2. 海军军医大学(第二军医大学)第一附属医院创伤骨科,上海 200433
2. Department of Orthopaedics Trauma, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
骨骼是一种不断重塑的动态组织,破骨细胞骨吸收和成骨细胞骨形成的协同作用是维持骨骼生理功能的关键因素[1-2]。组蛋白修饰是表观遗传学的重要机制,通过特定的酶发生一系列修饰来发挥对基因表达的调控作用。近年来,组蛋白修饰的研究热度持续上升,本文对其在破骨细胞和成骨细胞分化及功能调节方面的研究进展进行综述。
1 组蛋白修饰概述在真核细胞中,组蛋白与DNA一起形成的核小体是染色质的基本组成部分。组蛋白是调节基因转录机制的组成部分,其功能是将真核细胞DNA包装成重复的核小体单元,这些核小体单元折叠成高阶染色质纤维[3]。组蛋白共价修饰主要发生在核小体组蛋白的氨基末端,包括乙酰化、磷酸化、甲基化、泛素化等[4]。
组蛋白乙酰化是指在组蛋白乙酰转移酶(histoneacetyltransferase,HAT)作用下将1个乙酰基添加在组蛋白H3和H4尾部的赖氨酸残基上,并可被组蛋白脱乙酰酶(histone deacetylase,HDAC)去除。乙酰化导致赖氨酸残基的正电荷去除,减少组蛋白与DNA分子结合,从而形成开放构象[5]。HDAC分为4类:Ⅰ类(HDAC1~3和8)是由多亚基组成的酶复合物,在大多数组织中广泛表达,并具有去乙酰化的功能;Ⅱ类(HDAC4~7、9和10)具有组织特异性,在信号刺激下在细胞质和细胞核之间穿梭;Ⅲ类为沉默信息调节因子(silence information regulator,Sirt)家族(Sirt1~7),它们需要通过NADH获得酶活性;Ⅳ类为HDAC11。其中,Ⅰ、Ⅱ和Ⅳ类HDAC具有相同的序列和结构[6]。
组蛋白甲基化主要发生在核心组蛋白尾部的赖氨酸和精氨酸残基上,并由组蛋白甲基转移酶和组蛋白去甲基化酶动态标记,目前对组蛋白甲基化的研究主要集中在组蛋白H3和H4上,H3K4、K9、K27和K36通过单甲基化、双甲基化和三甲基化进行修饰,其中H3K4和K36三甲基化与转录激活有关,H3K9二甲基化和K27三甲基化与转录抑制有关[7]。
组蛋白磷酸化是一种高效的表观遗传机制,通过组蛋白尾部受体区域的磷酸化来调节基因表达。这种修饰是在组蛋白的丝氨酸、苏氨酸和酪氨酸残基上进行,这些残基可以被激酶磷酸化,并在磷酸酶介导下去磷酸化[8]。
泛素化涉及许多信号转导通路及细胞分裂、细胞分化和蛋白质降解等过程[9]。通常泛素化涉及靶蛋白降解,而在组蛋白中作为基因激活或抑制标记[10]。泛素化通过3种不同的酶即活化酶(E1)、结合酶(E2)和连接酶(E3)介导[11]。去泛素化过程通过去泛素酶如泛素化特异性蛋白酶(ubiquitin specific protease,USP)改变靶蛋白。研究表明,组蛋白泛素化具有复杂的调节实体,并参与基因调控[12]。
2 组蛋白修饰在破骨细胞分化和功能调节中的作用 2.1 乙酰化组蛋白乙酰化是一种重要的表观遗传学标记,通常涉及基因激活。研究表明,组蛋白乙酰化在破骨细胞分化中发挥着重要的作用。Guo等[13]研究发现,抑制ATP柠檬酸裂解酶可通过调节组蛋白乙酰化抑制破骨细胞的分化和功能。Laha等[14]研究发现,Krüppel样因子2(Krüppel-like factor 2,KLF2)在破骨细胞形成过程中对Beclin-1介导的自噬过程具有重要调控作用,敲除KLF2可提高Beclin-1启动子区组蛋白激活标记H3K9和H4K8乙酰化水平,过表达KLF2可降低H4K8和H3K9乙酰化水平;破骨细胞分化也增加了Beclin-1启动子区H3K9和H4K8乙酰化水平。Kim等[15]研究发现在破骨细胞分化过程中,核因子κ B受体活化因子配体(receptor activator for nuclear factor κ B ligand,RANKL)通过HAT如p300和p300/cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)结合蛋白相关因子(p300/CREB binding protein-associated factor,PCAF)诱导活化T细胞核因子1(nuclear factor-activated T cell 1,NFATc1)乙酰化,从而稳定NFATc1蛋白,通过siRNA下调PCAF表达会降低NFATc1的乙酰化水平和稳定性及RANKL诱导的破骨细胞发生。Lian等[16]研究发现miRNA-29a通过抑制PCAF表达介导H3K27乙酰化,并减少H3K27乙酰化在趋化因子CXC配体12(C-X-C motif chemokine ligand 12,CXCL12)启动子中的富集,此外成骨细胞中的miRNA-29a还可通过抑制破骨细胞调节因子RANKL和CXCL12表达减少破骨细胞分化。Deb等[17]研究发现SETD2(SET domain containing 2)介导的NF-κB表达可导致p300/PCAF募集到Wnt5a基因,并建立H3K9乙酰化和H4K8乙酰化标记促进Wnt5a转录,从而加快破骨细胞分化。
2.2 去乙酰化组蛋白去乙酰化主要受HDAC调控,HDAC与带负电荷的DNA紧密结合使染色质致密卷曲,导致基因的转录受到抑制。活化信号转导及转录活化因子蛋白抑制因子3通过将HDAC1募集到破骨细胞相关基因NFATc1和破骨细胞相关受体的启动子来抑制破骨细胞分化[18]。HDAC3使NF-κB转录复合体的p65亚基去乙酰化,降低其与DNA结合及转录活性,抑制破骨细胞分化[19]。HDAC7是破骨细胞生成和骨吸收的关键负调控因子,其通过激活RANKL抑制NFATc1,阻止β-连环素下调,从而阻断破骨细胞分化[20]。HDAC5基因敲除小鼠的破骨细胞数量增加、分化相关基因表达和骨吸收上调[21]。Blixt等[22]用shRNA沉默HDAC4、5、9、10和11的表达,促进破骨细胞分化和成熟,增加骨吸收活性,并上调破骨细胞相关基因如c-Fos、NFATc1和组织蛋白酶K等的表达,提示Ⅱ和Ⅳ类HDAC具有抑制破骨细胞分化的作用。Kim等[23]研究发现抑制Sirt1表达可增加破骨细胞数量和活性,Sirt1还可通过去乙酰化叉头框蛋白O抑制破骨细胞生成。Jing等[24]在体外实验中发现,Sirt2特异性抑制剂AGK2通过降低c-Fos和NFATc1的表达抑制骨髓源性单核细胞向破骨细胞分化,说明Sirt2能够促进破骨细胞分化。在Sirt3敲除小鼠中破骨细胞数量增加,破骨前体细胞通过下调AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)表达降低AMPK磷酸化水平,Sirt3通过干扰RANKL诱导的过氧化物酶体增殖物激活受体γ辅激活物1-β(peroxisome proliferator-activated receptor γ coactivator 1-β,PGC-1β)表达抑制破骨细胞分化,此外PGC-1β可通过一种自动调节反馈机制诱导其自身的抑制剂Sirt3表达,研究结果提示Sirt3通过调节AMPK-PGC-1β轴抑制破骨细胞的分化[25]。
2.3 甲基化组蛋白甲基转移酶主要分为精氨酸甲基转移酶、SET、DOT1等亚型。Gao和Ge[26]研究发现H3K79甲基转移酶DOT1L是破骨细胞分化的调节因子,可抑制破骨细胞生成并预防骨质疏松症。Das等[27]研究发现组蛋白甲基化调节因子PTIP是破骨细胞形成的表观遗传调控因子,是维持正常造血功能和骨髓内环境稳态所必需的。Adamik等[28]研究发现组蛋白甲基转移酶EZH2通过抑制MafB转录和调节PI3K-Akt-哺乳动物雷帕霉素靶蛋白信号通路介导的RANKL信号通路的早期阶段,促进破骨细胞分化。Tsuda等[29]研究发现H3K9甲基转移酶G9a的特异性抑制剂BIX01294能够抑制RANKL诱导的破骨细胞分化。Kim等[30]研究发现在RANKL诱导的破骨细胞分化过程中,G9a是主要的甲基转移酶,可催化H3K27单甲基化进行基质金属蛋白酶-9依赖的组蛋白H3氨基末端水解,并触发破骨细胞特异性基因的表达。
2.4 去甲基化组蛋白去甲基化主要是通过去甲基化酶对破骨细胞进行调控,主要的去甲基化酶有组蛋白赖氨酸特异性去甲基化酶(histone lysine-specific demethylase,KDM)3C、KDM4B、Jumonji结构域(Jumonji domain-containing,JMJD)3、JMJD5、JMJD7和Jumonji C结构域蛋白(Jumonji C-domain containing protein,NO66)等。Lee等[31]研究发现KDM3C通过调节NF-κB信号通路促进破骨细胞分化。Kirkpatrick等[32]研究发现抑制KDM4B可激活KDM1A,减少细菌诱导的促炎细胞因子释放,并减少破骨细胞的生成。Yi等[33]研究发现KDM4B是破骨细胞分化和骨稳态的关键调节因子,KDM4B-CCAR1-MED1轴可通过H3K9去甲基化诱导破骨细胞相关基因启动子附近染色质结构的改变(常染色质化),此外KDM4B和p65的直接相互作用可促进NF-κB p65招募。Yasui等[34]研究发现沉默JMJD3能减少NFATc1转录起始位点H3K27三甲基化的去甲基化,从而抑制RANKL诱导的破骨细胞发生。Youn等[35]研究发现JMJD5是NFATc1的翻译后辅抑制因子,其通过促进NFATc1蛋白降解负调控破骨细胞的发生。Liu等[36]研究发现JMJD7在破骨细胞分化过程中表达下调,在巨噬细胞RAW 264.7和骨髓源性单核细胞中敲除JMJD7可使破骨细胞的分化能力增强。Chen等[37]研究发现NO66在小鼠间充质细胞中表达缺失能够促进骨形成。此外,Lee等[38]研究发现α-酮戊二酸可以通过去甲基化抑制H3K9甲基化的同时增强与核转录因子红系2相关因子2的结合对破骨细胞的生成发挥负调控作用。
2.5 其他组蛋白修饰研究表明,泛素化在破骨细胞分化中起着重要作用。Sma和Mad相关蛋白(Sma- and Mad-related protein,Smad)泛素化调控因子2(Smad ubiquitination regulatory factor 2,Smurf2)是TGF-β信号的重要负调控因子,可泛素化TGF-β受体和Smad蛋白,诱导其蛋白酶体降解。甲状旁腺激素通过Smurf2触发HDAC4泛素化,上调RANKL的表达,从而促进破骨细胞的分化[39]。Smurf2还可通过改变Smad3泛素化水平干扰Smad3和维生素D受体之间的相互作用,从而调控RANKL的表达[40]。
3 组蛋白修饰在成骨细胞分化和功能调节中的作用 3.1 乙酰化CREB是一种非特异性HAT,Greenblatt等[41]研究发现TGF-β活化激酶1-MAPK激酶3/6-p38 MAPK轴可使Runx2磷酸化,促进其与调节成骨细胞遗传程序所需的共激活因子CREB结合蛋白结合。CREB结合蛋白的常见辅因子p300也可作为HAT发挥作用,Jun等[42]研究发现ERK信号转导通过增强Runx2的稳定性和转录活性来协同调控成骨细胞的分化,部分原因是其通过提高p300蛋白水平和HAT活性,以及通过p300增强了Runx2的乙酰化作用。Wang等[43]研究发现PCAF与Runx2结合后乙酰化可导致骨祖细胞MC3T3-E1中转录因子和成骨标志物表达升高。WDR5具有H3K4特异性甲基转移酶和H4K8特异性乙酰转移酶活性[44]。在成骨细胞中过表达WDR5促进骨保护素表达与典型Wnt通路激活相关,且可加速成骨细胞的分化[45]。单核细胞白血病锌指蛋白MOZ和其同源物MORF均为HAT,可与Runx2相互作用并调节Runx2的转录活性[46]。
3.2 去乙酰化HDAC对骨骼的影响部分通过与Runx2结合或抑制其活性而发生,Runx2是成骨细胞分化和骨形成所需的调节因子[47]。HDAC1和2结构相似,在成骨细胞分化过程中两者的蛋白质和mRNA水平均降低。HDAC1与Runx2物理结合能降低Runx2的转录活性,并抑制p300对Runx2转录活性的刺激作用,用RNA干扰抑制HDAC1表达会刺激成骨细胞分化[48]。锌指蛋白521通过将HDAC3募集到Runx2复合物抑制Runx2的转录活性[49]。NFATc1抑制骨钙素基因表达与骨钙素启动子活性下降和T细胞因子/淋巴增强子结合因子反式激活减弱有关,NFATc1过度表达抑制了成骨细胞分化过程中总HDAC活性的降低,并阻止了组蛋白H3和H4的高乙酰化[50]。通过RNA干扰抑制前成骨细胞MC3T3中的HDAC3可加速基质矿化并增加Runx2靶基因的表达,但不影响碱性磷酸酶的表达,表明HDAC3可积极调控成骨细胞主控蛋白Runx2的转录活性[51]。在小鼠中,HDAC8通过抑制颅神经嵴细胞中转录因子Otx2和Lhx1的表达特异性控制颅骨形成,HDAC8整体缺失会导致颅骨不稳定从而引起围产期致死率上升[52]。HDAC4和HDAC5均在成熟的成骨细胞中表达,在分化过程中它们作为Runx2的辅抑制因子与TGF-β一起抑制Runx2的转录活性使Runx2去乙酰化,参与成骨细胞分化[53-54]。HDAC6主要分布在细胞质中,在成骨细胞分化过程中其通过与Runx2结合来调节组织特异性基因表达[55]。通过抑制HDAC6可以激活Runx2表达和老年小鼠骨髓间充质干细胞的成骨分化潜能,减轻老年小鼠的增龄性骨丢失[56]。HDAC7和Runx2共定位于细胞核中并与成骨细胞中Runx2响应启动子元件相关,抑制HDAC7可加速成骨细胞成熟,说明HDAC7是Runx2转录活性的调节因子,提示HDAC7可能是成骨细胞成熟时间和/或速度的重要调节因子[57]。Sirt1~7是调节转录和衰老的NADH依赖性蛋白脱乙酰酶。Sirt1通过牺牲脂肪形成调节间充质干细胞向成骨细胞分化[58]。
3.3 甲基化在成骨细胞分化开始前,主要的成骨转录因子和成骨细胞分化标志物富含抑制性组蛋白甲基化标志如H3K9和H3K27。成骨细胞分化开始于去除这些抑制性标记,并通过组蛋白修饰建立活性甲基化标记促进成骨细胞分化[59]。Khani等[60]研究发现,成骨潜能增加的细胞具有更高水平的H4K20甲基转移酶Suv420h2;通过siRNA缺失对Suv420h2进行功能丧失分析,结果显示H4K20甲基化缺失,骨生物标志物碱性磷酸酶和成骨转录因子Osterix表达降低,细胞外基质矿化缺失,说明Suv420h2是成骨细胞分化过程中基质矿化所必需的。Yin等[61]研究发现,Ash1l(absent,small,or homeotic 1-like)通过增加Runx2、Osterix和同源盒10启动子区域的H3K4三甲基化标记积极控制基因表达并促进成骨细胞分化。Whsc1(Wolf-Hirschhorn syndrome candidate 1)是一种H3K36三甲基转移酶,Whsc1通过增加p300与Runx2的关联并激活成骨相关基因骨桥蛋白促进成骨分化[62]。神经嵴干细胞是多能细胞,具有成骨分化潜能。G9a通过抑制扭曲蛋白(twist)基因促进Runx2在神经嵴干细胞衍生的间充质组织中表达,从而诱导骨形成[63]。
3.4 去甲基化Ye等[64]研究发现,KDM6B通过去除H3K27三甲基化控制同源异形基因的表达,而KDM4B通过去除H3K9三甲基化促进无远端同源盒基因(distal-less homeobox,DLX)的表达,因此减少KDM4B或KDM6B可降低成骨分化。Kim等[65]研究发现,表观遗传调控因子植物同源结构域指蛋白2(plant homeodomain finger protein 2,PHF2)是一种去甲基化酶,可以使H3K9二甲基化组蛋白去甲基化,在原代成骨细胞和C2C12前体细胞中,PHF2通过去甲基化Runx2促进成骨细胞分化,杂色抑制因子3-9同源1(suppressor of variegation 3-9 homolog 1,SUV39H1)通过甲基化Runx2抑制成骨细胞形成。Liu等[66]研究发现,PHF8的mRNA和蛋白质水平在牙周膜干细胞中升高,导致基质矿化和成骨分化增强。Sun等[67]研究发现,DLX3是一种重要的成骨转录因子,其过度表达导致Dickkopf家族成员4(Dickkopf family member 4,DKK4)启动子区的H3K27甲基化标记增加,从而促进成骨细胞分化。Yang等[68]研究发现JMJD3通过转录因子Runx2和Osterix调控成骨细胞分化。
3.5 其他组蛋白修饰 3.5.1 磷酸化ERK/MAPK介导的Runx2磷酸化对前成骨细胞的形成至关重要,生物力学信号诱导成骨相关基因表达有赖于Runx2转录因子的磷酸化[69]。TGF-β1通过ERK途径刺激Runx2丝氨酸残基Ser-233、Ser-236和Ser-240磷酸化,这种作用是成骨细胞中基质金属蛋白酶-13(骨重塑基因)表达所必需的[70]。Osterix是一种锌指转录因子,其特异性表达于所有发育骨骼的成骨细胞和骨细胞。通过p38 MAPK途径使Osterix的丝氨酸残基Ser-73/77位点磷酸化,并与靶基因启动子(如纤维调节蛋白和骨唾液酸蛋白)上的Sp1序列结合,能增强共激活子的招募从而形成转录活性复合物[71]。
3.5.2 泛素化Cbl-b/c-Cbl是一种E3泛素连接酶,它通过增强泛素-蛋白酶体降解抑制Osterix的功能,并能抑制骨形态发生蛋白(bone morphogenetic protein,BMP)2诱导的间充质细胞成骨细胞分化[72]。含WW结构域蛋白2(WW domain-containing protein 2,WWP2)是E3泛素连接酶NEDD4家族的成员,其催化Runx2在其3个赖氨酸残基(Lys-202、Lys-225和Lys-240)单泛素化,从而增强Runx2的转录和成骨细胞活性[73]。USP4去泛素化TGF-β1受体并通过Smad7-Smurf2复合物保持TGF-β1信号的稳定性,从而激活成骨细胞分化[74]。Smurf1是E3泛素连接酶Hect结构域家族的成员,其与BMP蛋白如Smad1/5、Runx2/核心结合因子α1和Ⅰ型BMP受体相互作用并降解这些蛋白质,从而抑制成骨细胞分化[75]。
4 小结骨骼始终处于骨吸收和骨形成的动态平衡中,而骨稳态主要取决于破骨细胞和成骨细胞的功能。当这种动态平衡被打破时会导致多种骨相关疾病发生,对人体的健康造成威胁。组蛋白修饰通过调节破骨和成骨细胞分化的关键因子及其信号通路,特别是破骨细胞分化关键信号通路RANKL和NF-κB及成骨细胞分化关键信号通路Runx2和Wnt,影响破骨及成骨细胞的分化和功能。目前,骨稳态的表观遗传机制研究得到了广泛的关注,组蛋白修饰有利于阐明在染色质水平上破骨细胞和成骨细胞的分化及调控机制。但现有的实验多是动物实验和体外实验,尚不足以解释人体内的组蛋白修饰机制,未来应继续深化组蛋白修饰对破骨和成骨细胞信号通路调控的研究,以更加全面地了解其在人体内外的作用机制,从而研发调控组蛋白修饰相关药物,为临床治疗骨相关疾病提供新的思路。
[1] |
KIM J M, LIN C, STAVRE Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073. DOI:10.3390/cells9092073 |
[2] |
LI C J, XIAO Y, SUN Y C, et al. Senescent immune cells release grancalcin to promote skeletal aging[J]. Cell Metab, 2021, 33(10): 1957-1973. e6. DOI:10.1016/j.cmet.2021.08.009 |
[3] |
STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45. DOI:10.1038/47412 |
[4] |
LAWRENCE M, DAUJAT S, SCHNEIDER R. Lateral thinking: how histone modifications regulate gene expression[J]. Trends Genet, 2016, 32(1): 42-56. DOI:10.1016/j.tig.2015.10.007 |
[5] |
MARMORSTEIN R, ZHOU M M. Writers and readers of histone acetylation: structure, mechanism, and inhibition[J]. Cold Spring Harb Perspect Biol, 2014, 6(7): a018762. DOI:10.1101/cshperspect.a018762 |
[6] |
SETO E, YOSHIDA M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. DOI:10.1101/cshperspect.a018713 |
[7] |
HE K, CAO X, DENG X. Histone methylation in epigenetic regulation and temperature responses[J]. Curr Opin Plant Biol, 2021, 61: 102001. DOI:10.1016/j.pbi.2021.102001 |
[8] |
BANNISTER A J, KOUZARIDES T. Regulation of chromatin by histone modifications[J]. Cell Res, 2011, 21(3): 381-395. DOI:10.1038/cr.2011.22 |
[9] |
AKUTSU M, DIKIC I, BREMM A. Ubiquitin chain diversity at a glance[J]. J Cell Sci, 2016, 129(5): 875-880. DOI:10.1242/jcs.183954 |
[10] |
KLIZA K, HUSNJAK K. Resolving the complexity of ubiquitin networks[J]. Front Mol Biosci, 2020, 7: 21. DOI:10.3389/fmolb.2020.00021 |
[11] |
NIJMAN S M B, LUNA-VARGAS M P A, VELDS A, et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5): 773-786. DOI:10.1016/j.cell.2005.11.007 |
[12] |
TROTMAN L C, WANG X, ALIMONTI A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression[J]. Cell, 2007, 128(1): 141-156. DOI:10.1016/j.cell.2006.11.040 |
[13] |
GUO Q, KANG H, WANG J, et al. Inhibition of ACLY leads to suppression of osteoclast differentiation and function via regulation of histone acetylation[J]. J Bone Miner Res, 2021, 36(10): 2065-2080. DOI:10.1002/jbmr.4399 |
[14] |
LAHA D, DEB M, DAS H. KLF2 (Kruppel-like factor 2[lung]) regulates osteoclastogenesis by modulating autophagy[J]. Autophagy, 2019, 15(12): 2063-2075. DOI:10.1080/15548627.2019.1596491 |
[15] |
KIM J H, KIM K, YOUN B U, et al. RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation[J]. Biochem J, 2011, 436(2): 253-262. DOI:10.1042/BJ20110062 |
[16] |
LIAN W S, KO J Y, CHEN Y S, et al. MicroRNA-29arepresses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12[J]. Cell Death Dis, 2019, 10(10): 705. DOI:10.1038/s41419-019-1942-1 |
[17] |
DEB M, LAHA D, MAITY J, et al. SETD2-mediated epigenetic regulation of noncanonical Wnt5A during osteoclastogenesis[J]. Clin Epigenetics, 2021, 13(1): 192. DOI:10.1186/s13148-021-01125-2 |
[18] |
KIM K, LEE J, KIM J H, et al. Protein inhibitor of activated STAT 3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor[J]. J Immunol, 2007, 178(9): 5588-5594. DOI:10.4049/jimmunol.178.9.5588 |
[19] |
MOLSTAD D H H, MATTSON A M, BEGUN D L, et al. Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL[J]. J Biol Chem, 2020, 295(51): 17713-17723. DOI:10.1074/jbc.RA120.013573 |
[20] |
JIN Z, WEI W, DECHOW P C, et al. HDAC7 inhibits osteoclastogenesis by reversing RANKL-triggered β-catenin switch[J]. Mol Endocrinol, 2013, 27(2): 325-335. DOI:10.1210/me.2012-1302 |
[21] |
WEIN M N, SPATZ J, NISHIMORI S, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes[J]. J Bone Miner Res, 2015, 30(3): 400-411. DOI:10.1002/jbmr.2381 |
[22] |
BLIXT N C, FAULKNER B K, ASTLEFORD K, et al. Class Ⅱ and Ⅳ HDAC function as inhibitors of osteoclast differentiation[J]. PLoS One, 2017, 12(9): e0185441. DOI:10.1371/journal.pone.0185441 |
[23] |
KIM H N, HAN L, IYER S, et al. Sirtuin1 suppresses osteoclastogenesis by deacetylating FoxOs[J]. Mol Endocrinol, 2015, 29(10): 1498-1509. DOI:10.1210/me.2015-1133 |
[24] |
JING Y, ZHOU Y, ZHOU F, et al. SIRT2 deficiency prevents age-related bone loss in rats by inhibiting osteoclastogenesis[J]. Cell Mol Biol, 2019, 65(7): 66-71. |
[25] |
HUH J E, SHIN J H, JANG E S, et al. Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1β axis in mice[J]. Sci Rep, 2016, 6: 22511. DOI:10.1038/srep22511 |
[26] |
GAO Y, GE W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis[J]. Cell Death Dis, 2018, 9(2): 33. DOI:10.1038/s41419-017-0040-5 |
[27] |
DAS P, VEAZEY K J, VAN H T, et al. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches[J]. Proc Natl Acad Sci USA, 2018, 115(43): E10137-E10146. DOI:10.1073/pnas.1806019115 |
[28] |
ADAMIK J, PULUGULLA S H, ZHANG P, et al. EZH2 supports osteoclast differentiation and bone resorption via epigenetic and cytoplasmic targets[J]. J Bone Miner Res, 2020, 35(1): 181-195. DOI:10.1002/jbmr.3863 |
[29] |
TSUDA H, ZHAO N, IMAI K, et al. BIX01294 suppresses osteoclast differentiation on mouse macrophage-like Raw264.7 cells[J]. Bosn J Basic Med Sci, 2013, 13(4): 271-275. DOI:10.17305/bjbms.2013.2339 |
[30] |
KIM K, SHIN Y, KIM J, et al. H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis[J]. Epigenetics Chromatin, 2018, 11(1): 23. DOI:10.1186/s13072-018-0193-1 |
[31] |
LEE J Y, MEHRAZARIN S, ALSHAIKH A, et al. Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-κB signaling and osteoclastogenesis[J]. FASEB J, 2019, 33(9): 10515-10527. DOI:10.1096/fj.201900154RR |
[32] |
KIRKPATRICK J E, KIRKWOOD K L, WOSTER P M. Inhibition of the histone demethylase KDM4B leads to activation of KDM1A, attenuates bacterial-induced pro-inflammatory cytokine release, and reduces osteoclastogenesis[J]. Epigenetics, 2018, 13(5): 557-572. DOI:10.1080/15592294.2018.1481703 |
[33] |
YI S J, JANG Y J, KIM H J, et al. The KDM4B-CCAR1-MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis[J]. Bone Res, 2021, 9(1): 27. DOI:10.1038/s41413-021-00145-1 |
[34] |
YASUI T, HIROSE J, TSUTSUMI S, et al. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1[J]. J Bone Miner Res, 2011, 26(11): 2665-2671. DOI:10.1002/jbmr.464 |
[35] |
YOUN M Y, YOKOYAMA A, FUJIYAMA-NAKAMURA S, et al. JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation[J]. J Biol Chem, 2012, 287(16): 12994-13004. DOI:10.1074/jbc.M111.323105 |
[36] |
LIU Y, ARAI A, KIM T, et al. Histone demethylase Jmjd7 negatively regulates differentiation of osteoclast[J]. Chin J Dent Res, 2018, 21(2): 113-118. DOI:10.3290/j.cjdr.a40437 |
[37] |
CHEN Q, SINHA K, DENG J M, et al. Mesenchymal deletion of histone demethylase NO66 in mice promotes bone formation[J]. J Bone Miner Res, 2015, 30(9): 1608-1617. DOI:10.1002/jbmr.2494 |
[38] |
LEE S, KIM H S, KIM M J, et al. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation[J]. Bone, 2021, 145: 115836. DOI:10.1016/j.bone.2020.115836 |
[39] |
OBRI A, MAKINISTOGLU M P, ZHANG H, et al. HDAC4 integrates PTH and sympathetic signaling in osteoblasts[J]. J Cell Biol, 2014, 205(6): 771-780. DOI:10.1083/jcb.201403138 |
[40] |
XU Z, GREENBLATT M B, YAN G, et al. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts[J]. Nat Commun, 2017, 8: 14570. DOI:10.1038/ncomms14570 |
[41] |
GREENBLATT M B, SHIM J H, ZOU W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice[J]. J Clin Invest, 2010, 120(7): 2457-2473. DOI:10.1172/JCI42285 |
[42] |
JUN J H, YOON W J, SEO S B, et al. BMP2-activated erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity[J]. J Biol Chem, 2010, 285(47): 36410-36419. DOI:10.1074/jbc.m110.142307 |
[43] |
WANG C Y, YANG S F, WANG Z, et al. PCAF acetylates Runx2 and promotes osteoblast differentiation[J]. J Bone Miner Metab, 2013, 31(4): 381-389. DOI:10.1007/s00774-013-0428-y |
[44] |
MIGLIORI V, MAPELLI M, GUCCIONE E. On WD40 proteins: propelling our knowledge of transcriptional control?[J]. Epigenetics, 2012, 7(8): 815-822. DOI:10.4161/epi.21140 |
[45] |
GORI F, FRIEDMAN L G, DEMAY M B. Wdr5, a WD-40protein, regulates osteoblast differentiation during embryonic bone development[J]. Dev Biol, 2006, 295(2): 498-506. DOI:10.1016/j.ydbio.2006.02.031 |
[46] |
PELLETIER N, CHAMPAGNE N, STIFANI S, et al. MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2[J]. Oncogene, 2002, 21(17): 2729-2740. DOI:10.1038/sj.onc.1205367 |
[47] |
MCGEE-LAWRENCE M E, WESTENDORF J J. Histone deacetylases in skeletal development and bone mass maintenance[J]. Gene, 2011, 474(1/2): 1-11. DOI:10.1016/j.gene.2010.12.003 |
[48] |
LEE H W, SUH J H, KIM A Y, et al. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation[J]. Mol Endocrinol, 2006, 20(10): 2432-2443. DOI:10.1210/me.2006-0061 |
[49] |
WU M, HESSE E, MORVAN F, et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo[J]. Bone, 2009, 44(4): 528-536. DOI:10.1016/j.bone.2008.11.011 |
[50] |
CHOO M K, YEO H, ZAYZAFOON M. NFATc1 mediates HDAC-dependent transcriptional repression of osteocalcin expression during osteoblast differentiation[J]. Bone, 2009, 45(3): 579-589. DOI:10.1016/j.bone.2009.05.009 |
[51] |
SCHROEDER T M, KAHLER R A, LI X, et al. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation[J]. J Biol Chem, 2004, 279(40): 41998-42007. DOI:10.1074/jbc.M403702200 |
[52] |
HABERLAND M, MOKALLED M H, MONTGOMERY R L, et al. Epigenetic control of skull morphogenesis by histone deacetylase 8[J]. Genes Dev, 2009, 23(14): 1625-1630. DOI:10.1101/gad.1809209 |
[53] |
JEON E J, LEE K Y, CHOI N S, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation[J]. J Biol Chem, 2006, 281(24): 16502-16511. DOI:10.1074/jbc.M512494200 |
[54] |
KANG J S, ALLISTON T, DELSTON R, et al. Repression of Runx2 function by TGF-β through recruitment of class Ⅱ histone deacetylases by Smad3[J]. EMBO J, 2005, 24(14): 2543-2555. DOI:10.1038/sj.emboj.7600729 |
[55] |
WESTENDORF J J, ZAIDI S K, CASCINO J E, et al. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21CIP1/WAF1 promoter[J]. Mol Cell Biol, 2002, 22(22): 7982-7992. DOI:10.1128/MCB.22.22.7982-7992.2002 |
[56] |
MA C, GAO J, LIANG J, et al. HDAC6 inactivates Runx2 promoter to block osteogenesis of bone marrow stromal cells in age-related bone loss of mice[J]. Stem Cell Res Ther, 2021, 12(1): 484. DOI:10.1186/s13287-021-02545-w |
[57] |
JENSEN E D, SCHROEDER T M, BAILEY J, et al. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner[J]. J Bone Miner Res, 2008, 23(3): 361-372. DOI:10.1359/jbmr.071104 |
[58] |
BÄCKESJÖ C M, LI Y, LINDGREN U, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells[J]. Cells Tissues Organs, 2009, 189(1/2/3/4): 93-97. DOI:10.1159/000151744 |
[59] |
MONTECINO M, CARRASCO M E, NARDOCCI G. Epigenetic control of osteogenic lineage commitment[J]. Front Cell Dev Biol, 2021, 8: 611197. DOI:10.3389/fcell.2020.611197 |
[60] |
KHANI F, THALER R, PARADISE CR, et al. Histone H4 methyltransferase Suv420h2 maintains fidelity of osteoblast differentiation[J]. J Cell Biochem, 2017, 118(5): 1262-1272. DOI:10.1002/jcb.25787 |
[61] |
YIN B, YU F, WANG C, et al. Epigenetic control of mesenchymal stem cell fate decision via histone methyltransferase Ash1l[J]. Stem Cells, 2019, 37(1): 115-127. DOI:10.1002/stem.2918 |
[62] |
LEE Y F, NIMURA K, LO W N, et al. Histone H3 lysine 36 methyltransferase Whsc1 promotes the association of Runx2 and p300 in the activation of bone-related genes[J]. PLoS One, 2014, 9(9): e106661. DOI:10.1371/journal.pone.0106661 |
[63] |
HIGASHIHORI N, LEHNERTZ B, SAMPAIO A, et al. Methyltransferase G9A regulates osteogenesis via twist gene repression[J]. J Dent Res, 2017, 96(10): 1136-1144. DOI:10.1177/0022034517716438 |
[64] |
YE L, FAN Z, YU B, et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs[J]. Cell Stem Cell, 2012, 11(1): 50-61. DOI:10.1016/j.stem.2012.04.009 |
[65] |
KIM H J, PARK J W, LEE K H, et al. Plant homeodomain finger protein 2 promotes bone formation by demethylating and activating Runx2 for osteoblast differentiation[J]. Cell Res, 2014, 24(10): 1231-1249. DOI:10.1038/cr.2014.127 |
[66] |
LIU Z, HE Y, XU C, et al. The role of PHF8 and TLR4 in osteogenic differentiation of periodontal ligament cells in inflammatory environment[J]. J Periodontol, 2021, 92(7): 1049-1059. DOI:10.1002/JPER.20-0285 |
[67] |
SUN S, YU M, FAN Z, et al. DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4[J]. Biochem Biophys Res Commun, 2019, 516(1): 171-176. DOI:10.1016/j.bbrc.2019.06.029 |
[68] |
YANG D, OKAMURA H, NAKASHIMA Y, et al. Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and Osterix[J]. J Biol Chem, 2013, 288(47): 33530-33541. DOI:10.1074/jbc.M113.497040 |
[69] |
LI Y, GE C, LONG J P, et al. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor[J]. J Bone Miner Res, 2012, 27(6): 1263-1274. DOI:10.1002/jbmr.1574 |
[70] |
ARUMUGAM B, VAIRAMANI M, PARTRIDGE N C, et al. Characterization of Runx2 phosphorylation sites required for TGF-β1-mediated stimulation of matrix metalloproteinase-13 expression in osteoblastic cells[J]. J Cell Physiol, 2018, 233(2): 1082-1094. DOI:10.1002/jcp.25964 |
[71] |
ORTUÑO M J, RUIZ-GASPÀ S, RODRÍGUEZ-CARBALLO E, et al. p38 regulates expression of osteoblast-specific genes by phosphorylation of Osterix[J]. J Biol Chem, 2010, 285(42): 31985-31994. DOI:10.1074/jbc.M110.123612 |
[72] |
CHOI Y H, HAN Y, LEE S H, et al. Cbl-b and c-Cbl negatively regulate osteoblast differentiation by enhancing ubiquitination and degradation of Osterix[J]. Bone, 2015, 75: 201-209. DOI:10.1016/j.bone.2015.02.026 |
[73] |
ZHU W, HE X, HUA Y, et al. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation[J]. J Biol Chem, 2017, 292(27): 11178-11188. DOI:10.1074/jbc.M116.772277 |
[74] |
XIAO L, PENG X, LIU F, et al. AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smurf2 and deubiquitinating enzyme USP4[J]. BMC Cell Biol, 2015, 16: 7. DOI:10.1186/s12860-015-0055-7 |
[75] |
ZHAO M, QIAO M, HARRIS S E, et al. Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo[J]. J Biol Chem, 2004, 279(13): 12854-12859. DOI:10.1074/jbc.M313294200 |