian dysfunction[J]. Hum Reprod, 2005, 20(2): 402-412. DOI:10.1093/humrep/deh635
[49]
RODGERS R J, IRVING-RODGERS H F. Formation of the ovarian follicular antrum and follicular fluid[J]. Biol Reprod, 2010, 82(6): 1021-1029. DOI:10.1095/biolreprod.109.082941
[50]
SASSON R, SHINDER V, DANTES A, et al. Activation of multiple signal transduction pathways by glucocorticoids: protection of ovarian follicular cells against apoptosis[J]. Biochem Biophys Res Commun, 2003, 311(4): 1047-1056. DOI:10.1016/j.bbrc.2003.10.097
[51]
LIANG C, ZHANG X, QI C, et al. UHPLC-MS-MS analysis of oxylipins metabolomics components of follicular fluid in infertile individuals with diminished ovarian reserve[J]. Reprod Biol Endocrinol, 2021, 19(1): 143. DOI:10.1186/s12958-021-00825-x
[52]
JIANG Z, SHI C, HAN H, et al. Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification[J]. Hum Reprod, 2021, 36(11): 2904-2915. DOI:10.1093/humrep/deab203
[53]
BOUCRET L, CHAO DE LA BARCA J M, MORINIÈRE C, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells[J]. Hum Reprod, 2015, 30(7): 1653-1664. DOI:10.1093/humrep/dev114
[54]
ZHANG X, DANG Y, LIU R, et al. MicroRNA-127-5pimpairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency[J]. J Cell Physiol, 2020, 235(11): 8826-8838. DOI:10.1002/jcp.29725
[55]
GROSSMANN B, SAUR S, RALL K, et al. Prevalence of autoimmune disease in women with premature ovarian failure[J]. Eur J Contracept Reprod Health Care, 2020, 25(1): 72-75. DOI:10.1080/13625187.2019.1702638
[56]
SZELIGA A, CALIK-KSEPKA A, MACIEJEWSKA-JESKE M, et al. Autoimmune diseases in patients with premature ovarian insufficiency: our current state of knowledge[J]. Int J Mol Sci, 2021, 22(5): 2594. DOI:10.3390/ijms22052594
[57]
JIAO X, ZHANG X, LI N, et al. Treg deficiency-mediated TH1 response causes human premature ovarian insufficiency through apoptosis and steroidogenesis dysfunction of granulosa cells[J]. Clin Transl Med, 2021, 11(6): e448. DOI:10.1002/ctm2.448
[58]
WERNER E F, BRAUN J M, YOLTON K, et al. The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: the HOME Study[J]. Environ Health, 2015, 14: 75. DOI:10.1186/s12940-015-0062-3
[59]
DELUAO J C, WINSTANLEY Y, ROBKER R L, et al. Oxidative stress and reproductive function: reactive oxygen species in the mammalian pre-implantation embryo[J]. Reproduction, 2022, 164(6): F95-F108. DOI:10.1530/REP-22-0121
[60]
GONG Y, LUO S, FAN P, et al. Growth hormone alleviates oxidative stress and improves oocyte quality in Chinese women with polycystic ovary syndrome: a randomized controlled trial[J]. Sci Rep, 2020, 10(1): 18769. DOI:10.1038/s41598-020-75107-4
[61]
QI L, LIU B, CHEN X, et al. Single-cell transcriptomic analysis reveals mitochondrial dynamics in oocytes of patients with polycystic ovary syndrome[J]. Front Genet, 2020, 11: 396. DOI:10.3389/fgene.2020.00396
[62]
ROGERS D G, VALDES C T, ELKIND-HIRSCH K E. The effect of ovarian function on insulin-like growth factor Ⅰ plasma levels and hepatic IGF-I mRNA levels in diabetic rats treated with insulin[J]. Diabetes Res Clin Pract, 1990, 8(3): 235-242. DOI:10.1016/0168-8227(90)90122-a
[63]
ACEVEDO N, DING J, SMITH G D. Insulin signaling in mouse oocytes[J]. Biol Reprod, 2007, 77(5): 872-879. DOI:10.1095/biolreprod.107.060152
[64]
LI Y, ZHAI Y, LI L, et al. Divergent associations between serum androgens and ovarian reserve markers revealed in patients with polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2022, 13: 881740. DOI:10.3389/fendo.2022.881740
[65]
NASRI F, DOROUDCHI M, NAMAVAR JAHROMI B, et al. T helper cells profile and CD4+CD25+Foxp3+ regulatory T cells in polycystic ovary syndrome[J]. Iran J Immunol, 2018, 15(3): 175-185. DOI:10.22034/IJI.2018.39387
[66]
ZHONG P, GUAN B, LIN Y, et al. Changes in inflammatory factors, oxidative stress, glucose and lipid metabolism, and insulin resistance in patients with polycystic ovary syndrome[J]. Cell Mol Biol (Noisy-le-grand), 2022, 67(5): 45-50. DOI:10.14715/cmb/2021.67.5.6